
HAL Id: inria-00319407
https://inria.hal.science/inria-00319407v1
Submitted on 9 Sep 2008 (v1), last revised 15 Jul 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SOFA: A modular yet efficient simulation framework
François Faure, Jérémie Allard, Stéphane Cotin, Paul Neumann, Pierre-Jean

Bensoussan, Christian Duriez, Hervé Delingette, Laurent Grisoni

To cite this version:
François Faure, Jérémie Allard, Stéphane Cotin, Paul Neumann, Pierre-Jean Bensoussan, et al..
SOFA: A modular yet efficient simulation framework. Surgetica 2007: Computer-Aided Medical
Interventions: tools and applications, 2007, Chambery, France. �inria-00319407v1�

https://inria.hal.science/inria-00319407v1
https://hal.archives-ouvertes.fr

SOFA: A MODULAR YET EFFICIENT

SIMULATION FRAMEWORK

F. FAURE*, J. ALLARD+, S. COTIN*, P. NEUMANN+, P-J.

BENSOUSSAN*, C. DURIEZ*, H. DELINGETTE*, L. GRISONI*

* INRIA – Evasion, Alcove, and Asclepios teams – FRANCE

+
CIMIT Sim Group – 65 Lansdowne Street – Cambridge, MA 02139 – USA

Abstract. SOFA is a new open source
framework primarily targeted at medical

simulation research and industry. It is
based on a scene graph data structure

extended to physical models and
abstract algorithms. Additionally,

multiple models of the same objects can
easily be used to optimize different tasks

such as force computation, collision
handling, and rendering. This results in a

highly flexible architecture able to
model and animate a wide range of

simulated objects. We explain the main
concepts of SOFA and detail an example

of application to a surgery procedure.

1 Introduction

Computer-based training systems offer

an elegant solution to the current need
for better training in Medicine. It is

widely admitted that surgical education
and planning can highly benefit from

computer simulations. However in spite
of the impressive developments in the

field of medical simulation, some
fundamental problems still hinder the

acceptance of this valuable technology

in daily clinical practice. In particular,
the multi-disciplinary aspect of medical

simulation requires the integration
within a single environment of leading-

edge solutions in areas as diverse as
visualization, biomechanical modeling,

haptics or contact modeling. This diver-
sity of problems makes it challenging

for researchers to make progress in
specific areas, and leads rather often to

duplication of efforts.

For the past few years, there have been
attempts at designing software toolkits

for medical simulation such as
SPRING [8], GiPSi [4], VRASS [3], or

SSTML [2]. Although these different
solutions had the same aim to provide an

open source answer to the various chal-
lenges of medical simulation research

and development, they were generally
limited by their organization or had

restrictions on the range of physical
models, such as mass-spring systems,

with a limited choice of algorithms for
time integration and collision detection.

We propose a different approach
through a very modular and flexible

software framework called SOFA [1].
This open source framework allows

independently developed algorithms to
interact together within a common simu-

lation while minimizing the develop-
ment time required for integration.

The main objectives of the SOFA

framework are:
• Provide a common software

framework for the medical simulation
community

• Enable component sharing / exchange
and reduce development time

• Promote collaboration among research
groups

• Enable validation and comparison of
new algorithms

• Help standardize the description of
anatomical and biomechanical datasets

Our main overall goal is to develop a
flexible framework while minimizing

the impact of this flexibility on the
computation overhead. To achieve these

objectives, we have developed a new
architecture that implements a series of

concepts described below.

2 The SOFA architecture

2.1 Mechanical scene graph

Implementing the physical simulation of

a given model is generally a hard task.
You first describe the model using

physical entities such as points, masses,
forces. You then implement physical

equations and algorithms to animate the
model. And then, you finally display

images using computer graphics tools.

Scene graphs are popular graphics tools
because they allow you to represent the

model by instantiating simple software

objects using your data, and then a
generic rendering engine does the job of

displaying images. The objects are orga-
nized in tree-like structures. Some of

them store coordinates, while others re-
present shapes such as polygon meshes,

light sources, materials, or textures. The
objects have various attributes such as

position, color or file name. Once the
objects and attributes are set, the stan-

dard graphics operations such as poly-
gon rasterization, pixel shading, trans-

parency accumulation or hidden parts
removal, are automatically implemented

by the rendering engine. Using scene
graphs, a limited know-ledge of com-

puter graphics is sufficient to generate
beautiful images of complex models.

They are widely used in simulators.

The aim of SOFA is to bring the power
of scene graphs to mechanical simula-

tions. It extends traditional scene graphs
with physical components such as force

fields, masses, and constraints. Some
other components represent physics

algorithms. Once a model, along with its
associated algorithms, is expressed as a

SOFA mechanical scene graph,
standard physical algorithms are

automatically implemented and
available. This includes various explicit

and implicit time integration methods as
well as collision detection and reaction

between various shapes. SOFA is of
course extendable using new

components.

