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Le temps d’exécution des A-termes via la sémantique
dénotationnelle et les types avec intersection

Résumé : La sémantique relationnelle multi-ensembliste de la logique linéaire induit
une sémantique du A-calcul non typé. Celle-ci est construite sur des types avec une
intersection non-idempotente. Nous prouvons que la taille des dérivations et la taille
des types sont étroitement liées au temps d’exécution des A-termes dans une machine &
environnement particuliére, la machine de Krivine.

Mots-clés : A-calcul, sémantique dénotationnelle, types avec intersection, complexité
du calcul.
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Introduction

This paper presents a work whose aim is to obtain information on execution time of
A-terms by semantic means.

Execution time means the number of steps in a computational model. Asin [Ehrhard and Regnier 2006],
the computational model considered in this paper will be Krivine’s machine, a more real-
istic model than S-reduction. Indeed, Krivine’s machine implements (weak) head linear
reduction: in one step, we can do at most one substitution. In this paper, we consider
two variants of this machine : the first one (Definition 4) computes the head-normal form
of any A-term (if it exists) and the second one (Definition 11) computes the normal form
of any A-term (if it exists).

The fundamental idea of denotational semantics is that propositions should be inter-
preted as the objects of a category C and proofs should be interpreted as morphisms in
C in such a way that if a proof II reduces to a proof IT' by cut-elimination, then they
are interpreted by the same morphism. By the Curry-Howard isomorphism, a simply
typed A-term is a proof in intuitionistic logic. Now, the intuitionistic fragment of linear
logic [Girard 1987] is a refinement of intuitionistic logic. This means that when we have
a categorical structure (C,...) to interpret intuitionistic linear logic, one can derive a
category K that is a model of intuitionistic logic.

Linear logic has various denotational semantics; one of these is the multiset based re-
lational semantics in the category Rel of sets and relations with the comonad associated
to the finite multisets functor (see [Tortora de Falco 2000] for interpretations of proof-
nets and Appendix of [Bucciarelli and Ehrhard 2001] for interpretations of derivations of
sequent calculus). Here, the category K is a category equivalent to the Kleisli category
of this comonad. The semantics we obtain is non-uniform in the following sense : the
interpretation of a function contains information about its behaviour on chimerical argu-
ments (see Example 18 for an illustration of this fact). As we want to consider type free
A-calculus, we will consider A-algebras in K. We will put semantics of A-terms in these
A-algebras in a logical framework, using intersection types.

The intersection types system that we consider (System R, defined in Subsection
3.1) is a reformulation of that of [Coppo et al. 1980]; in particular, it lacks idempotency,
as System A in [Kfoury 2000] and System I in [Neergaard and Mairson 2004] and con-
trary to System Z of [Kfoury et al. 1999]. So, we stress the fact that the semantics
of [Coppo et al. 1980] can be reconstructed in a natural way from the finite multisets
relational model of linear logic using the Kleisli construction.

Now, if v and u are two closed normal A-terms, we can wonder

1. Is it the case that the M-term (v)u is (head) normalizable?

2. If the answer to the previous question is positive, what is the number of steps
leading to the (principal head) normal form?

The main point of the paper is to show that it is possible to answer both questions by
only referring to the semantics [v] and [u] of v and u respectively. The answer to the first
question is given in Section 4 (Corollary 34) and is a simple adaptation of well-known
results. The answer to the second question is given in Section 5.

The paper [Ronchi Della Rocca 1988] presented a procedure that computes a normal
form of any A-term (if it exists) by finding its principal typing (if it exists). In Section
5, we present some quantitative results about the relation between the types and this
computation. In particular, we prove that the number of steps of execution of a A-term
in the first machine is the size of the least derivation of the A-term in System R (Theorem
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4 Daniel de Carvalho

44) and prove a similar result for the second machine (Theorem 50). We end by proving
truly semantic measures of execution time in Subsection 5.4 and Subsection 5.5.

Notation. We denote by A the set of A-terms, by V the set of variables and, for any
A-term ¢, by FV(t) the set of free variables in ¢.

We use Krivine’s notation for A-terms i.e. A-term v applied to u is noted (v)u.

We use the notation [] for multisets while the notation { } is, as usual, for sets. The
pairwise union of multisets given by term-by-term addition of multiplicities is denoted
by a + sign and, following this notation, the generalized union is denoted by a >_ sign.
The neutral element for this operation, the empty multiset, is denoted by [].

1 Krivine’s machine

We introduce two variants of a machine presented in [Krivine 2007] that implements
call-by-name. More precisely, the original machine performs weak head linear reduction,
whereas the machine presented in Subsection 1.2 performs head linear reduction. Sub-
section 1.3 slightly modifies the latter machine as to compute the S-normal form of any
normalizable term.

1.1 Execution of States

We begin with the definitions of the set £ of environments and of the set C of closures.
Set & = U en &p and set C = {J, ey Cp, where &, and Cp, are defined by induction on

p:

o If p =0, then £, = {0} and C, = A x {0}.

e &, is the set of partial maps V — Cp,, whose domain is finite, and Cp41 = A X Ept1.

For e € &, d(e) denotes the least integer p such that e € &,.

For ¢ = (t,e) € C, we define, by induction on d(e), ¢ = t[e] € A:

o If d(e) = 0, then t[e] =t.

e Assume t[e] defined for d(e) = d. If d(e) = d + 1, then t[e] = t[er/x1, ..., Cn/Tm],

with {x1,...,2,} =dom(e) and, for 1 < j <m, e(z;) = ¢;.

A stack is a finite sequence of closures. If ¢ is a closure and m = (c1, ..., ¢q) is a stack,
then c.m will denote the stack (¢, c1,...,¢q). We will denote by ¢ the empty stack.

A state is a pair (¢, 7), where c is a closure and 7 is a stack. If s = (co, (¢1,...,¢q))

is a stack, then 5 will denote the A-term (¢g)ey .. . Cq.

Definition 1 We say that a A-term t respects the variable convention if any variable is
bound at most one time in t.

For any closure ¢ = (t,e), we define, by induction on d(e), what it means for c to
respect the variable convention:

e if d(e) = 0, then we say that ¢ respects the variable convention if, and only if, t
respects the variable convention ;

e if c = (t,{(x1,¢1)y..-, (Tm,cm)}) with m # 0, then we say that c respects the
variable convention if, and only if,

INRIA



Ezecution Time of \-Terms 5

— C1,...,Cm TESpect the variable convention ;

— and the variables x1,...,x,, are not bound in t.

For any state s = (co, (c1, - .. ,¢q)), we say that s respects the variable convention if, and
only if, co,...,cq respect the variable convention.
We denote by S the set of the states that respect the variable convention.

First, we present the execution of a state (that respects the variable convention). It
consists in updating a closure (¢,¢) and the stack. If ¢ is an application (v)u, then we
push the closure (u,e) on the top of the stack and the current closure is now (v,e). If
t is an abstraction, then a closure is popped and a new environment is created. If ¢ is
a variable, then the current closure is now the value of the variable of the environment.
The partial map s =g s’ (defined below) defines formally the transition from a state to
another state.

Definition 2 We define a partial map fromS to'S: for any s,s’ € S, the notation s =g s’
will mean that the map assigns s’ to s. The value of the map at s is defined as follows:

(e(x), ) if s=((z,e),m) with x € dom(e)

not defined if s=((z,e),m) with x €V and x ¢ dom(e)
s— < (u,{(z,0)}Ue),n) if s=((Az.u,e),cn)

not defined if s = ((A\z.u,e),e)

((Uae)a (u,e).w) if s = (((U)U'ae)aﬂ-)

Note that in the case where the current subterm is an abstraction and the stack is
empty, the machine stops: it does not reduce under lambda’s. That is why we slightly
modify this machine in the following subsection.

1.2 A machine computing the principal head normal form

Now, the machine has to reduce under lambda’s and, in Subsection 1.3, the machine will
have to compute the arguments of the head variable. So, we extend the machine so that

it performs the reduction of elements of K, where K = (J,, .y Ky with
o Ho=Vand Ky =S

¢ Hot1 =VU{(v)u/veEH, andue AUK,} and
Kot = SUH, U{Myk /yeVand ke Ky} .

Set H = U, en Hn- We have K =SUH U, cnidzk /2 €V and k € K, }.
Remark 3 We have
e H={(z)t1...tp, /JpeN, x €V, t1,...,t, e AUK}
e hence any element of IC can be written as either
AT1.... T8 withm €N, z1,...,2,, €V and s €S
or either

ALt AT ()t .ty with myp €N, zq,..., 2 €V and t1,...,t, € CUA.
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6 Daniel de Carvalho

For any k € KC, we denote by d(k) the least integer p such that k € IC,.
We extend the definition of 5 for s € S to k for k € K. For that, we set t =t if t € A.
This definition is by induction on d(k):

e if d(k) =0, then k € S and thus k is already defined;
e if £ € H, then there are two cases:

— if k € V, then k is already defined (it is k) ;

— else, k = (v)u and we set k = (0)7 ;
o if k = \z.ko, then k = \z.ko.

Definition 4 We define a partial map from K to K: for any k, k' € K, the notation
k =n k' will mean that the map assigns k' to k. The value of the map at k is defined, by
induction on d(k), as follows:

s’ ifkeS and k =5 s

()er...¢q  ifk=((z,e),(c1,...,¢q9) €S,z €V and x ¢ dom(e)
E— < d.((u,e),e) if k= ((Ar.u,e),e) €S

not defined ifk € H

Ay.kf if k= Xy.ko and ko =p, k|

A difference with the original machine is that our machine reduces under lambda’s.
We denote by >~ * the reflexive transitive closure of >~j. For any k € IC, k is said to
be a Krivine normal form if for any k' € K, we do not have k =, k’.

Definition 5 For any ko € K, we define (ko) € NU {oo} as follows: if there exist
ki,...,ky, € K such that k; >=p ki11 for 0 <i<n —1 and k, is a Krivine normal form,
then we set (ko) = n, else we set (ko) = oo.

Proposition 6 For any s € S, for any k' € K, if s=p*k’ and k' is a Krivine normal
form, then k' is a A-term in head normal form.

