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Le temps d'exécution des λ-termes via la sémantiquedénotationnelle et les types avec intersectionRésumé : La sémantique relationnelle multi-ensembliste de la logique linéaire induitune sémantique du λ-calcul non typé. Celle-ci est construite sur des types avec uneintersection non-idempotente. Nous prouvons que la taille des dérivations et la tailledes types sont étroitement liées au temps d'exécution des λ-termes dans une machine àenvironnement particulière, la machine de Krivine.Mots-clés : λ-calcul, sémantique dénotationnelle, types avec intersection, complexitédu calcul.



Execution Time of λ-Terms 3IntroductionThis paper presents a work whose aim is to obtain information on execution time of
λ-terms by semantic means.Execution time means the number of steps in a computational model. As in [Ehrhard and Regnier 2006],the computational model considered in this paper will be Krivine's machine, a more real-istic model than β-reduction. Indeed, Krivine's machine implements (weak) head linearreduction: in one step, we can do at most one substitution. In this paper, we considertwo variants of this machine : the �rst one (De�nition 4) computes the head-normal formof any λ-term (if it exists) and the second one (De�nition 11) computes the normal formof any λ-term (if it exists).The fundamental idea of denotational semantics is that propositions should be inter-preted as the objects of a category C and proofs should be interpreted as morphisms in
C in such a way that if a proof Π reduces to a proof Π′ by cut-elimination, then theyare interpreted by the same morphism. By the Curry-Howard isomorphism, a simplytyped λ-term is a proof in intuitionistic logic. Now, the intuitionistic fragment of linearlogic [Girard 1987] is a re�nement of intuitionistic logic. This means that when we havea categorical structure (C, . . .) to interpret intuitionistic linear logic, one can derive acategory K that is a model of intuitionistic logic.Linear logic has various denotational semantics; one of these is the multiset based re-lational semantics in the category Rel of sets and relations with the comonad associatedto the �nite multisets functor (see [Tortora de Falco 2000] for interpretations of proof-nets and Appendix of [Bucciarelli and Ehrhard 2001] for interpretations of derivations ofsequent calculus). Here, the category K is a category equivalent to the Kleisli categoryof this comonad. The semantics we obtain is non-uniform in the following sense : theinterpretation of a function contains information about its behaviour on chimerical argu-ments (see Example 18 for an illustration of this fact). As we want to consider type free
λ-calculus, we will consider λ-algebras in K. We will put semantics of λ-terms in these
λ-algebras in a logical framework, using intersection types.The intersection types system that we consider (System R, de�ned in Subsection3.1) is a reformulation of that of [Coppo et al. 1980]; in particular, it lacks idempotency,as System λ in [Kfoury 2000] and System I in [Neergaard and Mairson 2004] and con-trary to System I of [Kfoury et al. 1999]. So, we stress the fact that the semanticsof [Coppo et al. 1980] can be reconstructed in a natural way from the �nite multisetsrelational model of linear logic using the Kleisli construction.Now, if v and u are two closed normal λ-terms, we can wonder1. Is it the case that the λ-term (v)u is (head) normalizable?2. If the answer to the previous question is positive, what is the number of stepsleading to the (principal head) normal form?The main point of the paper is to show that it is possible to answer both questions byonly referring to the semantics JvK and JuK of v and u respectively. The answer to the �rstquestion is given in Section 4 (Corollary 34) and is a simple adaptation of well-knownresults. The answer to the second question is given in Section 5.The paper [Ronchi Della Rocca 1988] presented a procedure that computes a normalform of any λ-term (if it exists) by �nding its principal typing (if it exists). In Section5, we present some quantitative results about the relation between the types and thiscomputation. In particular, we prove that the number of steps of execution of a λ-termin the �rst machine is the size of the least derivation of the λ-term in System R (TheoremRR n° 6638