In this paper, we focus on the simulation
of viscoelastic bodies. Most explicit and

implicit time integration methods can be
decomposed into a few physical proce-

dures: given positions and velocities, ac-
cumulate forces; given forces, compute

accelerations; filter out forbidden displa-
cements; compute the product of the

mass and stiffness matrices with a vec-
tor. The SOFA engine implements these

procedures by traversing the scene graph
using visitors which trigger the appro-

priate methods of the components. This
guarantees that the procedures are auto-

matically implemented, provided that
the scene graph is syntactically correct.

SOFA can be used in different ways. Its

default application allows you to model
scenes composed of various rigid,

viscoelastic or fluid bodies in contact.
You interact directly with the scene by

picking and pulling the objects. For a
given model, you can compare time

integration or collision detection
methods by simply replacing compo-

nents. For a given shape, you can try
various mechanical models including

mass-springs and FEM. To implement a
sophisticated simulation, you can use the

available standard components and
develop only the components related to

your area of expertise. Section 3
presents such a case.

2.2 Multi-model representation

Any simulation involves, to some

extent, the computation of visual
feedback, haptic feedback, and

interactions between medical devices
and anatomical structures. This typically

translates into a simulation loop where,
at each time step, collisions between

objects are detected, deformation and
collision response are computed, and the

resulting state can be visually and
haptically rendered. To perform each of

these actions, the various algorithms
involved in the simulation rely

implicitly on different data structures for
the simulated objects. In SOFA, we

explicitly decompose an object into
various representations, in such a way

that each representation is more suited
toward a particular task – rendering,

deformation, or collision detection.
Then, these representations are linked

together so they can be coherently
updated. We call the link between these

representations a mapping. Various
mapping functions can be defined, and

Fig. 1:

Multimodels in SOFA. Left: possible representations for a simulated object, with the Behavior

Model controlling the update of the other representations through a series of mappings. Right: ex-

amples of these representations for a liver model. Notice how the Visual Model is more detailed

than the Behavior Model and how the Collision Model relies on a very different representation.

each mapping will associate a set of
primitives of a representation to a set of

primitives in the other representation
(see Figure 1). For instance, a mapping

can connect degrees of freedom in a
Behavior Model to vertices in a Visual

Model.

3 Application to eye surgery

In this section, we show and discuss a

SOFA scene used to simulate an
ophthalmology procedure called a

vitrectomy which reattaches the retina.
In some diabetic patients, proliferative

fibrovascular tissue growth can lead to
traction which can disrupt the retina’s

nature cohesion. To model a diabetic
circumferential traction case, the

circular fibovascular membrane or scar
tissue, compresses the retina radially.

Once released, the retina relaxes to its
natural shape.

Figure 2 illustrates the physical model.

The scar tissue, in blue, and the retina,
in green, are modeled using a mass-

spring system. Fixed particles, circled in
black, mimic the retina’s natural

attachments. The short springs, in red,
are removed when the blade touches one

of their endpoints.

The scene is decomposed in three main
parts, as illustrated in figure 3: the

physical model of the eye, the tool mani-
pulated by the surgeon, and the fixed

objects. The degrees of freedom (DOF)
of the tool are stored in a Mechanical-

Object component. They are controlled
by the haptics device and optionally re-

cording or replaying the trajectory from
a file using the WriteState and Read-

State components. Two visible objects

are attached to these DOF using map-
pings. One represents the handle and the

other represents the tip of the tool. To
allow collision detection and modeling

of the tool tip with other scene elements,
we use a LineModel, which defines a set

of collidable lines based on an
associated mesh topology. The

associated DOF (the edge endpoints) are
mapped from the rigid body DOF.

Fig. 2:

 Top: the physical model of the retina and

scar tissue. Bottom: a simulation snapshot.

The deformable object is a physical

model controlled by an implicit
integration solver implemented in the

CgImplicitSolver component. Its masses
and fixed-point constraints are given in

the DiagonalMass and FixedConstraint

components, respectively. Two sets of
springs are used. The Retina springs

model the behavior of the retina and scar
tissue, while the Cuttable springs model

the springs which can be removed by
cutting. Component SphereModel

models the DOF as particles with
associated spheres. Two drawable

shapes are associated with the retina,
one for the standard retina and one for

the scar tissue. Mappings are used to
update the positions of the shape

vertices based on retina DOF.

Collision detection and handling is
organized as a pipeline including a

hierarchical detection which implements
broad-phase and narrow-phase detection

which prunes the possible pair of

intersecting primitives, followed by

exact primitive intersection phase, as
illustrated in figure 4. Detected

collisions are then processed by contact
creation and response phase.

Each part of the pipeline is implemented

in a component and can be customized
for special purposes. The overall

pipeline is managed by the Default-
Pipeline component, which defers to the

Hierarchical detection component to
implement hierarchical bounding

volume strategy and the MinProximity-
Intersection component for precise

detection between pairs of primitives.
When a collision is detected, it is

handled by the contact manager.

