
HAL Id: inria-00319416
https://inria.hal.science/inria-00319416

Submitted on 9 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SOFA - an Open Source Framework for Medical
Simulation

Jérémie Allard, Stéphane Cotin, François Faure, Pierre-Jean Bensoussan,
François Poyer, Christian Duriez, Hervé Delingette, Laurent Grisoni

To cite this version:
Jérémie Allard, Stéphane Cotin, François Faure, Pierre-Jean Bensoussan, François Poyer, et al.. SOFA
- an Open Source Framework for Medical Simulation. MMVR 15 - Medicine Meets Virtual Reality,
Feb 2007, Palm Beach, United States. pp.13-18. �inria-00319416�

https://inria.hal.science/inria-00319416
https://hal.archives-ouvertes.fr


SOFA – an Open Source Framework for
Medical Simulation

J. ALLARD a S. COTINa F. FAUREb P.-J. BENSOUSSANb F. POYERb

C. DURIEZb H. DELINGETTEb and L. GRISONIb
a CIMIT Sim Group - Harvard Medical School
b INRIA - Evasion, Alcove, and Asclepios teams

Abstract. SOFA is a new open source framework primarily targeted at medical sim-
ulation research. Based on an advanced software architecture, it allows to (1) create
complex and evolving simulations by combining new algorithms with algorithms
already included in SOFA; (2) modify most parameters of the simulation – de-
formable behavior, surface representation, solver, constraints, collision algorithm,
etc. – by simply editing an XML file; (3) build complex models fromsimpler ones
using a scene-graph description; (4) efficiently simulate the dynamics of interacting
objects using abstract equation solvers; and (5) reuse and easily compare a vari-
ety of available methods. In this paper we highlight the key concepts of the SOFA
architecture and illustrate its potential through a seriesof examples.

1. Introduction

Computer-based training systems offer an elegant solutionto the current need for bet-
ter training in Medicine, since realistic and configurable training environments can be
created. This can bridge the gap between basic training and performing the actual inter-
vention on patients, without any restriction for repetitive training. However, in spite of
the impressive developments in the field of medical simulation, some fundamental prob-
lems still hinder the acceptance of this valuable technology in daily clinical practice. In
particular, the multi-disciplinary aspect of medical simulation requires the integration,
within a single environment, of leading-edge solutions in areas as diverse as visualiza-
tion, biomechanical modeling, haptics or contact modeling. This diversity of problems
makes it challenging for researchers to make progress in specific areas, and leads rather
often to duplication of efforts.

1.1. Objectives

For the past few years, there have been a few attempts at designing software toolk-
its for medical simulation. Examples include SPRING [7], GiPSi [3], VRASS [4], or
SSTML [1]. These different solutions aim at the same goal: providing an open source
answer to the various challenges of medical simulation research and development. Al-
though our aim is identical, we propose a different approach, through a very modular
and flexible software framework called SOFA. This open source framework allows inde-
pendently developed algorithms to interact together within a common simulation while
minimizing the development time required for integration.



The main objectives of the SOFA framework are:

• Provide a common software framework for the medical simulation community
• Enable component sharing / exchange and reduce developmenttime
• Promote collaboration among research groups
• Enable validation and comparison of new algorithms
• Help standardize the description of anatomical and biomechanical datasets

Our main overall goal is to develop a flexible framework whileminimizing the im-
pact of this flexibility on the computation overhead. To achieve these objectives, we have
developed a new architecture that implements a series of concepts described below.

2. The SOFA architecture

The SOFA architecture relies on several innovative concepts, in particular the notion of
multi-model representation. In SOFA, most simulation components – deformable mod-
els, collision models, instruments, etc – can have several representations, connected to-
gether through a mechanism called mapping. Each representation can then be optimized
for a particular task – e.g. collision detection, visualization – while at the same time im-
proving interoperability by creating a clear separation between the functional aspects of
the simulation components. As a consequence, it is possibleto have models of very dif-
ferent nature interact together, for instance rigid bodies, deformable objects, and fluids.
At a finer level of granularity, we also propose adecomposition of physical models –
i.e. any model that behaves according to the laws of physics –into a set of basic compo-
nents. This decomposition leads for instance to a representationof mechanical models as
a set of degrees of freedom and force fields acting on these degrees of freedom. Another
key aspect of SOFA is theuse of a scene-graph to organize and process the elements
of a simulation while clearly separating the computation tasks from their possibly par-
allel scheduling. These concepts not only characterize SOFA but also provide a mean to
address the goals described in section 1.1.

2.1. High-Level Modularity

Any simulation involves, to some extent, the computation ofvisual feedback, haptic feed-
back, and interactions between medical devices and anatomical structures. This typically
translates into a simulation loop where, at each time step, collisions between objects are
detected, deformation and collision response are computed, and the resulting state can
be visually and haptically rendered. To perform each of these actions, the various algo-
rithms involved in the simulation rely implicitly on different data structures for the sim-
ulated objects. In SOFA we explicitly decompose an object into various representations,
in such a way that each representation is more suited toward aparticular task – render-
ing, deformation, or collision detection. Then, these representations are linked together
so they can be coherently updated. We call the link between these representations amap-
ping. Various mapping functions can be defined, and each mapping will associate a set
of primitives of a representation to a set of primitives in the other representation (see
Figure 1). For instance, a mapping can connect degrees of freedom in a Behavior Model
to vertices in a Visual Model.