4 Daniel de Carvalho44) and prove a similar result for the second machine (Theorem 50). We end by provingtruly semantic measures of execution time in Subsection 5.4 and Subsection 5.5.Notation. We denote by Λ the set of λ-terms, by V the set of variables and, for any
λ-term t, by FV (t) the set of free variables in t.We use Krivine's notation for λ-terms i.e. λ-term v applied to u is noted (v)u.We use the notation [ ] for multisets while the notation { } is, as usual, for sets. Thepairwise union of multisets given by term-by-term addition of multiplicities is denotedby a + sign and, following this notation, the generalized union is denoted by a ∑ sign.The neutral element for this operation, the empty multiset, is denoted by [].1 Krivine's machineWe introduce two variants of a machine presented in [Krivine 2007] that implementscall-by-name. More precisely, the original machine performs weak head linear reduction,whereas the machine presented in Subsection 1.2 performs head linear reduction. Sub-section 1.3 slightly modi�es the latter machine as to compute the β-normal form of anynormalizable term.1.1 Execution of StatesWe begin with the de�nitions of the set E of environments and of the set C of closures.Set E =

⋃

p∈N
Ep and set C =

⋃

p∈N
Cp, where Ep and Cp are de�ned by induction on

p: � If p = 0, then Ep = {∅} and Cp = Λ × {∅}.� Ep+1 is the set of partial maps V → Cp, whose domain is �nite, and Cp+1 = Λ×Ep+1.For e ∈ E , d(e) denotes the least integer p such that e ∈ Ep.For c = (t, e) ∈ C, we de�ne, by induction on d(e), c = t[e] ∈ Λ:� If d(e) = 0, then t[e] = t.� Assume t[e] de�ned for d(e) = d. If d(e) = d + 1, then t[e] = t[c1/x1, . . . , cm/xm],with {x1, . . . , xm} = dom(e) and, for 1 ≤ j ≤ m, e(xj) = cj .A stack is a �nite sequence of closures. If c is a closure and π = (c1, . . . , cq) is a stack,then c.π will denote the stack (c, c1, . . . , cq). We will denote by ε the empty stack.A state is a pair (c, π), where c is a closure and π is a stack. If s = (c0, (c1, . . . , cq))is a stack, then s will denote the λ-term (c0)c1 . . . cq.De�nition 1 We say that a λ-term t respects the variable convention if any variable isbound at most one time in t.For any closure c = (t, e), we de�ne, by induction on d(e), what it means for c torespect the variable convention:� if d(e) = 0, then we say that c respects the variable convention if, and only if, trespects the variable convention ;� if c = (t, {(x1, c1), . . . , (xm, cm)}) with m 6= 0, then we say that c respects thevariable convention if, and only if, INRIA



Execution Time of λ-Terms 5� c1, . . . , cm respect the variable convention ;� and the variables x1, . . . , xm are not bound in t.For any state s = (c0, (c1, . . . , cq)), we say that s respects the variable convention if, andonly if, c0, . . . , cq respect the variable convention.We denote by S the set of the states that respect the variable convention.First, we present the execution of a state (that respects the variable convention). Itconsists in updating a closure (t, e) and the stack. If t is an application (v)u, then wepush the closure (u, e) on the top of the stack and the current closure is now (v, e). If
t is an abstraction, then a closure is popped and a new environment is created. If t isa variable, then the current closure is now the value of the variable of the environment.The partial map s �S s′ (de�ned below) de�nes formally the transition from a state toanother state.De�nition 2 We de�ne a partial map from S to S: for any s, s′ ∈ S, the notation s �S s′will mean that the map assigns s′ to s. The value of the map at s is de�ned as follows:

s 7→







(e(x), π) if s = ((x, e), π) with x ∈ dom(e)not de�ned if s = ((x, e), π) with x ∈ V and x /∈ dom(e)
((u, {(x, c)} ∪ e), π′) if s = ((λx.u, e), c.π′)not de�ned if s = ((λx.u, e), ε)
((v, e), (u, e).π) if s = (((v)u, e), π)Note that in the case where the current subterm is an abstraction and the stack isempty, the machine stops: it does not reduce under lambda's. That is why we slightlymodify this machine in the following subsection.1.2 A machine computing the principal head normal formNow, the machine has to reduce under lambda's and, in Subsection 1.3, the machine willhave to compute the arguments of the head variable. So, we extend the machine so thatit performs the reduction of elements of K, where K =