PRrooF. By induction on {5 (s).
The base case is trivial, because we never have I;(s) = 0.
The inductive step is divided into five cases.

o If s = ((z,€),(c1,...,¢4)), © € V and = ¢ dom(e), then s = (z)é1...¢;. But
(x)er...¢q is a Krivine normal form and (z)¢1...¢; is a A-term in head normal
form.

o If s = ((Az.u,e), ) and 7 is the empty stack €, then &’ = \x.k” with ((u,e), €)=p*k".
Now, by induction hypothesis, & is a A-term in head normal form, hence %’ too is
a A-term in head normal form.

o If s = ((z,€),(c1,...,¢4)), © € V and = € dom(e), then s = (e(x), 7). Now,
(e(x), m)>r*k’, hence, by induction hypothesis, k¥’ is a A-term in head normal form.
(

o If s = ((Az.u,e),cm), then s =5, ((u, {(z,¢)} Ue),m). Now, ((u,{(z,¢)} Ue),m) =4
k', hence, by induction hypothesis, k" is a A-term in head normal form.

o If s = (((v)u,e),m), then s =5 ((v,e), (u,e).7). Now, ((v,e), (u,e).7)=,*k’, hence,
by induction hypothesis, k¥’ is a A-term in head normal form.

INRIA



Ezecution Time of \-Terms 7

output || current subterm environment stack

(Az.(z)z)Ay.y 0 €

1 M. (z)x 0 (Ay-y,0)

2 (2)x {z = (\yy,0)} €

3 x {z = (yy,0)} (@, {z— (Ay.y,0)})

4 Ay-y 0 (@, {z— (Ay.y,0)})

5 y {y— (@ {z- Qyy, 01} €

6 x {z = (Ayy,0)} €

7 Ay.y 0 €

8 /\y Yy (Z) €

9 Ay.y

Figure 1: Example of computation of the principal head normal form

Example 7 Set s = ((A\z.(z)x)\y.y,0),¢€). We have l;,(s) = 9:

s =n ((Az.(2)2,0), (A\y.y,0))
=n (@2, {(z, (Ayy,0)}), €
=n (2 {(z, (Ayy, 0)1), (2, {(z, (A\y.y,0))}))
=n ((Ayy,0), (2, {(z. (Ay.y,0)})
=n (A, (@ (2, (Ayy, 0))1))}), €)
~h ((IE, {(IE, ()‘y~ya @))})7 6)
=n (Mg, 0), €
=n My.((y,0), €)
=h AYY

We present the same computation in a more attractive way in Figure 1.

Lemma 8 For any k., k' € K, ifk =1, k', then k —, k', where —, is the reflexive closure
of the head reduction.

PROOF. There are two cases.
e If £ € S, then there are five cases.

- Ifk: = ((z,e), (c (cl,...,c )), z €V and = ¢ dom(e), then k = (z)c7...¢; and
= (x)c1...cq = (x)CT...Cq: we have k = K.

—Ifk= (()\x.u, e), 7) and m is the empty stack €, then k = (Az.u)[e] = Az.ule]
(because k respects the variable convention) and k" = Az.((u, e), €) = Az.ule]:
we have k = k.

— If k = ((w,€),(c1,..-,¢4)), * € V and = € dom(e), then k = e(x)er...¢; and
kK = (e(x), (c1,..., )): e(z)er ... we have k = k'

RR n° 6638



8 Daniel de Carvalho

— Ifk = ((Az.u,e), (c,c1, . .-, ¢q)), then k = (Az.u)[e])eer . .. ¢ = (Av.ule])eer . .

Now, k reduces in a single head reduction step to k.
—Ifk= (((v)u,e€),(c1...cq)), then k = (((v)u)le])e . ..¢q = (v[e_])u[ﬂ_l. ..Cq
and k' = ((v,e), (u,e).(c1,...,¢q)) = (v[e]))ule]er ... we have k = K.

e Else, k = Ay.ko ; then E: \y.ko and k' = Ay.kj = )\y.k_{) with ko =5 k{: we have
ko —n k), hence k —p k'

Theorem 9 For any k € K, if [ (k) is finite, then k is head normalizable.

PRroor. By induction on {5 (k). 3
If I (k) = 0, then k € H, hence k can be written as (z)¢; ...t, and thus k can be
written (x)t ...%,: it is a head normal form. Else, apply Lemma 8. O

For any head normalizable A-term ¢, we denote by h(t) the number of head reductions
of t.

Theorem 10 For any s = ((t,e),m) €S, if S is head normalizable, then 1,(s) is finite.

Proor. By well-founded induction on (h(3), d(e),t).
If h(3) =0, d(e) =0 and t € V, then we have I,(s) = 1.
Else, there are five cases.

o In the case where t € VN dom(e), we have s =5 (e(t), 7). Set s’ = (e(t),7) and
e(t) = (t',¢'). We have s = s’ and d(e’) < d(e), thus we can apply the induction
hypothesis: [;(s") is finite and thus I (s) = I5(s") + 1 is finite.

e In the case where ¢t € V and ¢t ¢ dom(e), we have [ (s) = 1.

o In the case where ¢ = (v)u, we have s =, ((v,e), (u,e).7). Set s" = ((v,e), (u, e).7).
We have s’ =5 and thus we can apply the induction hypothesis: 1, (s’) is finite and
thus I,(s) = ln(s’) + 1 is finite.

e Inthe case where t = A\x.u and m = €, we have s >p, Ax.((u,€),€). Set s’ = ((u,e),€).
Since s respects the variable convention, we have 3 = Az.ule] = Az.s’. We have
h(s') = h(3), hence we can apply the induction hypothesis: I;(s’) is finite and thus
ln(s) = lp(s") + 1 is finite.

o In the case where ¢t = A\z.u and 7 = c.7’, we have s = ((u,{(7,c)} Ue), 7). Set
s = ((u,{(z,c)} Ue),m). We have h(s’) < h(3), hence we can apply the induction
hypothesis: I;(s’) is finite and thus I, (s) = I, (s") + 1 is finite.

O

We recall that if a A-term ¢ has a head-normal form, then the last term of the terminat-

ing head reduction of ¢ is called the principal head normal form of t (see [Barendregt 1984]).

Proposition 6, Lemma 8 and Theorem 10 show that for any head normalizable \-term ¢
with ¢’ its principal head normal form, we have ((¢,0),¢)=,*t' and ¢’ is a Krivine head
normal form.

INRIA
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Ezecution Time of \-Terms 9

1.3 A machine computing the f-normal form

We now slightly modify the machine so as to compute the S-normal form of any normal-
izable A-term.

Definition 11 We define a partial map from K to K: for any k, k' € K, the notation
k =g k' will mean that the map assigns k' to k. The value of the map at k is defined, by
induction on d(k), as follows:

s ifkeS and k =g '
(x)(cr1,€)...(cqr€) if k= ((z,€),(c1,...,¢4)) €S, z €V and x ¢ dom(e)
Az.((u,e),e) if k= ((A\r.u,e),e) €S
k+— < not defined ifkeV
(v )u if k= (W)u and v =g v’
(x)u’ ifk=(x)u withz €V and u =g v’
Ay.kj if k= Ay.ko and ko >3 k|

Let us compare Definition 11 with Definition 4. The difference is in the case where
the current subterm of a state is a variable and where this variable has no value in the
environment: the first machine stops, the second machine continues to compute every
argument of the variable.

The function Ig is defined as I}, (see Definition 5), but for this new machine.

For any normalizable A-term ¢, we denote by n(t) the number of left reductions of ¢.

Theorem 12 For any s = ((t,e),m) €S, if 5 is normalizable, then l3(s) is finite.

Proor. By well-founded induction on (n(3),s,d(e),t).
Ifn(s)=0,5€V,d(e) =0 and t € V, then we have ig(s) = 1.
Else, there are five cases.

o In the case where t € V N dom(e), we have s =5 (e(t), 7). Set s' = (e(t),7) and
e(t) = (t',¢’). We have s = s’ and d(e’) < d(e), hence we can apply the induction
hypothesis: lg(s’) is finite and thus ig(s) = lz(s’) + 1 is finite.

e In the case where ¢t € V and ¢ ¢ dom(e), set m = (¢1,...,¢q). Forany k € {1,..., ¢},
we have n(¢g) < n(3) and ¢ < 3, hence we can apply the induction hypothesis on
ci: for any k € {1,...,q}, lg(ck) is finite, hence lg(s) = >.7_, lg(cx) + 1 is finite
too.

o In the case where t = (v)u, we have s =5 ((v,e), (u,e).7). Set s" = ((v,e), (u, e).7).
We have s’ =3, hence we can apply the induction hypothesis: [5(s’) is finite and
thus lg(s) = lg(s’) + 1 is finite.

e In the case where t = Az.u and m = ¢, we have s =g Az.((u,e),¢e). Set s’ =
((u,e),€). Since s respects the variable convention, we have 5 = Av.ufe] = \z.s’.
We have n(s’) = n(3), hence we can apply the induction hypothesis: [5(s’) is finite
and thus lg(s) = l3(s') + 1 is finite.

o In the case where ¢t = A\z.u and 7 = c.m’, we have s »5 ((u, {(v,¢)} Ue), 7). Set

s’ = ((u,{(z,c)} Ue), 7). We have n(s’) < n(3), hence we can apply the induction
hypothesis: [5(s’) is finite and thus ig(s) = lz(s’) + 1 is finite.

RR n° 6638



10 Daniel de Carvalho

2 A non-uniform semantics

We define here the semantics allowing to measure execution time. We have in mind the
following philosophy: the semantics for the untyped A-calculus come from the semantics
for the typed A-calculus and any semantics for linear logic induces a semantics for the
typed A-calculus. So, we start from a semantics 9t for linear logic (Subsection 2.1), then
we present the induced semantics A(90) for the typed A-calculus (Subsection 2.2) and
lastly the semantics of the untyped A-calculus that we consider (Subsection 2.3). This
semantics is non-uniform: in Subsection 2.4, we give an example for illustrating this
point.

The first works tackling the problem of giving a general categorical definition of a de-
notational model of linear logic are those of Lafont [Lafont 1988] and of Seely [Seely 1989].
As for the works of Benton, Bierman, Hyland and de Paiva, [Benton et al. 1994], [Bierman 1993]
and [Bierman 1995], they led to the following axiomatic: a categorical model of the mul-
tiplicative exponential fragment of intuitionistic linear logic (IMELL) is a quadruple
(C, L,c,w) such that

e C=(C,®,I,a,\ p,7v) is a closed symmetric monoidal category;
e L= ((T,m,n),d,d) is a symmetric monoidal comonad on C;

e ¢ is a monoidal natural transformation from (7, m,n) to ® o A¢ o (T, m,n) and w
is a monoidal natural transformation from (7, m,n) to *¢ such that

— for any object A of C, ((T'(A),d4),ca,w4) is a cocommutative comonoid in
((CT7 ®T7 (I7 n)7 a? A) p)
— and for any f € CT[(T'(A),d4),(T(B),6p)], f is a comonoid morphism,
where T is the comonad (7, 6,d) on C, CT is the category of T-coalgebras, Ac is

the diagonal monoidal functor from C to C x C and *¢ is the monoidal functor that
sends any arrow to id;.

