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Abstract.  SOFA is a new open source 
framework primarily targeted at medical 

simulation  research  and  industry.  It  is 
based  on  a  scene  graph  data  structure 

extended  to  physical  models  and 
abstract  algorithms.  Additionally, 

multiple models of the same objects can 
easily be used to optimize different tasks 

such  as  force  computation,  collision 
handling, and rendering. This results in a 

highly  flexible  architecture  able  to 
model  and  animate  a  wide  range  of 

simulated objects. We explain the main 
concepts of SOFA and detail an example 

of application to a surgery procedure.

1  Introduction

Computer-based  training  systems  offer 

an elegant  solution to the current  need 
for  better  training  in  Medicine.  It  is 

widely admitted that  surgical education 
and  planning  can  highly  benefit  from 

computer simulations. However in spite 
of  the  impressive  developments  in  the 

field  of  medical  simulation,  some 
fundamental  problems  still  hinder  the 

acceptance  of  this  valuable  technology 

in  daily  clinical  practice.  In  particular, 
the multi-disciplinary aspect of medical 

simulation  requires  the  integration 
within a single environment of leading-

edge  solutions  in  areas  as  diverse  as 
visualization,  biomechanical  modeling, 

haptics or contact modeling. This diver-
sity  of  problems  makes  it  challenging 

for  researchers  to  make  progress  in 
specific areas, and leads rather often to 

duplication of efforts.

For the past few years, there have been 
attempts  at  designing  software  toolkits 

for  medical  simulation such  as 
SPRING [8],  GiPSi [4],  VRASS [3],  or 

SSTML [2].  Although  these  different 
solutions had the same aim to provide an 

open source answer to the various chal-
lenges  of  medical  simulation  research 

and  development,  they  were  generally 
limited  by  their  organization  or  had 

restrictions  on  the  range  of  physical 
models,  such  as  mass-spring  systems, 

with a limited choice of algorithms for 
time integration and collision detection. 

We  propose  a  different  approach 
through  a  very  modular  and  flexible 



software  framework  called  SOFA  [1]. 
This  open  source  framework  allows 

independently  developed  algorithms  to 
interact together within a common simu-

lation  while  minimizing  the  develop-
ment time required for integration.

The  main  objectives  of  the  SOFA 

framework are:
• Provide  a  common  software 

framework for the medical simulation 
community 

• Enable component sharing / exchange 
and reduce development time 

• Promote collaboration among research 
groups 

• Enable  validation  and  comparison  of 
new algorithms 

• Help  standardize  the  description  of 
anatomical and biomechanical datasets

Our main overall goal is to develop a 
flexible  framework  while  minimizing 

the  impact  of  this  flexibility  on  the 
computation overhead. To achieve these 

objectives,  we  have  developed  a  new 
architecture that implements a series of 

concepts described below.

2  The SOFA architecture

2.1 Mechanical scene graph

Implementing the physical simulation of 

a given model is generally a hard task. 
You  first  describe  the  model  using 

physical entities such as points, masses, 
forces.   You  then  implement  physical 

equations and algorithms to animate the 
model.  And  then,  you  finally  display 

images using computer graphics tools. 

Scene graphs are popular graphics tools 
because they allow you to represent the 

model  by instantiating  simple  software 

objects  using  your  data,  and  then  a 
generic rendering engine does the job of 

displaying images. The objects are orga-
nized  in  tree-like  structures.  Some  of 

them store coordinates, while others re-
present shapes such as polygon meshes, 

light sources, materials, or textures. The 
objects  have  various  attributes  such  as 

position,  color  or  file  name.  Once  the 
objects  and attributes are  set,  the  stan-

dard graphics  operations  such as  poly-
gon  rasterization,  pixel  shading,  trans-

parency  accumulation  or  hidden  parts 
removal, are automatically implemented 

by  the  rendering  engine.  Using  scene 
graphs,  a  limited  know-ledge  of  com-

puter  graphics  is  sufficient  to  generate 
beautiful  images  of  complex  models. 

They are widely used in simulators.

The aim of SOFA is to bring the power 
of  scene  graphs  to  mechanical  simula-

tions. It extends traditional scene graphs 
with physical components such as force 

fields,  masses,  and  constraints.  Some 
other  components  represent  physics 

algorithms. Once a model, along with its 
associated algorithms, is expressed as a 

SOFA  mechanical  scene  graph, 
standard  physical  algorithms  are 

automatically  implemented  and 
available. This includes various explicit 

and implicit time integration methods as 
well as collision detection and reaction 

between  various  shapes.  SOFA  is  of 
course  extendable  using  new 

components.

In this paper, we focus on the simulation 
of viscoelastic bodies. Most explicit and 

implicit time integration methods can be 
decomposed into a few physical proce-

dures: given positions and velocities, ac-
cumulate forces; given forces, compute 



accelerations; filter out forbidden displa-
cements;  compute  the  product  of  the 

mass and stiffness matrices with a vec-
tor. The SOFA engine implements these 

procedures by traversing the scene graph 
using  visitors  which  trigger  the  appro-

priate methods of the components. This 
guarantees that the procedures are auto-

matically  implemented,  provided  that 
the scene graph is syntactically correct.