Figure 1. Illustration of the multi-model representation in SOFA.Left: possible representations for a simu-
lated object, with the Behavior Model controlling the update of the other representations through a series of
mappings.Right: examples of these representations for a liver model. Notice how the Visual Model is more
detailed than the Behavior Model and how the Collision Modelrelies on a very different representation.

2.2. Fine Grain Modularity

One of the most challenging aspect of medical simulation is the computation, in real-
time, of accurate biomechanical models of soft-tissues. Such models being computation-
ally expensive, many strategies have been used to improve computation times or to re-
duce the complexity of the original model: linear elastic models have often been used in-
stead of more complex non-linear representations, mass-spring methods as an alternative
to finite element methods, etc. Each of these simplificationsinduces drawbacks, yet the
importance of these drawbacks depends largely on the context in which they are applied.
It becomes then very difficult to choose which particular method is most likely to provide
the best results for a given simulation.

To address this issue in SOFA we have introduced, for the Behavior Model, a finer
level of granularity than what is described in section 2.1. This permits for instance to
switch from one solver to another in order to see the change inperformance or robustness
of the simulation, or to test different constitutive models. These changes can be done
in a matter of seconds, without having to recompile any of thecode, by simply editing
an XML file. To achieve this level of flexibility, we have defined a series of generic
primitives, orcomponents, that are common to most physics-based simulations:DoF,
Mass, Force Field, andSolver.

TheDoF component describes the degrees of freedom, and their derivatives, of the
object. This includes positions, velocities, accelerations, as well as other auxiliary vec-
tors. TheMass component represents the mass of the object. Depending on the model,
the mass can be represented by a single value – all the DoFs have the same mass, a vector
– the DoFs have a different mass, or even a matrix as used in complex finite element
models. TheForce Field describes both internal forces associated with the constitu-
tive equations of the model, and external forces that can be applied to this object. A va-
riety of forces are currently derived from the abstract Force Field representation, includ-
ing springs, linear and co-rotationnal FEM [5,6], Mass-Tensor, and Smoothed Particle
Hydrodynamics (SPH). TheSolver component handles the time step integration, i.e.
advancing the state of the system from timet to timet+∆t. To this end, the solver sends
requests to the other components to execute operations suchas summation of forces,
computation of accelerations, and vector operations on theDoFs such asx = x+ v ·∆t.
Currently SOFA integrates explicit Euler and Runge-Kutta 4solvers, as well as implicit
conjugate-gradient based Euler solver [2].



2.3. Scene Graph Representation

Building and maintaining the relations between all the elements of a simulation can be-
come quite complex. Reusing concepts from the graphics community, we decided for a
homogeneous scene-graph representation, where each component is attached to a node
of a tree structure. While components are user-defined and canbe extended at will, in-
ternal nodes are all the same. They only store pointers to their local components, as well
as their parent and children nodes. This simple structure enables to easily visit all or a
subset of the components in a scene, and dependencies between components are han-
dled by retrieving sibling components attached to the same node. For instance, aForce
Field component can access theDoF component by getting its pointer from the node.
The scene-graph can also be dynamically reorganized, allowing for instance the creation
of groups of interacting objects. Such groups can then be processed as a unique system of
equations by the solver, thus permitting to efficiently handle stiff contact forces. Another
advantage of using a scene-graph is that most computations performed in the simulation
loop can be expressed as a traversal of the scene-graph. Thistraversal is called anaction
in SOFA. For instance, at each time step, the simulation state is updated by sending an
Animate action to allSolver components. EachSolver then forwards requests to the
appropriate components by recursively sending actions within its sub-tree.

Figure 2. Left: two interacting bodies. The DoFs are shown as circles,and the forces as lines. A solid line
describes an internal force, a dotted line an external force. Right: graph associated to the scene on the left. The
nodes of the scene-graph, shown as stars, allow to model structured groups of components.

To illustrate the modularity in SOFA and the use of a scene-graph, we consider
the example illustrated in Figure 2. In this example, two simulated objects – a rigid
square and a simple Mass-Spring model – move through space and eventually collide. To
compute the motion and deformation of the objects, we need todefine for each of them
a set of DoFs and a set of internal and external forces. TheDoF component of the mass-
spring model corresponds to the mass-points, while for the rigid object it corresponds
to the position and orientation of the center of mass. This implies different data types
for the DoFs of each object – a set of 3D vectors for the mass-spring and a 3D vector
with a quaternion for the rigid object. Contacts between objects are possible through
Collision Models associated with each object. The Collision Model for the mass-spring
object consists of a set of vertices coincident with the DoFsof the object. The Collision
Model for the rigid object – the square shape in Figure 2 – is rigidly attached to the
body reference frame through a Mapping. TheMapping component is responsible for
propagating the motion of the rigid body to the vertices of the Collision Model, and
when collision occurs, the contact forces applied to the Collision Model are propagated
back to the DoFs of the rigid body object. Since the vertices of the Collision Model
do not coincide with the DoFs of the rigid object, we attach them to a different node
of the scene-graph. However, as their motion is totally defined by the rigid body, they



are not independent so this new node is created as a child of the rigid body node. The
interaction force acts on the collision model vertices, independently of whether they are
actual or mapped DoFs. At this point, actions can be propagated through the scene-graph
to simulate both objects as a combined mechanical system.