Given a categorical model 9 = (C, L, ¢, w) of IMELL with C = (C,®,I,a, A, p,7)
and £ = ((T,m,n),d,d), we can define a cartesian closed category A(90) such that

e the objects are finite sequences of objects of C

e and the arrows (A4,..., A,,) — (Bn,. .., Bp) are sequences (f1,. .., fp) where every
fi is an arrow @’L, T(A;) — By, in C.

Hence we can interpret simply typed A-calculus in the category A(97). This category
is (weakly) equivalent® to a full subcategory of (T, 6, d)-coalgebras exhibited by Hyland.
If the category C is cartesian, then the categories A(91) and the Kleisli category of the
comonad (T, 6, d) are (strongly) equivalent®. See [de Carvalho 2007] for a full exposition.

2.1 A relational model for linear logic

The category of sets and relations is denoted by Rel and o denotes its composition. The
functor T from Rel to Rel is defined by setting

LA category C is said to be weakly equivalent to a category D if there exists a functor F : C — D full
and faithful such that every object D of D is isomorphic to F(C) for some object C of C.

2A category C is said to be strongly equivalent to a category D if there are functors F' : C — D and
G : D — C and natural isomorphisms G o F' 2 idc and F o G 2 idp.

INRIA



Ezecution Time of \-Terms 11

e for any object A of Rel, T'(A) = M;(A), the set of finite multisets a whose support,
denoted by Supp(a), is a subset of A;

e and, for any f € Rel(A4, B), T(f) € Rel(T(A),T(B)) defined by
T(f)={([ea,...,an],[B1,---,0n]) /m € Nand (a1, 31),...,(an, Bn) € f} .

The natural transformation d from 7" to the identity functor of Rel is defined by setting
da = {([a],a) / @ € A} and the natural transformation § from T to T o T by setting
04 ={(a1 + ...+ an,a1,...,a,]) /n € Nand ay,...,a, € T(A)} . It is easy to show
that (7,9, d) is a comonad on Rel. It is well-known that this comonad can be provided
with a structure 9 that provides a model of (I)MELL.

This model gives rise to a cartesian closed category A(9N).

2.2 Interpreting simply typed A-terms

We describe the category A(9) induced by the model 91 of linear logic presented in the
preceding subsection:

e objects are finite sequences of sets;

e arrows (Ai,..., A,) — (B1,...,B,) are sequences (f1,..., f,) where every f; is a
subset of (I[;2, M(4;)) x B Wlth the convention ([[J", M (4;)) x B; = B; if
=0

o if (f1,..., fp) is an arrow (Ai,...,Apn) — (B1,...,Bp) and (g1, ..., g,) is an arrow
(B1,...,Bp) = (C1,...,Cy), then (g1,...,gq)onm) (f1,-- -, fp) is (h1, ..., hg) With

(( 12 ) vz 121 1 in)’W)/nl""'?nPENand
forlgjgm, for 1 <k <p, f0r1<i<nk alkEMf(Aj)st
h; = 36t ..., 87" € By, ... Elﬁ;,..., p" € By s.t.

(([51""7 1]"' [67"'76;0 ])7 )egland

for 1 <k <p, for1Szgnk,((aik,...,aﬁ),ﬁi) € fx

for 1 <[ < g, with the conventions

((a1y...yam),y) = and ( H NxCr=Crifm=0.

& ={(([l,---.[.1a), [.-..[),0) /o € A5} .

j—1 times m—j times

The category A(91) has the following cartesian closed structure
(A(M), 1,1, &, 74, 72, (-, Yo, =, A, ev)

e the terminal object 1 is the empty sequence ();

o if Bl = (By,...,B,) and B> = (Bpi1,...,Bp+q) are two sequences of sets, then
B'&B? is the sequence (B, ..., Byiq);
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o if Bl = (By,...,B,) and B?> = (Byy1,..., Bpi,) are two sequences of sets, then
Thi ge = (d',...,d") : B'&B? — B' in A(IM)
and
T ge = ("M, dPT) - B'&B® — B? in A(M)
with

dk:{(([]a"'a[]v[ﬂ]v []77[] )aﬂ)/ﬁEBk} ;
——

k—1 times p+q—k times

o if fl="{(f1,....fp) : C — At and f2 = (fpi1,..., foiq) : C — A% in A(OM), then

Y = (fiy ooy forg) 1 O — AL&A?;

and

o (Ay,...,An) = (C4,...,Cy) is defined by induction on m:

— ()= (C1,...,C) = (Ch,...,Cy)

<A1,...,Am+1> = (Cl,...,Cq>

= <<A1,...,Am>:>(Mf(Am+1)Xcl),...,
<A17 . 7Am> = (Mf(Am+1) X Cq)> ;

)

o if h = <h1,.. .,hq> . <A1,.. .,Am>&<Bl,. .« ,Bp> — <Cl,. .« ,Cq>, then
ABrBe) (h): (A An) = (By...,B,) = (C C,)
(A1 Am),(C1,.es Oy : 1y---5Am 1...,Dp 1,---,0gqg
is defined by induction on p:
. Bi,...,Bp
— if p=0, then A( ! m>> (CrooniC,y >(h) = h;
— if p=1, then there are two cases:
* in the case m =0, A Bl’ ’Jj”>> (cl,...,cq>(h) =h;
% in the case m # 0,

(B1,....,Bp) _ (eMy(B1) M (B1)
Aparamyion e 1) = i My a0 s G i a,0, (ha
where M5

&1, myay).c (h) = {(a, (0,7)) 5 ((a,0),7) € I}
— if p > 1, then
B ? ? p
Af(“ (101 +q1)> (h)
_  A(B1,...Bp) (Bp+1)
AA <1Mf(§;0+1)><clv 1Mf(BP+1)><c(1)> (A<Azl)i~1~1AmvBl7~~~1Bp>7<clv"'7c(1>(h)) ’

where A = (41,...,4n);

INRIA
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e evep: (B = C)&B — C is defined by setting

_ 1 q
eV<Clv---1cq>7(Bl7~~~1BP> - <ev<cl7---7C(1>7(Blv~~~aBp>7 T 7eV<Cl7---7C(1>7(Blv~~~aBp>>

where, for 1 < k <g,

k
ev<clv---7cq>7(Bl7~~~aBp>

(s 05 1 s b)) [ [ b1 Bp),7) /
—— ——

k—1 times q—k times
b € Mf(Bl),...,bp S ./\/lf(Bp),’y e Cg
2.3 Interpreting type free \-terms

With the cartesian closed structure on A(9), we have a semantics of the simply typed
A-calculus. Now, in order to have a semantics of the pure A-calculus, it is therefore
enough to have a reflezive object U of A(9N), that is to say such that

U=U)<U ,

that means that there exist s € AM)[U = U,U] and r € A(M)[U,U = U] such that
T op(on) § is the identity on U = U. We will use the following lemma. We recall that
(f) is a retraction of (g) in A(9) means that (f) o) (9) = id(ay (see, for instance,
[Mac Lane 1998]). It is also said that ({g), (f)) is a retraction pair.

Lemma 13 Let h: A — B be an injection between sets. Set
g={(la],h(e)) : @ € A} : M;(A) — B in Rel

and

f={(h(a)),)/a € A} : Ms(B) — A in Rel .
Then (g) € A(M)((A), (B)) and (f) is a retraction of (g) in A(IM).

PROOF. An easy computation shows that we have
(f)oaem (9) = (foT(g)oda)
= (da) .

O

If D is a set, then (D) = (D) = (M;(D) x D). From now on, we assume that D is
a non-empty set and that h is an injection from M¢(D) x D to D. Set

g={([a],h(e)) /o € M§(D) x D} : My(Ms(D) x D) — D in Rel
and
f={(ha)),a)/ae MsD)x D}: Ms(D) — Ms(D) x D in Rel .

We have
(D) = (D)) < (D)

and, more precisely, (g) € AON)((D) = (D), (D)) and f is a retraction of g.
We can therefore define the interpretation of any A-term.
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14 Daniel de Carvalho

Definition 14 For any A-term t possibly containing constants from P(D), for any x1,...,Tm €
V distinct such that FV(t) C {z1,...,2m}, we define, by induction on t, [t]s, .. 2., C
([T} M (D)) x D:

o [#iler, o =, 0 [ed, [l 0] ) @) f € D};
—— ———

Jj—1 times m—j times
e for any c € P(D), [clas,....a,, = ([T} My(D)) x €
4 ﬂAx'u]]wlnnyw'm, = {((al’ BEEE) am)v h(a’ a)) / ((alv sy Am, 4 ) ) € [[uﬂﬂﬂh ,wmﬂﬂ}

(>n ai,...,ZLOa;n) ) /o, ..., an) st
[[(U)uﬂﬂﬂl,~~~7frm = ((alv"'7 ) h([ ag, ... Oén,],Oé)) € [[Uﬂm17---72?m, 3
and, for 1 <i<mn, ((al, cosal ), ;) € [u]lwy,. . zm)

with the conventions ([[j2, M;(D)) x D = D and ((a1,...,am),@) = a if m =0.
Now, we can define the interpretation of any A-term in any environment.

Definition 15 For any p € P(D)V and for any A-term t possibly containing constants
from P(D) such that FV(t) = {z1,...,2m}, we set

[[t]][’ = {a € D / ((a‘la . .,am),a) € [[t]]m17~~~,$m anda fOT’ 1 S j S m, a; € Mf(p(l']))} .
For any di,ds € P(D), we set
dy xde = {a € D / Ja (h(a,a)) € di and Supp(a) C da} .

The triple (P(D), *,[—]-) is a A-algebra (Theorem 5.5.6 of [Barendregt 1984]). But
the following proposition, a corollary of Proposition 17, states that it is not a A-model.
We recall that a A-model is a A-algebra (D, *,[—]-) such that the following property,
expressing the £-rule, holds:

for any p € DY, for any = € V and for any A-terms ¢; and t5, we have

(Vd D [[tl]]p[r =d] = [[tgﬂp [@:= :> [[)\{E tl]]p [[)\{E tg]] )

Proposition 16 The \-algebra (P(D), *, [—]-) is not a A\-model.
In other words, there exist p € P(D)v, x €V and two A-terms t1 and to such that

(Vd € P(D) [t1]pjweea) = [t2lppma) and [Ax.t1], # [M2.t2],) .