SOFA can be used in different ways. Its 

default application allows you to model 
scenes  composed  of  various  rigid, 

viscoelastic  or  fluid  bodies  in  contact. 
You interact directly with the scene by 

picking  and  pulling  the  objects.  For  a 
given  model,  you  can  compare  time 

integration  or  collision  detection 
methods  by  simply  replacing  compo-

nents.  For  a  given  shape,  you  can  try 
various  mechanical  models  including 

mass-springs and FEM. To implement a 
sophisticated simulation, you can use the 

available  standard  components  and 
develop only the components related to 

your  area  of  expertise.  Section  3 
presents such a case. 

2.2  Multi-model representation

Any  simulation  involves,  to  some 

extent,  the  computation  of  visual 
feedback,  haptic  feedback,  and 

interactions  between  medical  devices 
and anatomical structures. This typically 

translates into a simulation loop where, 
at  each  time  step,  collisions  between 

objects  are  detected,  deformation  and 
collision response are computed, and the 

resulting  state  can  be  visually  and 
haptically rendered. To perform each of 

these  actions,  the  various  algorithms 
involved  in  the  simulation  rely 

implicitly on different data structures for 
the  simulated  objects.  In  SOFA,  we 

explicitly  decompose  an  object  into 
various  representations,  in  such  a  way 

that  each representation  is  more suited 
toward  a  particular  task  –  rendering, 

deformation,  or  collision  detection. 
Then,  these  representations  are  linked 

together  so  they  can  be  coherently 
updated. We call the link between these 

representations  a  mapping.  Various 
mapping functions can be defined, and 

Fig. 1:

Multimodels in SOFA.   Left: possible representations for a simulated object, with the Behavior  

Model controlling the update of the other representations through a series of mappings. Right: ex-

amples of these representations for a liver model. Notice how the Visual Model is more detailed  

than the Behavior Model and how the Collision Model relies on a very different representation.



each  mapping  will  associate  a  set  of 
primitives of a representation to a set of 

primitives  in  the  other  representation 
(see Figure 1). For instance, a mapping 

can  connect  degrees  of  freedom  in  a 
Behavior Model to vertices in a Visual 

Model.

3  Application to eye surgery

In this  section, we show and discuss a 

SOFA  scene  used  to  simulate  an 
ophthalmology  procedure  called  a 

vitrectomy which  reattaches  the  retina. 
In  some  diabetic  patients,  proliferative 

fibrovascular  tissue growth can lead to 
traction  which  can  disrupt  the  retina’s 

nature  cohesion. To  model  a  diabetic 
circumferential  traction  case,  the 

circular fibovascular membrane or  scar 
tissue,  compresses  the  retina  radially. 

Once released,  the  retina  relaxes  to  its 
natural shape.

Figure  2 illustrates the physical model. 

The scar tissue, in blue, and the retina, 
in  green,  are  modeled  using  a  mass-

spring system. Fixed particles, circled in 
black,  mimic  the  retina’s  natural 

attachments.  The  short  springs,  in  red, 
are removed when the blade touches one 

of their endpoints.

The scene is decomposed in three main 
parts,  as  illustrated  in  figure  3:  the 

physical model of the eye, the tool mani-
pulated  by  the  surgeon,  and  the  fixed 

objects. The degrees of freedom (DOF) 
of the tool are stored in a Mechanical-

Object component.  They are controlled 
by the haptics device and optionally re-

cording or replaying the trajectory from 
a  file  using  the  WriteState  and  Read-

State  components.  Two visible  objects 

are  attached  to  these DOF using map-
pings. One represents the handle and the 

other  represents the tip  of  the tool.  To 
allow collision  detection  and  modeling 

of the tool tip with other scene elements, 
we use a LineModel, which defines a set 

of  collidable  lines  based  on  an 
associated  mesh  topology.  The 

associated DOF (the edge endpoints) are 
mapped from the rigid body DOF.

Fig. 2:

 Top: the physical model of the retina and 

scar tissue. Bottom: a simulation snapshot.

The  deformable  object  is  a  physical 

model  controlled  by  an  implicit 
integration  solver  implemented  in  the 

CgImplicitSolver component. Its masses 
and fixed-point constraints are given in 



the  DiagonalMass  and  FixedConstraint 

components,  respectively.  Two  sets  of 
springs  are  used.  The  Retina  springs 

model the behavior of the retina and scar 
tissue, while the Cuttable springs model 

the  springs  which  can  be  removed  by 
cutting.  Component  SphereModel 

models  the  DOF  as  particles  with 
associated  spheres.  Two  drawable 

shapes  are  associated  with  the  retina, 
one for the standard retina and one for 

the  scar  tissue.  Mappings  are  used  to 
update  the  positions  of  the  shape 

vertices based on retina DOF.