⋃

n∈N
Kn with� H0 = V and K0 = S ;� Hn+1 = V ∪ {(v)u / v ∈ Hn and u ∈ Λ ∪ Kn} and

Kn+1 = S ∪Hn ∪ {λy.k / y ∈ V and k ∈ Kn} .Set H =
⋃

n∈N
Hn. We have K = S ∪H ∪

⋃

n∈N
{λx.k / x ∈ V and k ∈ Kn}.Remark 3 We have� H = {(x)t1 . . . tp / p ∈ N, x ∈ V , t1, . . . , tp ∈ Λ ∪ K}� hence any element of K can be written as either

λx1. . . . λxm.s with m ∈ N, x1, . . . , xm ∈ V and s ∈ Sor either
λx1. . . . λxm.(x)t1 . . . tp with m, p ∈ N, x1, . . . , xm ∈ V and t1, . . . , tp ∈ K ∪ Λ.RR n° 6638



6 Daniel de CarvalhoFor any k ∈ K, we denote by d(k) the least integer p such that k ∈ Kp.We extend the de�nition of s for s ∈ S to k for k ∈ K. For that, we set t = t if t ∈ Λ.This de�nition is by induction on d(k):� if d(k) = 0, then k ∈ S and thus k is already de�ned;� if k ∈ H, then there are two cases:� if k ∈ V , then k is already de�ned (it is k) ;� else, k = (v)u and we set k = (v)u ;� if k = λx.k0, then k = λx.k0.De�nition 4 We de�ne a partial map from K to K: for any k, k′ ∈ K, the notation
k �h k′ will mean that the map assigns k′ to k. The value of the map at k is de�ned, byinduction on d(k), as follows:

k 7→







s′ if k ∈ S and k �S s′

(x)c1 . . . cq if k = ((x, e), (c1, . . . , cq)) ∈ S, x ∈ V and x /∈ dom(e)
λx.((u, e), ε) if k = ((λx.u, e), ε) ∈ Snot de�ned if k ∈ H
λy.k′

0 if k = λy.k0 and k0 �h k′
0A di�erence with the original machine is that our machine reduces under lambda's.We denote by �h

∗ the re�exive transitive closure of �h. For any k ∈ K, k is said tobe a Krivine normal form if for any k′ ∈ K, we do not have k �h k′.De�nition 5 For any k0 ∈ K, we de�ne lh(k0) ∈ N ∪ {∞} as follows: if there exist
k1, . . . , kn ∈ K such that ki �h ki+1 for 0 ≤ i ≤ n − 1 and kn is a Krivine normal form,then we set lh(k0) = n, else we set lh(k0) = ∞.Proposition 6 For any s ∈ S, for any k′ ∈ K, if s�h

∗k′ and k′ is a Krivine normalform, then k′ is a λ-term in head normal form.Proof. By induction on lh(s).The base case is trivial, because we never have lh(s) = 0.The inductive step is divided into �ve cases.� If s = ((x, e), (c1, . . . , cq)), x ∈ V and x /∈ dom(e), then s �h (x)c1 . . . cq. But
(x)c1 . . . cq is a Krivine normal form and (x)c1 . . . cq is a λ-term in head normalform.� If s = ((λx.u, e), π) and π is the empty stack ε, then k′ = λx.k′′ with ((u, e), ε)�h

∗k′′.Now, by induction hypothesis, k′′ is a λ-term in head normal form, hence k′ too isa λ-term in head normal form.� If s = ((x, e), (c1, . . . , cq)), x ∈ V and x ∈ dom(e), then s �h (e(x), π). Now,
(e(x), π)�h