In particular, t], can not be defined by induction on ¢ (an interpretation by polyno-
mials is nevertheless possible in such a way that the &-rule holds - see [Selinger 2002]).

Before stating Proposition 17, we recall that any object A of any category K with a
terminal object is said to have enough points if for any terminal object 1 of K and for
any y,z € K(A4, A), we have (Vx €e K(1,A) yoxz =z0xx =y =2) .

Remark: it does not follow necessarily that the same holds for any y, z € K(A, B).

Proposition 17 Let A be a non-empty set. Then (A) does not have enough points in
A(OM).

INRIA



Ezecution Time of \-Terms 15

PROOF. Let oo € A. Set
y={(le],a)} : Ms(A) — Ain Rel

and
z={(Jo,a],a)} : Ms(A) — Ain Rel .

We have (y), (z) : (A) — (A) in A(9N).
We recall that the terminal object in A(90) is the empty sequence (). Now, for any
z: () — (A) in A(M), we have (y) opom) T = (2) op(m) - O

This proposition explains why Proposition 16 holds. A more direct proof of Propo-
sition 16 consists by considering the two A-terms ¢ = (y)z and t2 = (2)z with p(y) =

{([ad; @)} and p(z) = {([e, a], @)}

2.4 Non-uniformity

Example 18 illustrates the non-uniformity of the semantics. It is based on the following
idea.
Consider the program
Ax.if x then 1
else if x then 1
else 0
applied to a boolean. The second then is never read. A wuniform semantics would
ignore it. It is not the case when the semantics is non-uniform.

Example 18 Set 0 = Az.\y.y and 1 = Az \y.xz. Assume that h is the inclusion from
Mf( )x D to D.

Lety € D; set 8 = ([J, (11),7)) and 8= (1], ([,)). We have

e ([(1], (16],0))], (8], 0)) € [(x)1];
e and ([([], ([0],9))],6) € [(x)10]..
Hence we have on = ([([], (8], 9)), (I], ([],6))], ) € [Az.(z)1(x)10] .
We have

e ([(D; (181, B, (18], B)) € [(2)1]a
e and ([([0], ([, 8)), 8) € [(z)10].. .
Hence we have oz = ([([J, ([8], 5)), (18], ([, B))], B) € [Me.(2)1(x)10] .

In an uniform semantics (as in [Girard 1986]), the point an would appear in the se-
mantics of this A-term, but not the point aa, because [([], ([8], 5)), (18], ([}, 8))] corresponds
to a chimerical argument: the argument is read twice and provides two contradictory val-
ues.

3 Non-idempotent intersection types

From now on, D = J,,cy Dn, where D,, is defined by induction on n: Dy is a non-empty
set A that does not contain any pairs and D,41 = AU (My(D,) x D,). We have
D = AU(M (D) x D), where U is the disjoint union; the injection h from M (D) x D
to D will be the inclusion. Hence any element of D can be written a; ...a,«, where
ai,...,0m € M§y(D), « € D and a; ... ama is defined by induction on m:
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® aj...q0q = q
® aj...amr1a=(a1...am, (Gmi1,q)).

In the preceding section, we defined the semantics we consider: Definition 14 defines
[t]s, ...z, for any A-term ¢ and for any zi,...,2, € V distinct such that FV(¢) C
{z1,...,2m}; Definition 15 defines [t], for any A-term ¢ and for any p € P(D)Y. Now,
we want to put this semantics in a logical framework: the elements of D are viewed as
propositional formulas. More precisely, a comma separating a multiset of types and a
type is understood as an arrow and a non-empty multiset is understood as the uniform
conjunction of its elements (their intersection). Note that this means we are considering
a commutative but not necessarily idempotent intersection.

3.1 System R

A contezt T' is a function from V to M(D) such that {x € V / T'(x) # [|} is finite. If
T1,...,Tm €V are distinct and aq,...,am € My(D), then z1 : a1,...,Zm : an denotes
the context defined by = — { a; if 2 =g
[[ else

I'y,Ty € &, Ty + T’y is the context defined by (I'y 4+ I's)(z) = I'1(z) + T'2(x), where the
second + denotes the sum of multisets given by term-by-term addition of multiplicities.

Typing rules concern judgements of the form I' kg t : o, where T is a context, t is a
A-term and a € D.

. We denote by ® the set of contexts. For

Definition 19 The typing rules of System R are the following:

z:lalFra:

Iz:aklgrv:a
I'krAzw: (a,a)

Tokrv: ([oq,...,an), @) TWFru:oq,...., Ty Fru: ap
P0+F1+...+Pn|_R(U)UIOé

neN

The typing rule of the application has n + 1 premisses. In particular, in the case
P() I_R v ([],a)
Tobr (Vu:
empty multiset plays the role of the universal type €.

The intersection we consider is not idempotent in the following sense: if a closed A-
term ¢ has the type ay ...ana and, for 1 < 57 < m, Supp(a}) = Supp(a;), it does not follow
necessarily that ¢ has the type a} ...a,,a. For instance, the A-term Az.\x.(z)z has types
([([a], )], ([a], @) and ([([a,a], )], (la,a],@)) but not the type ([([a], )], ([a,a], a)).
On the contrary, the system presented in [Ronchi Della Rocca 1988] and the System D
presented in [Krivine 1990] consider an idempotent intersection. System X of [Kfoury 2000]
and System I of [Neergaard and Mairson 2004] consider a non-idempotent intersection,
but the treatment of weakening is not the same.

Interestingly, System R can be seen as a reformulation of the sytem of [Coppo et al. 1980].
More precisely, types of System R correspond to their normalized types. As stated in
Section 5 of that paper, the authors thought that a particular property should hold in
the corresponding semantics (assertion vi) of their Theorem 8. But our Proposition 16
shows that this is not the case.

where n = 0, we obtain the following rule: for any A-term wu. So, the
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Ezecution Time of \-Terms 17

3.2 Relating types and semantics

We prove in this subsection that the semantics of a closed A-term as defined in Subsection
2.3 is the set of its types in System R. The following assertions relate more precisely
types and semantics of any A-term.

Theorem 20 For any A-term t such that FV(t) C {x1,...,2m}, we have
[tlar ..o, = {((a1, .- am),0) € ([ Ms(D) x D /211 a1, & s am bRt} .
j=1

PROOF. By induction on t. O

Corollary 21 For any A-terms t and t' such that t =g t', if I' Fr t : «, then we have
F'kFrt':a.

Theorem 22 For any A-term t and for any I' € ®, we have
{aeD/Ttrt:a}C{aeD/¥pePD) (Ve VTI(z)e Mspx)) = ac[t],)}

PRrROOF. Apply Theorem 20. O

Remark 23 The reverse inclusion is not true.
Theorem 24 For any A-term t and for any p € ’P(D)V, we have
[tl,={aeD /T ecd®NVzrecVTI(x) e Ms(p(x)) andT Frt:a)} .
PRrOOF. Apply Theorems 20 and 22. O

There is another way to compute the interpretation of A-terms in this semantics.
Indeed, it is well-known that we can translate A-terms into linear logic proof nets labelled
with the types I, O, ?I and !O (as in [Regnier 1992]): this translation is defined by
induction on the A-terms. Now, we can do experiments to compute the semantics of the
proof net in the multiset based relational model: all the translations corresponding to
the encoding A = B =?A1 B have the same semantics. And this semantics is the same
as the semantics defined here.

For a survey of translations of A-terms in proof nets, see [Guerrini 2004].

3.3 An equivalence relation on derivations

Definition 26 introduces an equivalence relation on the set of derivations of a given \-
term. This relation, as well as the notion of substitution defined immediately after, will
play a role in Subsection 5.5.

Definition 25 For any A-term t, for any (I',a) € ® x D, we denote by A(t, (T, «)) the
set of derivations of ' Fr t: a.

For any closed \-term t, for any o € D, we denote by A(t,«) the set of derivations
of Frt: a.

For any A-term t, we set A(t) = U ayeaxp A, (I a)).
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Definition 26 Lett be a A\-term t. For any IL,II' € A(t), we define, by induction on 11,
when IT ~ II' holds:

e if I1 is only a leaf, then 11 ~ II' if, and only if, II' is a leaf too;

I, Ty
o ifll= T,z:abrv:a | thenU ~1if, andonlyif, ' = T',z:d Frv:d
kg Az (a,a) IR Azw: (a,d)
and Iy ~ IIj;
o @f
Iy I I,
M= Toklgrv:(a1,...,an],a) NhhkFpu:an ... ThlFura, |

To4+T1+...4+T, Fr (Wu: «
then II ~ IT' if, and only if,

11}, 11} I,
—II'= TiFrv:([oh,...,a],a) Mrrpu:ay ... TLFu:al,

ry+T)+...+I, Fr (vu: o

)

~ Iy ~ 1T,
— and there exists a permutation o € &, s.t., for anyi € {1,...,n}, IT; ~ H;(i).

An equivalence class of derivations of a Ad-term ¢ in System R can be seen as a simple
resource term of the shape of t that does not reduce to 0. Resource A-calculus is defined in
[Ehrhard and Regnier 2006] and is similar to resource oriented versions of the A-calculus
previously introduced and studied in [Boudol et al. 1999] and [Kfoury 2000]. For a full
exposition of a precise relation between this equivalence relation and simple resource
terms, see [de Carvalho 2007].

Definition 27 A substitution o is a function from D to D such that
for any o, a1, ... an € D, o([ag,...,an], ) = ([o(a1),...,0(an)],o(a)) .

We denote by S the set of substitutions.
For any 0 € S, we denote by @ the function from My¢(D) to My(D) defined by
E([O‘h ceey an]) = [0(041), s 7U(an)]'

Proposition 28 Let II be a derivation of ' Fr t : o and let o be a substitution. Then
there exists a derivation T of 7o T bR t: o(a) such that TT ~ IT'.

PROOF. By induction on t. O

4 Qualitative results

In this section, inspired by [Krivine 1990], we prove Theorem 33, which formulates qual-
itative relations between assignable types and normalization properties: it characterizes
the (head) normalizable A-terms by semantics means. We also answer to the following
question: if v and u are two closed normal A-terms, is it the case that (v)u is (head) nor-
malizable? The answer is given only referring to [v] and [u] in Corollary 34. Quantitative
versions of this last result will be proved in Section 5.
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Proposition 29 (i) Every head-normalizable \-term is typable in System R.