Fig. 3:

The scene graph of the vitrectomy scene (fixed objects omitted).

This simulation was originally

implemented as a stand-alone custom
application. Its port to SOFA mainly

uses standard components and runs at
the same speed. Two new components

corresponding to the specific technical
contributions of this work where

derived. The first implements a custom
spring model, while the other reacts to

contact by removing springs instead of
setting up reaction forces as done by the

default response strategy.

3.1 Efficiency

Most of the computation time in
physical simulation is spent in matrix

(mass and stiffness) computations and
collision detection. SOFA matrices are

inherently sparse due to the tree data
structure, and matrix-vector products are

performed in linear time. This allows us
to efficiently implement explicit and

implicit time integrators [3]. Collision
detection uses standard hierarchical

bounding volumes to cull out unneces-
sary tests on geometric primitives. This

makes the efficiency of SOFA
comparable with state-of-the-art general

purpose implementations.

Moreover, we are implementing
strategies to automatically perform

parallel computations on the GPU. We
have developed an early prototype of a

laparoscopic simulation system in which

the liver and intestines are modelled as
deformable models which can be

manipulated using a laparoscopic
instrument and can collide with the ribs,

as illustrated in Figure 4. We use this
scene as a benchmark for various

models and algorithms. The modularity
of the SOFA architecture allows us to

easily experiment different constitutive
models for the organs such as a co-

rotational FEM and spring-based FFD
grids. To find the right balance between

performances and accuracy, we tested
both FEM and spring-based models of

varying resolution on the liver (see
Fig. 5). While FEM-based models are

generally more accurate, spring-based
FFD grids are easier to set up and to

change the resolution, as only the
surface mesh is required.

CPU-based models Both FEM and

springs were able to simulate the liver at
interactive rates when executed on the

CPU. Using FEM models consisting of
1800 and 30000 tetrahedra, the

simulation achieved 65 and 4 iterations
per second, respectively. Using springs

grids of sizes 17x8x10, 20x10x12 and
24x13x15 the simulation achieved

respectively 110, 67, and 37 iterations
per second.

GPU-based models SOFA currently

Fig. 4:

The SOFA collision pipeline.

supports transfering part of the

simulations to the GPU thanks to the
NVIDIA CUDA library. It is still in its

early stage, hence only springs-based
models are currently supported.

However, it already achieves good
speedups compared to the CPU

implementation. In the case of the liver,
we where able to simulate the same

springs grids models of sizes 17x8x10,
20x10x12 and 24x13x15 at respectively

261, 227, and 178 iterations per second.
Simulating the liver at this speed is

useful as it frees the CPU for other parts
of the simulation, and opens new

possibility to interactively support
higher precisions models.

Conclusion

We have discussed the main concepts of
SOFA and presented its application to a

real surgical simulation. Compared with
the implementation of a stand-alone

application, using SOFA allows one to
re-use and compare a wide variety of

available models and algorithms, while
focusing on one's specific area of

expertise. The efficiency is comparable
with the best implementations, and

parallel processing using the GPU will
be increasingly available.

SOFA is freely available and its user

community is growing.

In future work, we plan to add support

for high-frequency haptics feedback,
more collision detection and modeling

algorithms, dense matrix computations,
and more complex cuts.

Fig. 5:

FEM-based and spring grid-based behavior models at multiple resolutions

BIBLIOGRAPHY

[1] ALLARD J. ET. AL.

SOFA - an Open Source Framework

for Medical Simulation.

www.sofa-framework.org

PROCEEDINGS OF MMVR, 2007.

[2] BACON J., TARDELLA N.,
PRATT J., ENGLISH J.
The Surgical Simulation and Training

Markup Language: An XML-Based

Language for Medical Simulation

Proceedings of MMVR, 2006, 37–42

[3] BARAFF D., WITKIN A.
Large steps in cloth simulation

Proceedings of SIGGRAPH, 1998

[4] GOKTEKIN T., CAVUSOGLU
M.C., TENDICK F.
Gipsi: An open source software

development framework for surgical

simulation

International Symposium on Medical

Simulation, 2004, 240–248

[5] KAWASAKI M. ET AL.

VRASS (Virtual Reality Aided

Simulation)

www.kuhp.kyoto-u.ac.jp/ mi/

research/vrass/index_en.shtml

[6] MULLER M., GROSS M.
Interactive virtual materials

Graphics Interface, 2004, 239–246

[7] NESME M., PAYAN Y., FAURE
F.
Efficient, physically plausible finite

elements

Eurographics, 2005

[8] K. MONTGOMERY ET. AL.

Spring: A general framework for

collaborative, real-time surgical

simulation.

PROCEEDINGS OF MMVR, 2002,

23–26.