∗k′, hence, by induction hypothesis, k′ is a λ-term in head normal form.� If s = ((λx.u, e), c.π), then s �h ((u, {(x, c)} ∪ e), π). Now, ((u, {(x, c)} ∪ e), π) �h

k′, hence, by induction hypothesis, k′ is a λ-term in head normal form.� If s = (((v)u, e), π), then s �h ((v, e), (u, e).π). Now, ((v, e), (u, e).π)�h
∗k′, hence,by induction hypothesis, k′ is a λ-term in head normal form. INRIA



Execution Time of λ-Terms 7output current subterm environment stack
(λx.(x)x)λy.y ∅ ε

1 λx.(x)x ∅ (λy.y, ∅)
2 (x)x {x 7→ (λy.y, ∅)} ε
3 x {x 7→ (λy.y, ∅)} (x, {x 7→ (λy.y, ∅)})
4 λy.y ∅ (x, {x 7→ (λy.y, ∅)})
5 y {y 7→ (x, {x 7→ (λy.y, ∅)})} ε
6 x {x 7→ (λy.y, ∅)} ε
7 λy.y ∅ ε
8 λy. y ∅ ε
9 λy.yFigure 1: Example of computation of the principal head normal form

�Example 7 Set s = (((λx.(x)x)λy.y, ∅), ε). We have lh(s) = 9:
s �h ((λx.(x)x, ∅), (λy.y, ∅))

�h (((x)x, {(x, (λy.y, ∅))}), ε)

�h ((x, {(x, (λy.y, ∅))}), (x, {(x, (λy.y, ∅))}))

�h ((λy.y, ∅), (x, {(x, (λy.y, ∅))}))

�h ((y, {(y, (x, {(x, (λy.y, ∅))}))}), ε)

�h ((x, {(x, (λy.y, ∅))}), ε)

�h ((λy.y, ∅), ε)

�h λy.((y, ∅), ε)

�h λy.yWe present the same computation in a more attractive way in Figure 1.Lemma 8 For any k, k′ ∈ K, if k �h k′, then k →h k′, where →h is the re�exive closureof the head reduction.Proof. There are two cases.� If k ∈ S, then there are �ve cases.� If k = ((x, e), (c1, . . . , cq)), x ∈ V and x /∈ dom(e), then k = (x)c1 . . . cq and
k′ = (x)c1 . . . cq = (x)c1 . . . cq: we have k = k′.� If k = ((λx.u, e), π) and π is the empty stack ε, then k = (λx.u)[e] = λx.u[e](because k respects the variable convention) and k′ = λx.((u, e), ε) = λx.u[e]:we have k = k′.� If k = ((x, e), (c1, . . . , cq)), x ∈ V and x ∈ dom(e), then k = e(x)c1 . . . cq and
k′ = (e(x), (c1, . . . , cq)) = e(x)c1 . . . cq: we have k = k′.RR n° 6638



8 Daniel de Carvalho� If k = ((λx.u, e), (c, c1, . . . , cq)), then k = ((λx.u)[e])cc1 . . . cq = (λx.u[e])cc1 . . . cq(because k respects the variable convention) and k′ = ((u, {(x, c)} ∪ e))c1 . . . cq.Now, k reduces in a single head reduction step to k′.� If k = (((v)u, e), (c1 . . . cq)), then k = (((v)u)[e])c1 . . . cq = (v[e])u[e]c1 . . . cqand k′ = ((v, e), (u, e).(c1, . . . , cq)) = (v[e])u[e]c1 . . . cq: we have k = k′.� Else, k = λy.k0 ; then k = λy.k0 and k′ = λy.k′
0 = λy.k′

0 with k0 �h k′
0: we have

k0 →h k′
0, hence k →h k′.