(it) For any normalizable A-term t, there exist o € D in which [| has no positive occur-
rences and I' € ® in which [| has no negative occurrences such that T Frt: «.

PRrOOF.
(i) Let ¢ be a head-normalizable A-term. There exist k,n € N, z,z1,...,z1 € V,
n A-terms vi,...,v, such that (Azi.... zg.t)v1...v, =g x. Now, x is typable.

Therefore, by Corollary 21, the A-term (Az1....Azxg.t)vy ... v, is typable. Hence
AZ1....Axg.t is typable.

(ii) We prove, by induction on ¢, that for any normal A-term ¢, the following properties
hold:

e there exist @ € D in which [] has no positive occurrences and I' € ® in which
[| has no negative occurrences such that I' Fr ¢ : «;

e if, moreover, ¢ does not begin with A, then, for any o € D in which [] has no
positive occurrences, there exists I' € ® in which [] has no negative occurrences
such that 'Fgr t: a.

Next, just apply Corollary 21.

O

If &) and X5 are two sets of A\-terms, then X; — X5 denotes the set of A-terms v such
that for any u € X1, (v)u € Xa. A set X' of A-terms is said to be saturated if for any
A-terms ti,...,tn,u and for any x € V, ((u[t/z])t1...tn € X = Azw)tty...t, € X).
An interpretation is a map from A to the set of saturated set. For any interpretation Z
and for any 6 € DU M (D), we define, by induction on §, a saturated set |d|z:

if 6 € A, then |0|z =Z(9) ;

if § =[], then ||z is the set of all A-terms ;

o if § = [a1,..., 1], then |§]7 = ﬂ?;rll ||z

e if 0 = (a, ), then |0|z = |a|z — |o|z.

Lemma 30 Let Z be an interpretation and let u be a A-term such that x1 : a1,..., 2 :
apFru:a. Ifty € |a1]z,. .., tx € |ak|z, then ulty/z1, ..., tx/2k] € |o|z.
PRroOOF. By induction on u. O

Lemma 31 (i) Let N be the set of head-normalizable terms. For any v € A, we set
I(v) =N. Then, for any o € D, we have ¥V C |a|z CN.

(11) Let N be the set of normalizable terms. For any v € A, we set Z(y) = N . For any
a € D with no negative (respectively positive) occurences of [|, we have V C |a|z
(respectively |alz C N ).

PRrROOF.
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(i) Set Ny ={(x)t1...tn / ® € V,t1,...,tn € A}. We prove, by induction on «, that
we have Ny C |a|r CN.

If « = (b, 8), then, by induction hypothesis, we have Ny C |3z € N and Ny C |b|z.
Hence we have Nog C A — Ny C ||z and |a|]z SNy — N CN.

(ii) Set Nop ={(2)t1...tn / x €V, t1,...,t, € N}. We prove, by induction on «, that

e if [| has no negative occurrences in «, then we have Ny C |a|z;

e if [] has no positive occurrences in «, then we have |a|z C N.
Suppose a = (b, ) € M (D) x D.

e If [] has no negative occurrences in «, then [| has no positive occurrences
(respectively negative) in b (respectively in 3). By induction hypothesis, we
have |b|1 Q N and N() g |ﬂ|1 Hence N() g N—>N() g |b|1 — |ﬂ|1 = |0£|I.

e If [| has no positive occurrences in «, then [] has no negative occurrences
(respectively positive) in b (respectively in 3). By induction hypothesis, we
have Ny C |b|z and |B]z € N. Donc |alz = |blz — |8lz S No — N C N (this
last inclusion follows from the fact that for any A-term ¢, for any variable x
that is not free in ¢, if (¢)x is normalizable, then ¢ is normalizable, fact that
can be proved by induction on the number of left-reductions of (t)x).

Proposition 32 (i) Every typable \-term in System R is head-normalizable.

(ii) Let t be a A-term, o € D in which [| has no positive occurrences and I' € @ in
which [| has no negative occurrences such that T'Fr t: . Then t is normalizable.

PROOF.

(i) Let T be the context =1 : ai, ...,z : ax. For any v € A, we set Z(y) = N, where
N is the set of head-normalizable terms. By Lemma 31 (i), we have 21 € |ai|z, ...,
x) € |ak|z. Hence, by Lemma 30, we have t = t[z1/21,...,25/xk] € |a|z. Using
again Lemma 31 (i), we obtain |a|z C N.

(ii) Let T be the context x1 : a1,...,x : ag. For any v € A, we set Z(vy) = N, where
N is the set of normalizable terms. By Lemma 31 (ii), we have z1 € |ai|z, ...,
x € |ak|z. Hence, by Lemma 30, we have t = t[z1/21,...,25/zk] € |a|z. Using
again Lemma 31 (ii), we obtain |a|z C N.

O

Theorem 33 (i) For anyt € A, t is head-normalizable if, and only if, t is typable in
System R.

(i) For anyt € A, t is normalizable if, and only if, there exist « € D in which || has
no positive occurrences and I' € @ in which [| has no negative occurrences such that
T I_R t: .
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PROOF.

(i) Apply Proposition 29 (i) and Proposition 32 (i).

(ii) Apply Proposition 29 (ii) and Proposition 32 (ii).

O

This theorem is not surprising: although System R is not considered in [Dezani-Ciancaglini et al.],
it is quite obvious that its typing power is the same as that of the systems containing €2
considered by this paper. We can note here a difference with Systems A\ and I already
mentioned: in these systems, only strongly normalizable terms are typable.

Corollary 34 Let v and u two closed normal terms.

(i) There ezxist a € M¢(D), a € D such that (a,c) € [v] and Supp(a) C [u] if, and
only if, (v)u is head-normalizable.

(ii) There exist a € M¢(D), a € D such that (a,«) € [v], Supp(a) C [u] and || has no
positive occurrences in « if, and only if, (v)u is normalizable.

5 Quantitative results

We now turn our attention to the quantitative aspects of reduction. The aim is to give
a purely semantic account of execution time. Of course, if ¢’ is the normal form of ¢, we
know that [t] = [t'], so that from [¢] it is clearly impossible to determine the number
of reduction steps from ¢ to t'. Nevertheless, if v and u are two normal A-terms, we can
wonder what is the number of steps leading from (v)u to its (principal head) normal
norm. We prove in this section that we can answer the question by only referring to [v]
and Ju] (Theorem 59).

5.1 Type Derivations for States

We now extend the type derivations for A-terms to type derivations for closures (Defini-
tion 35) and for states (Definition 38). We will define also the size |TI| of such derivations
IT; naturally, the size |II] of a derivation II of System R is quite simply its size as a tree,
i.e. the number of its nodes.

Definition 35 For any closure ¢ = (t,e), for any (I',;a) € ® x D (respectively (T',a) €
O x My(D)), we define, by induction on d(e), what is a derivation II of ' - ¢ : «
(respectively I' = ¢ : a) and what is |I1| for such a derivation :

e — ife=0, then a derivation of I' F ¢ : « is a pair (Ily, 0) with Iy € A(t, (T, @));

—ife={(z1,c1)s-.., (Tm,cm)} with m # 0, then a derivation of Tk c:a is a
pair (o, {(x1,1),..., (Xm,)}), where
* Iy is a derivation of g, x1 1 a1,...,Tm 1 am Frt: a3

* for any j € {1,...,m}, II; is a derivation of I'; - ¢; : a;;
*and T =377 T;.

If I = (o, {(x1, 1), ..., (xm, L) }) is a derivation of T' F ¢ : «, then we set
] = 327 M1
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e For any integer p, a derivation of U - c: [a1,. .., qp] is a p-tuple (IT', ... TI?) such
that there exists (I'',..., I'?) € ®F and
— for 1 < i <wp, IT* is a derivation of I F ¢ : a;;
—and T =57 T
IflI = (I, ..., 1I?) is a derivation of T c: a, then we set [II| = > 0_, [IT¥].

Definition 35 is not so easy to use directly. This is why we introduce Lemmas 36 and
37, that will be useful for proving Propositions 43 and 49.

Lemma 36 Let ((v)u,e) € C. For anybe My(D), I, T" € @, if Il' is a derivation of
I"F (v,e): (b,a) and 11" is a derivation of T (u,e) : b, then there exists a derivation
IT of T/ + T” + ((v)u,e) : a such that |II| = |T'| 4+ [TI”| 4 1.

PROOF. Set e = {(z1,¢1),. .., (Tm,cm)} and II' = (11}, { (21, I1}), . . ., (T, 11),,)}), where
o II}, is a derivation of I'y, 1 : @}, ..., 2m : al, Frv: (b ),

o for 1 < j <m, H; is a derivation of I‘; Fej: a}

o and IV = Y7 I,

Set b = [b1,...,0,] and II" = (I, ... II"") where, for 1 < k < p, 1" is a derivation
(H”Ig, {(xj,H”?)}lgjgm) of Tk | (u,e): B with T = >F_, "% For k ¢ {1,...,p},

k o k k k
e 11”7 is a derivation of I, z1 : a”7, ..., xm : d”,, Fru: G,

1k

o for 1 < j <m, H”? is a derivation of F"? Fejra”;

nk _ m nk
o and I'"" =377 I

For j € {0,...,m}, weset T'; =T +>77_, I‘”? and aj = a +>27_, a”?. There exists a

derivation IIy of Do, z1 : @1,..., Zm ¢ am Fr (v)u: « with || = [II{| + > -7 _, 7k + 1.
Moreover, for j € {1,...,m}, II; = II} « H”} ...+ II"%, where  is the concatenation of
finite sequences, is a derivation of I'j - ¢; : a;. We have

m m p
DTy = DT+ T
j=1 j=0 k=1
m m P
= 2T
7=0 7=0 k=1

Hence IT = (Ilp, {(z1,111), ..., (m,I)}) is a derivation of IV + I + ((v)u,e) : a. We
have

m

=y

Jj=0

P m
k
g+ ) 75| + 1+ |1
k=1 j=1
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P m p
k k
= [+ > gl + 1+ > ([ + > [
k=1 j=1 k=1

p
ARSI G
k=1
= ||+ 0" +1 .

O

Lemma 37 For any closure (u,e), for any derivation I of T,z : b+ (u,e) : 3, there
exists a derivation II of T F (Az.u,e) : (b, B) such that |II| = |II'| 4+ 1.