3. Results

We present here several examples of simulations developed using SOFA. These examples
illustrate the diversity and flexibility of the SOFA framework, in particular the ability to
have objects with different behavior interact together. Wealso demonstrate some early
results on the validation of algorithms used for simulatingdeformable structures.

Laparoscopic Simulation: the primary target for SOFA being Medical Simulation, we
have developed an early prototype of a laparoscopic simulation system in which the
liver and intestines are modeled as deformable models whichcan be manipulated using
a laparoscopic instrument and can collide with the ribs, as illustrated in Figure 3. The
modularity of the SOFA architecture allows us to easily experiment different constitutive
models for the organs. In this example the liver is modeled asa co-rotational FEM and
the intestines as a spring-based FFD grid. The separation between Visual, Collision, and
Behavior models allows us to generate visually appealing simulations at interactive rates.

Figure 3. Simulation of laparoscopic surgery using SOFA at interactive rates (about 50Hz).

Quantitative validation and comparison of algorithms: comparing algorithms for
soft-tissue deformation only makes sense if they are compared against reference mod-
els issued from the real world. To this end, we have built a cylinder using silicon gel of
known material properties, and then applied controlled constraints to this object as it was
being CT scanned. The resulting surface obtained after image processing is illustrated in
Figure 4. This surface was used as a Visual Model to which various Behavior Models
were assigned – mass-spring, co-rotational FEM, and linearFEM. It then becomes very
easy to visually and quantitatively assess the accuracy of the various models.

Chain Links: handling interactions between heterogenous models is prone to stability
issues. To test the robustness of different algorithms we experimented with falling chains
where each link uses a different Behavior Model, as illustrated in Figure 5. No constraints
between links were pre-defined, instead we relied on collision detection and stiff contact
forces to handle the contacts. Using implicit integrator handling dynamically-created
groups of interacting objects resulted in a stable simulation.



Figure 4. Left: surface of an actual soft cylindrical object compared to a mass-spring, co-rotational FEM, and
linear FEM models, under the same constraints. Right: a fluid modeled in SOFA using a SPH method.

t = 0 t = 1 t = 1.5 t = 2 t = 2.5 Behavior Models

Figure 5. Animation of a chain combining a FEM model, a mass-spring model, a FFD grid, and a rigid body.

4. Conclusion and Future Work

The SOFA framework currently integrates, in the same environment, a variety of different
algorithms, from springs and co-rotational FEM models to FFD deformation grids, as
well as implicit and explicit solvers, and several collision detection methods, such as
continuous or proximity-based algorithms. Our framework also supports hard constraints
and stiff interaction forces, using implicit or multi-stepexplicit integrators that handle
dynamically-created groups of interacting objects. Our future work includes the support
for multi-processing, topological changes, and haptic feedback. The SOFA web site,
www.sofa-framework.org, can be visited for more information on our most recent results.

Acknowledgments

We want to thank Sylvere Fonteneau, Damien Marchal, Xunlei Wu, Paul Neumann,
Jeremie Dequidt, and Julien Lenoir for their contribution to the development of SOFA.

References

[1] J. Bacon, N. Tardella, J. Pratt, and J. English. The Surgical Simulation and Training Markup Language:
An XML-Based Language for Medical Simulation. InProceedings of MMVR, pages 37–42, 2006.

[2] D. Baraff and A. Witkin. Large steps in cloth simulation. In Proceedings of SIGGRAPH, 1998.
[3] T. Goktekin, M. Cenk Cavusoglu, and F. Tendick. Gipsi: Anopen source software development frame-

work for surgical simulation. InInternational Symposium on Medical Simulation, pages 240–248, 2004.
[4] M. Kawasaki, M. Rissanen, N. Kume, Y. Kuroda, M. Nakao, T. Kuroda, and H. Yoshihara. VRASS

(Virtual Reality Aided Simulation). Inwww.kuhp.kyoto-u.ac.jp/ mi/research/vrass/index_en.shtml.
[5] M. Muller and M. Gross. Interactive virtual materials. InGraphics Interface’04, pages 239–246, 2004.
[6] M. Nesme, Y. Payan, and F. Faure. Efficient, physically plausible finite elements. InEurographics, 2005.
[7] K. Montgomeryet. al. Spring: A general framework for collaborative, real-time surgical simulation. In

Proceedings of MMVR, pages 23–26, 2002.