�Theorem 9 For any k ∈ K, if lh(k) is �nite, then k is head normalizable.Proof. By induction on lh(k).If lh(k) = 0, then k ∈ H, hence k can be written as (x)t1 . . . tp and thus k can bewritten (x)t1 . . . tp: it is a head normal form. Else, apply Lemma 8. �For any head normalizable λ-term t, we denote by h(t) the number of head reductionsof t.Theorem 10 For any s = ((t, e), π) ∈ S, if s is head normalizable, then lh(s) is �nite.Proof. By well-founded induction on (h(s), d(e), t).If h(s) = 0, d(e) = 0 and t ∈ V , then we have lh(s) = 1.Else, there are �ve cases.� In the case where t ∈ V ∩ dom(e), we have s �h (e(t), π). Set s′ = (e(t), π) and
e(t) = (t′, e′). We have s = s′ and d(e′) < d(e), thus we can apply the inductionhypothesis: lh(s′) is �nite and thus lh(s) = lh(s′) + 1 is �nite.� In the case where t ∈ V and t /∈ dom(e), we have lh(s) = 1.� In the case where t = (v)u, we have s �h ((v, e), (u, e).π). Set s′ = ((v, e), (u, e).π).We have s′ = s and thus we can apply the induction hypothesis: lh(s′) is �nite andthus lh(s) = lh(s′) + 1 is �nite.� In the case where t = λx.u and π = ε, we have s �h λx.((u, e), ε). Set s′ = ((u, e), ε).Since s respects the variable convention, we have s = λx.u[e] = λx.s′. We have
h(s′) = h(s), hence we can apply the induction hypothesis: lh(s′) is �nite and thus
lh(s) = lh(s′) + 1 is �nite.� In the case where t = λx.u and π = c.π′, we have s �h ((u, {(x, c)} ∪ e), π). Set
s′ = ((u, {(x, c)} ∪ e), π). We have h(s′) < h(s), hence we can apply the inductionhypothesis: lh(s′) is �nite and thus lh(s) = lh(s′) + 1 is �nite.

�We recall that if a λ-term t has a head-normal form, then the last term of the terminat-ing head reduction of t is called the principal head normal form of t (see [Barendregt 1984]).Proposition 6, Lemma 8 and Theorem 10 show that for any head normalizable λ-term twith t′ its principal head normal form, we have ((t, ∅), ε)�h
∗t′ and t′ is a Krivine headnormal form. INRIA



Execution Time of λ-Terms 91.3 A machine computing the β-normal formWe now slightly modify the machine so as to compute the β-normal form of any normal-izable λ-term.De�nition 11 We de�ne a partial map from K to K: for any k, k′ ∈ K, the notation
k �β k′ will mean that the map assigns k′ to k. The value of the map at k is de�ned, byinduction on d(k), as follows:

k 7→







s′ if k ∈ S and k �S s′

(x)(c1, ε) . . . (cq, ε) if k = ((x, e), (c1, . . . , cq)) ∈ S, x ∈ V and x /∈ dom(e)
λx.((u, e), ε) if k = ((λx.u, e), ε) ∈ Snot de�ned if k ∈ V
(v′)u if k = (v)u and v �β v′

(x)u′ if k = (x)u with x ∈ V and u �β u′

λy.k′
0 if k = λy.k0 and k0 �β k′

0Let us compare De�nition 11 with De�nition 4. The di�erence is in the case wherethe current subterm of a state is a variable and where this variable has no value in theenvironment: the �rst machine stops, the second machine continues to compute everyargument of the variable.The function lβ is de�ned as lh (see De�nition 5), but for this new machine.For any normalizable λ-term t, we denote by n(t) the number of left reductions of t.Theorem 12 For any s = ((t, e), π) ∈ S, if s is normalizable, then lβ(s) is �nite.Proof. By well-founded induction on (n(s), s, d(e), t).If n(s) = 0, s ∈ V , d(e) = 0 and t ∈ V , then we have lβ(s) = 1.Else, there are �ve cases.� In the case where t ∈ V ∩ dom(e), we have s �β (e(t), π). Set s′ = (e(t), π) and
e(t) = (t′, e′). We have s = s′ and d(e′) < d(e), hence we can apply the inductionhypothesis: lβ(s′) is �nite and thus lβ(s) = lβ(s′) + 1 is �nite.� In the case where t ∈ V and t /∈ dom(e), set π = (c1, . . . , cq). For any k ∈ {1, . . . , q},we have n(ck) ≤ n(s) and ck < s, hence we can apply the induction hypothesis on
ck: for any k ∈ {1, . . . , q}, lβ(ck) is �nite, hence lβ(s) =