ProoF. We set e = {(z1,¢1),..., (Tm,cm)} and II' = (TG, {(z1, 1), ..., (zm, I, }).
We know that IIj, is a derivation of I,z : b,x1 : a1,...,Tm : am Fr u : B3, hence
there exists a derivation Iy of ',z : a1,...,Tm : am Fr Azuw : (b,8). We set I =
(o, {(z1,11}), ..., (zm, I, )}) : it is a derivation of T' F (Az.u, e) : (b, ) and we have

0 = ||+ 11|
j=1

T + 1+ (11|
j=1
= |II'|+1.

O

Definition 38 Let s = (¢, (c1,...,¢q)) be a state. A pair (I, (111, ...,I1,)) is said to
be a derivation of I' - s : « if there exist b1,..., by € Ms(D), I'g,..., Ty € & such that

e Ily is a derivation of g c: by ... b ;
e for any k € {1,...,q}, Iy is a derivation of Ty ¢ : by ;
e and'=>"1_,Tk.

In this case, we set |(Ilo, (I, ..., ILy))| = Y7 _o [TIk].

Definition 38 is not so easy to use directly. This is why we introduce Lemmas 39 and
40, that will be useful for proving Propositions 43 and 49.

Lemma 39 Let m,jo € N such that 1 < jo < m. Let s = (¢} ,(c1,...,¢q)) € S,
X1, Tm €V, ¢y, .., b, €C. Forany (I',a) € ®x D, if II' is a derivation of T s :
then there ezists a derivation II of T' & ((xj,, {(x1,¢}),. .., (@m,cp)}), (c1,...,¢q)) & @

such that |II| = |IT'| + 1.

Proor. We set II" = (11", (Ily, .. . , I1;)) with II" a derivation of I'" I ¢} : b1 ... b, We
denote by Ily the derivation of = : [b1...b,a] Fr z : b1...bga. For any j € {1,...,m},

we set ( //)
" _ IT ifj =Jo;
11 _{ € else.
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The pair ((Ho, {(21,1Y), ..., (xm, I))}), (1, ..., 11;)) is a derivation of

' (@), {(z1,¢1), -y (@m, ) )y (€15 h¢q)) s

and we have

n q
|((Io, {(xl’Hlll)’ ) (xﬂwH;:L)}’ (I, ... 7Hq))| = Z |H/1I| + Z T | + [TLo|
i=1 k=1

q
= 7+ )|l +1
k=1
= |, (IL,...,10,))| + 1
= |II'|+1.

Lemma 40 For any state s = ((u, {(z,c)} Ue),(c1,...,¢q)), for any derivation I of
I' - s : a, there exists a derivation IT of T' F ((Az.u,e),(c,c1,...,¢q)) + o s.t. |II| =
[IT'| 4 1.

PROOF. Set e = {(x1,¢)),..., (Xm,c,,)} and

1" = (g, {(2,11"), (21, 1Y), . . ., (2wl 1), (I, .. 10G))
We know that IIf, is a derivation of I',x1 : a1,...,%m ¢ am,z : a Fr u : b1...ba,
hence there exists a derivation Ily of =1 : a1,...,2m @ @m Fr Az.u @ aby...bgo such
that |TIo| = [II5| + 1. Set II = ((Tlo, {(21,I11), . . ., (zm, IT7,) }), (117,103, ... IT})): it is a
derivation of I' F ((Az.u, e), (¢, c1,. .., ¢q)) : @ and we have

m q
I ITo| + Y [T + [I”] + Y (1]
k=1

Jj=1

m q
T+ 1+ Y T+ (1] 4+ > [T
j=1 k=1

| +1 .

5.2 Relating size of derivations and execution time

The aim of this subsection is to prove Theorem 44, that gives the exact number of steps
leading to the principal head normal form by means of derivations in System R.

Lemma 41 Let ((v)u,e) be a closure and let (T',«) € ® x D. For any derivation II of
'k ((v)u,e) : o, there exist b € My(D), I'',T" € @, a derivation II' of I' - (v,e) : (b, )
and a deriation II" of T = (u,e) : b such that T =T+ T and || = [IU'| 4+ [II”| + 1.
PROOF. Set e = {(x1,¢1), ..., (Tm,cm)} and IT = (Ig, {(x1,I11), ..., (Tm, ) }) where

(i) Iy is a derivation of I'g, 1 : @1,...,&m : am Fr (V)u : a,
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(ii) for 1 < j <m, II; is a derivation of T'; - ¢; : a;,
(i) T = X7, T,
By (i), there exist p € N, 31,...,3, € D, a derivation II§ of I'),z1 : a},...,xm : al, Fr

v: ([B1,--.,Bp],a) and, for 1 < k < p, a derivation II§ of T§, z; : a’l'k,...,xm : a;;k Fr
u : Bk such that

o To=>"_ Tk,
o for 1 <j<m, aj:ag—kzl,;:la;'k
o and |Io| = S0, |I&| + 1.
For any j € {1,...,m}, we set a] = Zzla;-’k. By (ii), for any j € {1,...,m}, there

exist I}, I'}, a derivation II; of I'; - ¢; : a); and a derivation I} of I'} - ¢; : @/ such that
o I =T +T7
o and [II;] = [II}] + [TI7].
Set
o b=1[01,...,06],
o I'=Tg+ >0, T,
o =37 T+ Z;n:1 r,
o II'= (15, {(z1,I1}), ..., (2, 1T;,) })
e and I1” = (I, ..., 118), {(z1, 1Y), . . ., (xm, I1) }).
We have

I

|

<
Il
o

—

by (iii))

I6+> (T +T7)
=0 Jj=1
+ F/I

| |
= NgE

and

m

o = ||
j=0
p

= D [UE|+ 1 (I + (1)

k=0 j=1
= ||+ 0" +1 .
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Proposition 42 Let t be a head normalizable A-term. For any (I',«) € ® x D, for any
IT € A(t, (T, @), we have Iy ((t,0),€) < |IIJ.

ProOOF. By Theorem 10, we can prove, by induction on [;(s), that for any s € S such
that 5 is head normalizable, for any (', «) € ® x D, for any derivation Il of T I s : «,
we have 1, (s) < |IIJ.

The base case is trivial, because we never have I,(s) = 0. The inductive step is
divided into five cases:

e In the case where s = ((z,e),m), x € V and z ¢ dom(e), I5(s) =1 < [TI|.

e In the case where s = ((zj, {(z1,¢1), .-, (@m, ) }), (c1,...,¢q)) and 1 < jo < m,
we have IT = (IIy, (II4, ..., II;)), where Iy = (IIj, {(z1,I1}), .. ., (zm, II,)}) with

— IIj is a derivation of I'{, z1 : a1, ..., @m : Gm FRr Tj, @ b1 ... bg,

— for any j € {1,...,m}, Il} is a derivation of I'} - ¢/ : ay,
_Nm oy

- FO - Zj:l Fja

— for 1 <k < g, IIg is a derivation of I'y F ¢ : by
—and I' = EZ:O Ty

Hence aj;, = [b1 ...bga]. The pair (I}, (Ily, ..., II;)) is a derivation of

q
1“;,04—21“;6!— (cfy (1,00 00¢q)) r e

k=1
We have
lh(s) = lh(cg'ov(cla"'ch))_Fl
< |(H3’07(H17~'~7Hq))|+1
(by induction hypothesis)
q
SAES SN
k=1
q
< [Mo| + ) [Tl
k=1
= [ .
e In the case where s = ((Az.u, {(z1,¢)), ..., (zn, ) }), (¢, c1,. .., ¢q)), we have IT =
(11§, 113), (I, 114, ..., II,)) with
— IIj is a derivation of I'{, 21 : @1, ..., @m : @m Fr Az : 0’1 ... bya;

— 1§ = {(z;,11}) }1<j<m where, for 1 < j <m, IT} is a derivation of I'} - ¢/

j
_ N .
—Ty=Y", T
— II' is a derivation of IV = b’ : ¢/;

— for 1 < k < q, Il is a derivation of I'y - by : c.

L aj;
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Hence there exists a derivation 11" of
DO, @1 : a1,y Tt A, T2 0 FRut by by
with |IIf| = [II”|+ 1. The pair (1", {(z1,11}),..., (zm,II},),II'}) is a derivation of
Lo+T"F (u, {(z1,¢})), ..., (@m, ), (,0)}) : b1 ... by .
Hence (11", {(z1,11}), ..., (zm, I1), (,11)}), (II1,...,I1,)) is a derivation of
I ((u,{(z1,¢1)s ooy (@my )y (2,0)}), (€150 ycq)) t
We have
In(s)

In((u, {(@1,¢))s ey Ty C)s (T, 0) ), (€1, oo ycq)) + 1
|((HH7 {H/la s aH:na H,})v (Hlv s 7H(1))| +1
(by induction hypothesis)

IN

m q
7]+ ) 0|+ [T + [T + 1
j=1 k=1

m q
= g+ > I+ [TV + ) [T
j=1 k=1

q
= [T + |TI5| + [TV + ) (1T
k=1
= |((H6,H3),(HI,H1,,H¢1))|
= [ .

e In the case where s = (((v)u,e), (c1,...,¢q)), we have I = (Ilo, (I3, ..., II,)) with

— Il is a derivation of I'g - ((v)u,€) : by ... by

— for 1 < k < g, IIg is a derivation of I'y F ¢ : by;

- I=%7 Tk
By Lemma 41, there exist b € M;(D), I'),I'j € @, a derivation IIj of | F
(u,e) : bby...bga and a derivation IIj of T'j + (u,e) : b such that T'y = IT'y + 'y
and |IIp| = [IIj] + [IIG| + 1. The pair (I, (11§, 11y, ..., 1I,)) is a derivation of
'k ((v,e), ((u,€),¢1,...,¢q)) : @ We have

In(s) In((v,e), ((u €)1y h6q)) +1
|(H(/)7 (H(/)lvnla s 7H(1))| +1
(by induction hypothesis)

IN

q
ITIg| + |TIG | + > [T | + 1

k=1
q
= [Mo|+ ) [Ty
k=1
= |(H07(H15---7H(1))|
=[O .
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o In the case where s = ((A\z.u, {(z}, ;) }1<j<m), €), we have IT = ((TIg, II7 ), €) with

— IIj, is a derivation of ', 1 : a1, ..., Tm @ am bR Az.u : o

— Iy = {(z;,11}) }1<j<m where, for 1 < j < m, II} is a derivation of I'; I- ¢} : a;;

— — m /.
r=>",T.
Hence there exists a derivation II” of T'y,z1 : a1,...,Zm : Gm, T : bFg u: B such

that o = (b, 8) and |1I5| = [II”| 4+ 1. The pair ((II"”,II})), €) is a derivation of
I'a: b ((U,, {(xlacl)a R (Z‘m,Cm)}),G) : 6 .
We have

In(s)

n((u{(z1,¢0),- 0 (B, em)}) €) +1
(117, 115), €)] + 1

IN

7+ )] +1
j=1

= [Ig]+ Y [11)
Jj=1

| (T, 115
i

O

Proposition 43 Let ¢t be a head normalizable A\-term. There exist (T',a) € ® x D and
IT € A(t, (T, ) such that 1,((t,0),¢) = |TI.