Collision  detection  and  handling  is 
organized  as  a  pipeline  including  a 

hierarchical detection which implements 
broad-phase and narrow-phase detection 

which  prunes  the  possible  pair  of 

intersecting  primitives,  followed  by 

exact  primitive  intersection  phase,  as 
illustrated  in  figure  4.  Detected 

collisions are then processed by contact 
creation and response phase. 

Each part of the pipeline is implemented 

in a component and can be customized 
for  special  purposes.  The  overall 

pipeline  is  managed  by  the  Default-
Pipeline component, which defers to the 

Hierarchical  detection  component  to 
implement  hierarchical  bounding 

volume strategy and the MinProximity-
Intersection  component  for  precise 

detection  between  pairs  of  primitives. 
When  a  collision  is  detected,  it  is 

handled by the contact manager.  

Fig. 3:

The scene graph of the vitrectomy scene (fixed objects omitted).



This  simulation  was  originally 

implemented  as  a  stand-alone  custom 
application.  Its  port  to  SOFA  mainly 

uses  standard  components  and  runs  at 
the  same speed.  Two new components 

corresponding  to  the  specific  technical 
contributions  of  this  work  where 

derived. The first  implements a custom 
spring model,  while the other reacts to 

contact by removing springs instead of 
setting up reaction forces as done by the 

default response strategy.

3.1  Efficiency

Most  of  the  computation  time  in 
physical  simulation  is  spent  in  matrix 

(mass and stiffness)  computations  and 
collision  detection.  SOFA matrices  are 

inherently  sparse  due  to  the  tree  data 
structure, and matrix-vector products are 

performed in linear time. This allows us 
to  efficiently  implement  explicit  and 

implicit  time  integrators  [3].  Collision 
detection  uses  standard  hierarchical 

bounding volumes to cull  out  unneces-
sary tests on geometric primitives. This 

makes  the  efficiency  of  SOFA 
comparable with state-of-the-art general 

purpose implementations.

Moreover,  we  are  implementing 
strategies  to  automatically  perform 

parallel  computations on the GPU. We 
have developed an early prototype of a 

laparoscopic simulation system in which 

the liver and intestines are modelled as 
deformable  models  which  can  be 

manipulated  using  a  laparoscopic 
instrument and can collide with the ribs, 

as  illustrated  in  Figure  4.  We use  this 
scene  as  a  benchmark  for  various 

models and algorithms. The modularity 
of  the  SOFA architecture  allows us  to 

easily  experiment  different  constitutive 
models  for  the  organs  such  as  a  co-

rotational  FEM  and  spring-based  FFD 
grids. To find the right balance between 

performances  and  accuracy,  we  tested 
both FEM and spring-based models  of 

varying  resolution  on  the  liver  (see 
Fig. 5).   While  FEM-based models  are 

generally  more  accurate,  spring-based 
FFD grids  are  easier  to  set  up  and  to 

change  the  resolution,  as  only  the 
surface mesh is required.

CPU-based  models  Both  FEM  and 

springs were able to simulate the liver at 
interactive  rates  when  executed  on  the 

CPU. Using FEM models consisting of 
1800  and  30000  tetrahedra,  the 

simulation achieved 65 and 4 iterations 
per second, respectively.   Using springs 

grids  of  sizes  17x8x10,  20x10x12 and 
24x13x15  the  simulation  achieved 

respectively  110,  67,  and  37  iterations 
per  second.  

GPU-based  models SOFA  currently 

Fig. 4:

The SOFA collision pipeline.



supports  transfering  part  of  the 

simulations to  the  GPU  thanks  to  the 
NVIDIA CUDA library. It is still in its 

early  stage,  hence  only  springs-based 
models  are  currently  supported. 

However,  it  already  achieves  good 
speedups  compared  to  the  CPU 

implementation. In the case of the liver, 
we  where  able  to  simulate  the  same 

springs grids models of sizes 17x8x10, 
20x10x12 and 24x13x15 at respectively 

261, 227, and 178 iterations per second. 
Simulating  the  liver  at  this  speed  is 

useful as it frees the CPU for other parts 
of  the  simulation,  and  opens  new 

possibility  to  interactively  support 
higher  precisions  models.  

Conclusion

We have discussed the main concepts of 
SOFA and presented its application to a 

real surgical simulation. Compared with 
the  implementation  of  a  stand-alone 

application, using SOFA allows one to 
re-use and compare  a wide variety  of 

available models and algorithms,  while 
focusing  on  one's  specific  area  of 

expertise. The efficiency is comparable 
with  the  best  implementations,  and 

parallel  processing using the GPU will 
be increasingly available.

SOFA  is  freely  available  and  its  user 

community is growing.

In future work, we plan to add support 

for  high-frequency  haptics  feedback, 
more  collision  detection  and  modeling 

algorithms,  dense matrix  computations, 
and more complex cuts.

Fig. 5:

FEM-based and spring grid-based behavior models at multiple resolutions
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