Proor. By Theorem 10, we can prove, by induction on [, (s), that for any s € S such
that 5 is head normalizable, there exist (T', «) and a derivation IT of T - s : « such that
we have I}, (s) = |IIJ.

The base case is trivial, because we never have l;(s) = 0. The inductive step is
divided into five cases :

e In the case where s = ((x,¢€), (c1,...,¢4)), x € V and x ¢ dom(e), we have I, (s) = 1
and there exists a derivation II = (Ilp, (I3, ...,1I,)) of = : [[]]...[Ja] F (z,e) :
N——
q times
[...[J @ with |IIo| =1 and |II;| = ... = |[II;| = 0.
N——
q times
e In the case where s = ((xj,,{(z1,¢)), .., (Tm,Cy)}), (c1,-..,¢q)), apply Lemma
39.

e In the case where the current subterm is an application, apply Lemma 36.

e In the case where the current subterm is an abstraction and the stack is empty,
apply Lemma 37.
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e In the case where the current subterm is an abstraction and the stack is not empty,
apply Lemma 40.

|
Theorem 44 For any \-term t, we have
In((t,0),e) =mf{|l| /I([,a) € ® x D s.t. 1€ A(t, (T, )} .
PRroor. We distinguish between two cases.
e The A-term ¢ is not head normalizable : apply Theorem 33 (i) and Theorem 9.
e The A-term t is head normalizable: apply Proposition 42 and Proposition 43.
O

5.3 Principal typings and 1-typings

In the preceding subsection, we related {;,(t) and the size of the derivations of ¢ for any
A-term ¢. Now, we want to relate [g(¢) and the size of the derivations of t. We will show
that if the value of ig(t) is finite (i.e. ¢ is normalizable), then it is the size of the least
derivations of ¢ with typings that satisfy a particular property and that, otherwise, there
is no such derivation. In particular, in the finite case, it is the size of the derivations of ¢
with 1-typings of the normal form of ¢. This notion of 1-typing, defined in Definition 46,
is a generalization of the notion of principal typing.

The work of [Coppo et al. 1980] can be adapted in order to show that all normal
A-terms have a principal typing in System R if A is infinite. A typing (T, «) for a \-
term is a principal typing if all other typings for the same A-term can be derived from
(T, ) by some set of operations. Here, the operations are substitution (see Definition
27) and expansion (complicated to define). The difference with [Coppo et al. 1980] is the
fact that we have (and we need) the notion of 0-expansion ([Coppo et al. 1980] has the
notion of n-expansion only for n > 1). For any (I', a), (I", &) € & x D, (I', ) — (I, &)
will denote the fact that there exists an integer n such that (I, ) is a n-expansion of
(T, ). We denote by —* the reflexive transitive closure of —.

Definition 45 Principal typing of normal A-terms :
— €A
x:[y|Fpx:y
Iz:abpt:a
ICkp Ax.t: (a,«)

T'iFpu o T, bFpuy: oy
S Do+ {(a [[aa] - Jan)WD)} Fp (@)un o oun oy

(%) the atoms in T'; are disjoint from those in 'y, if j # k and v € A does not appear in
the Fz

(%)
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If Abpt: 3, then (A, ) is said to be a principal typing of t. We could show that
whenever (A, ) is a principal typing of a normal A-term ¢, then we have I' g ¢ : « if, and
only if, there exists (I, @) such that (A, 3) —* (IV,’) and (I, @) can be obtained from
(I, &') by a substitution (exactly as in [Coppo et al. 1980], except that we consider the
0-expansions too). But we do not need this result to prove the theorems of the following
subsection; we mention it only to justify the terminology we use.

The reader acquainted with the concept of experiment on proof nets in linear logic
could notice that a principal typing of a normal A-term is the same thing as the result
of what [Tortora de Falco 2000] calls an injective obsessional 1-experiment of the proof
net obtained by the translation of this A-term mentioned in Subsection 3.2.

The notion of 1-typing is more general than the notion of principal typing. It is the
result of an obsessional 1-experiment.

Definition 46 1-typing of normal A\-terms :
— €A
z:[ylbr @y

Nrx:akFt:«

Iy Azt (a,)

T'ibFyug:on T, FLuy, o ap
Y Do+ {(z [[aa] - fen] v} B (@)ua g 2y

Note that if ¢ is a normalizable A\-term and (T, «) is a 1-typing of its normal form,
then (T, &) has the following property: [| has no positive occurrences in « and no negative
occurrences in T

Lemma 47 Let (z,e) be a closure and letT' € ® such that [| has only positive occurrences
in I'. Assume that there exists a derivation of T & (x,e) : by ...bger, with x ¢ dom(e),
then for any k € {1,...,q}, we have by # [].

PROOF. Let II be such a derivation. Set e = {(z1,¢1),. .., (Tm,cm)}-
We have I = (Ily, {(z1,111),..., (@m,I;)}), where
(i) I is a derivation of T'g, 1 : @1,...,Zm : am FrR T : b1 ... 040,
(ii) for j € {1,...,m}, II; is a derivation of I'; - ¢; : a;
(it)) and I'= 37T,
By (i), since z ¢ dom(e), I'o(x) = [b1...bg]. Hence, by (iii), if there existed k €

{1,...,q} such that by = [], then there would be a negative occurrence of || in T. O

Proposition 48 Let t be a normalizable \-term. If I1 is a derivation of ' Fr t :  and

(T, &) is such that || has only negative occurrences in « and only positive occurrences in
', then we have l5((t,0),¢) < |II].

Proor. By Theorem 12, we can prove, by induction on lg(s), that for any s =
(co,(c1,...,¢4)) € S such that (¢g)cr...¢; is normalizable, for any (I'a) € ® x D,
if I is a derivation of I' s : @ and (T, &) is such that [] has only negative occurrences
in o and only positive occurrences in T, then we have ig(s) < |II].

In the case where s = ((x,€), (c1,...,¢¢)) and = ¢ dom(e), we apply Lemma 47. O
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Proposition 49 Assume that t is a normalizable A-term and that (T, «) is a 1-typing of
its normal form. Then there exists a derivation II of T g ¢ : o such that lg((¢,0),¢) =
.

PrROOF. By Theorem 12, we can prove, by induction on lg(s), that for any s € S such
that 5 is normalizable and for any 1-typing (T, &) of the normal form of 3, there exists a
derivation IT of T' - s : « such that Ig(s) = |II].

The base case is trivial, because we never have lg(s) = 0. The inductive step is
divided into five cases:

e In the case where s = ((z,¢€), (c1,...,¢)) and x ¢ dom(e), (I', @) is a 1-typing of
(x)t1...tq, where tq,...,t, are the respective normal forms of ¢, ..., ¢, hence
there exist I't,...,I'g, a1, ..., a4 such that

=T =30 Tk +{(2, [[aa] .. [ag]el)}
—and (T'1,a1),...,(Tq, aq) are 1-typings of t1,...,t, respectively.

By induction hypothesis, there exist ¢ derivations I1y,...,II; of I't Fr t1 1 a1, ...,
I'y Fr tq : oq respectively. We denote by z1, ..., 2, the elements of dom(e). We
denote by Il the derivation of

z:(loa].. . Jaglal Frz:a .

Set I = (o, {(z1,€), .-, (®m,€)}),(I1,...,1I;)) : it is a derivation of ' Fx 5 : «
and we have

M=

lofs) = Dlsler) +1
k=1
q
= ) |l +1
k=1
(by induction hypothesis)
q
= [Mo| + ) [Tl
k=1
= |((H07{(x176)’"'7(xm76)})’(Hl""vnq)”
= [ .
e In the case where s = ((zj, {(z1,¢}), s (Tm, ) }), (€1, .. ¢q)) With 1 < jo <m,
by induction hypothesis, there exists a derivation II’ of T' - (c}o, (c1,...,¢4)) & @

such that

— t is the normal form of (cg_o)a ..Cq
— (I, «) is a 1-typing of ¢ ;
— and lg(c},, (1, .., ¢q)) = [TI'].

By Lemma 39, there exists a derivation IT of T' F s : « such that |II| = [II'| + 1. We

have
lﬁ(s) = lﬁ((cg’o’(cl""ch))"i'l
= [I'|+1
(by induction hypothesis)
= | .
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e In the case where s = (((v)u, e), (c1,...,¢q)), apply Lemma 36.
e In the case where s = ((Ax.u,€),¢€), apply Lemma 37.

e In the case where s = ((Ax.u,e), ) and 7 # ¢, apply Lemma 40.

Theorem 50 For any A-term t, we have

AT, a) s.t. I e A(t, (T, o)),
I3((t,0),e) =inf < |II] /  [] has no positive occurences in o
and no negative occurrences in I’

Proor. We distinguish between two cases.
e The A-term ¢ is not normalizable : apply Theorem 33 (ii) and Theorem 12.

e The A-term ¢ is normalizable : apply Proposition 48 and Proposition 49.

5.4 Relating semantics and execution time

In this subsection, we prove the first truly semantic measure of execution time of this
paper by bounding (by purely semantic means, i.e. without considering derivations) the
number of steps of the computation of the principal head normal form (Theorem 55).

We define the size |§| of any type J and of any finite multiset ¢ of types, using an
auxiliary function 5.

Definition 51 For any § € D U M(D), we define, by induction on §, |8| and 3(3):
e if§ € A, then |§] =1 and 5(0) = 0;
o if 0 =[on,...,ap), then |6] = D1 | |ay| and 3(8) = X7 S(a);
e if 6 = (a,q), then |6| =3(a) + |a| + 1 and 3(6) = |a| +3(a) + 1.

Notice that for any a € D, the size |a| of « is the sum of the number of positive
occurrences of atoms in « and of the number of commas separating a multiset of types
and a type.

Example 52 Let v € A. Set o = ([7],7) and a = [o, ..., a]. We have |(a,a)| = 2n+ 3.

——
n times
Lemma 53 For any A-term u, if there exists a derivation Il of x1 : a1,...,Zm : am FR
u:a, then |ay...ama| =3(a1 ... ana).
ProoF. By induction on II. O
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Lemma 54 Let v be a normal A-term and let I1 be a derivation of x1 : a1,..., Ty :
am Frv:a. Then we have |II| <la;...anal.

PROOF. By induction on v. U

Theorem 55 Let v and u be two closed normal A-terms. Assume (a,c) € [v] and
Supp(a) C [u].

(i) We have
I(()u,0),€) < 2[al + |af +2 .

(it) If, moreover, || has no positive occurrences in «, then we have

Ls(((v)u, 0),€) < 2|al + |a] +2 .

PROOF. Set a = [aq,...,ay]. There exist a derivation IIy of kg v : (a,«) and n
derivations IIy,...,II, of Fgp u : a1, ..., Fr u : a, respectively. Hence there exists a
derivation IT of kg (v)u : « such that [ITI| = >°1  [IL;| + 1.

(i) We have
(), 0),¢) < Y || +1
=0
(by Proposition 42)
< o)+ Jail+1

i=1
by Lemma 54)

|

S(a) + || + 1+ Jal + 1

=1

3

= Y lal+lal+1+]a| +1
=1

(by Lemma 53)
= 2a|+]a|+2 .

(ii) The only difference with the proof of (i) is that we apply Proposition 48 instead of
Proposition 42.

5.5 The exact number of steps

This subsection is devoted to giving the exact number of steps by purely semantic means.
For arbitrary points (a, ) € [v] such that Supp(a) C [u], it is clearly impossible to obtain
an equality in Theorem 55, because there exist such points with different sizes.

The only equalities we have by now are Theorem 44 and Theorem 50, which use the
size of the derivations. A first idea is then to look for points (a,«) € [v] such that
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Supp(a) C [u] with |(a, )| equal to the sizes of the derivations used in these theorems.
But there are cases in which such points do not exist.

A more subtle way out is nevertheless possible, and here is where the notions of
equivalence between derivations and of substitution defined in Subsection 3.3 come into
the picture. More precisely, using the notion of substitution, Proposition 58 (the only
place where we use the non-finiteness of the set A of atoms through Fact 56 and Lemma
57) shows how to find, for any 8 € [t], an element « € [[¢] such that |a| = min{|II| /II €
At )},

We remind that A = D\ (Mf(D) x D). The equivalence relation ~ has been defined
in Definition 26 and the notion of substitution has been defined in Definition 27. We
recall that we denote by S the set of substitutions.

Fact 56 Let v be a normal A-term and let 11 be a derivation of r1 : by, ..., Tm by FR
v: 3. There exist ay,...,am,a and a derivation II' of x1 1 a1,...,%m : Gm FR v : @ such
that I ~ 11 and |II'| + m = |ay .. . amal. If, moreover, A is infinite, then we can choose
I in such a way that there exists a substitution o such that (a1) = by,..., 7(am) = bm
and o(a) = .

PROOF. By induction on v. U

In the case where A is infinite, the derivation IT’ of the lemma is what [Coppo et al. 1980]
calls a ground deduction for v.

Lemma 57 Assume A is infinite. Let t be a closed normal \-term, let 3 € D and let
IT € A(t,8). Then we have

1| = min{|a| /a € D s.t. A" € A(t,a), 0 €S s.t. II' ~1I and o(a) = B)} .

PrOOF. Apply Lemma 54 and Fact 56. g

Proposition 58 Assume A is infinite. Let t be a closed normal \-term and let 5 € [t].
We have min{|II| /I € A(t,8)} = min{|a| /o € [t] s.t. Jo € S s.t. o(a) =5} .

PROOF. Set
m = min{[TT| / TT € A(t, 6)}
and
n=min{|a| / a € [t] s.t. Jo € S s.t. o(a) =5} .
First, we prove that m < n. Let a € [t] such that 3o € S s.t. o(a) = . By Theorem 20,
A(t,a) # 0: let T € A(t,a). By Proposition 28, there exists IT € A(t,3) such that
IT ~ II'. By Lemma 54, we have |[II'| < |a|. Hence we obtain m < |II| = |IT'| < |of .
Now, we prove the inequality n < m. Let IT € A(t, 5).
n = min{la|/a € D st. 3 € A(t,a), 0 € S s.t. o(a) = 3}
(by Theorem 20)
min{|a| /a € D s.t. ' € A(t,a), 0 € S s.t. (I' ~ I and o(a) = B)}
||
(by Lemma 57).

IA
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The point of Theorem 59 is that the number of steps of the computation of the
(principal head) normal form of (v)u, where v and u are two closed normal A-terms, can
be determined from [v] and [u].

Theorem 59 Assume A is infinite. Let v and u be two closed normal A-terms.
(i) We have

(a,a) € [v],d’ € Ms(D) s.t.
In(((v)u,0),€) = inf ¢ [(a,a)| + |a'| + 1/ Supp(a’) C [u]
and Jo € S s.t. 7(a) =7(a’)

(1) We have

(a,) € [v],a" € My(D) s.t.
Supp(a’) C [u] and

do €S s.t. o(a) =7(a’) and

[| has no positive occurences in o(c)

15(((v)u, 0), €) = inf ¢ |(a,a)] +[a/| + 1/

PROOF.
(i) We distinguish between two cases.

e If A((v)u) = ), then Theorem 44 shows that I, (((v)u, ), €) = co and Theorem
20 and Proposition 28 show that

(a,a) € [v],d’ € M;(D) s.t.

(@, )| +]a’|+1/  Supp(a’) C [u] =0 .
and 3o € S s.t. 7(a) =7(a’)
e Else, we have
In(((v)u,0),¢€)
n 38.81,....0, €D sit.
= min Z|H7’|+1/ HO € A(“v([ﬂla"'vﬂn]vﬁ))v
=0 Hl S A(u,ﬁl),...,ﬂn S A(u,ﬂn)
(by Theorem 44)
(e anl, @) Q01 ..oy O, 0. 0l € D sit.
- +,Z’7’, |:;/,| ) ([, ... o], 0) € [v], o, ..., € [u]
—fll i and there exist 0g,01,...,0, € S s.t.
Go([ea, ... am]) = [o1(ay), .. on(ar,)]
(by applying Proposition 58 n + 1 times)
(e anl, @) OO,y O, 0. 0l € D sit.
- +,Z’7’, |:;/,| ) ([, .. o], 0) € [v], o, ..., € [u]
—fll t and there exists ¢ € S s.t.
7([on,...,an]) =7([a),...,al))
(the atoms in o, ..., ), can be assumed distinct
and distinct of those in ..., ay).

(ii) We distinguish between two cases.
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36 € D s.t.
e If<II/ TIeA((v)u,f) and = (), then Theorem 50 shows
[| has no positive occurrences in 3
that I3(((v)u, ), €) = oo and Theorem 20 and Proposition 28 show that

(a,) € [v],a’ € M¢(D) s.t.
Supp(a’) C [u] and

li —
(@, )] + o’} +1/ do € S s.t. 7(a) =7(a’) and =0.
[| has no positive occurences in o(«)
e Else, we have
la(((v)u,0), €)
38,81,....0, € D sit.
_ . = . HOEA(”)([ﬁlv"'vﬂn]vﬁ))v
= min Zg 1 1) e Al By), T, € Alu, B)
B and [] has no positive occurrences in 3
(by Theorem 50).
QA1 G, Q... 0l € D st
(a1, - an], @) (Joa, .-, an),@) € [v], o, ..., a0l € [u]
= min +3 " |4l / and Jog,01,...,0, €S sit.
+1 go([at, ..., an]) =lo1(ad), ..., on(al)]

and [] has no positive occurrences in oo ()

(by applying Proposition 58 n + 1 times)

Qs Q... 0l € D st
(o, - yan], @) (Joa, ..., an], @) € [v], &, ... a0, € [u]
= min +3 " |4/ and Jo € S s.t.
+1 (o, ..., an)) =7([ad,....al)])
and [] has no positive occurrences in o(«)
(the atoms in o, ..., ), can be assumed distinct
and distinct of those in aq, ..., ay).

Example 60 Set v = \z.(z)x and u = Ay.y. Let vo,v1 € A. Set
® & ="o;
® a= [707 ([70])70)]7

e d = [([71]571)5 ([72]772)]
Let o be a substitution such that o(vo) = ([v0],7), o(71) = Y0 and o(y2) = a. We have

° (a,a) € [v];
e Supp(a’) C [u] ;

e o(a) =7(d’);
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e |(a,a)| =4 and |d| = 4.

By Ezample 7, we know that we have I, (((v)u,),€) = 9. And we have |(a,a)|+|a’|+1 =
9.

Note that, as the following example illutrates, the non-idempotency is crucial.

Example 61 For any integer n > 1, set m = Af x. (f)...(f)x and I = My.y. Let
—_———

n times
v e A Seta=([y],y) and a = [a,...,a]. We have (a,c) € [R] and o € [I]. We
N——
n times

have I,((R)I,0),e) =4(n+1) =2n+3+2n+1 = |(a,a)| + |a| + 1 (see Ezample 52).
But in System D (with idempotent types), any Church integer m, for n > 1, has type
(=)= (=)

6 Conclusion

We believe that this work can be useful for implicit characterizations of complexity classes
(in particular, the PTIME class, as in [Baillot and Terui (2004)]) by providing a semantic
setting in which quantitative aspects can be studied, while taking some distance with
the syntactic details.

Note that if this paper, a redacted version of [de Carvalho 2006], concerns the A-
calculus and Krivine’s machine, we emphasized connections with proof nets of linear
logic. Because of these connections, we conjectured in [de Carvalho 2007] that we could
obtain some similar results relating on the one hand the length of cut-elimination of
nets with a strategy that mimics this one of Krivine’s machine and that extends a
strategy defined in [Mascari and Pedicini 1994] for a fragment of linear logic, and on
the other hand the size of the results of experiments. This work has been done in
[de Carvalho, Pagani and Tortora de Falco 2008] by adapting our work for the A-calculus.

Acknowledgements. This work is partially the result of discussions with Thomas
Ehrhard: T warmly thank him. I also thank Patrick Baillot, Simona Ronchi della Rocca
and Kazushige Terui too for stimulating discussions.
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