∑q
k=1 lβ(ck) + 1 is �nitetoo.� In the case where t = (v)u, we have s �β ((v, e), (u, e).π). Set s′ = ((v, e), (u, e).π).We have s′ = s, hence we can apply the induction hypothesis: lβ(s′) is �nite andthus lβ(s) = lβ(s′) + 1 is �nite.� In the case where t = λx.u and π = ε, we have s �β λx.((u, e), ε). Set s′ =

((u, e), ε). Since s respects the variable convention, we have s = λx.u[e] = λx.s′.We have n(s′) = n(s), hence we can apply the induction hypothesis: lβ(s′) is �niteand thus lβ(s) = lβ(s′) + 1 is �nite.� In the case where t = λx.u and π = c.π′, we have s �β ((u, {(x, c)} ∪ e), π). Set
s′ = ((u, {(x, c)} ∪ e), π). We have n(s′) < n(s), hence we can apply the inductionhypothesis: lβ(s′) is �nite and thus lβ(s) = lβ(s′) + 1 is �nite.

�RR n° 6638



10 Daniel de Carvalho2 A non-uniform semanticsWe de�ne here the semantics allowing to measure execution time. We have in mind thefollowing philosophy: the semantics for the untyped λ-calculus come from the semanticsfor the typed λ-calculus and any semantics for linear logic induces a semantics for thetyped λ-calculus. So, we start from a semantics M for linear logic (Subsection 2.1), thenwe present the induced semantics Λ(M) for the typed λ-calculus (Subsection 2.2) andlastly the semantics of the untyped λ-calculus that we consider (Subsection 2.3). Thissemantics is non-uniform: in Subsection 2.4, we give an example for illustrating thispoint.The �rst works tackling the problem of giving a general categorical de�nition of a de-notational model of linear logic are those of Lafont [Lafont 1988] and of Seely [Seely 1989].As for the works of Benton, Bierman, Hyland and de Paiva, [Benton et al. 1994], [Bierman 1993]and [Bierman 1995], they led to the following axiomatic: a categorical model of the mul-tiplicative exponential fragment of intuitionistic linear logic (IMELL) is a quadruple
(C,L, c, w) such that� C = (C,⊗, I, α, λ, ρ, γ) is a closed symmetric monoidal category;� L = ((T,m, n), δ, d) is a symmetric monoidal comonad on C;� c is a monoidal natural transformation from (T,m, n) to ⊗ ◦ ∆C ◦ (T,m, n) and wis a monoidal natural transformation from (T,m, n) to ∗C such that� for any object A of C, ((T (A), δA), cA, wA) is a cocommutative comonoid in

(CT,⊗T, (I, n), α, λ, ρ)� and for any f ∈ CT[(T (A), δA), (T (B), δB)], f is a comonoid morphism,where T is the comonad (T, δ, d) on C, CT is the category of T-coalgebras, ∆C isthe diagonal monoidal functor from C to C ×C and ∗C is the monoidal functor thatsends any arrow to idI .Given a categorical model M = (C,L, c, w) of IMELL with C = (C,⊗, I, α, λ, ρ, γ)and L = ((T,m, n), δ, d), we can de�ne a cartesian closed category Λ(M) such that� the objects are �nite sequences of objects of C� and the arrows 〈A1, . . . , Am〉 → 〈B1, . . . , Bp〉 are sequences 〈f1, . . . , fp〉 where every
fk is an arrow ⊗m

j=1 T (Aj) → Bk in C.Hence we can interpret simply typed λ-calculus in the category Λ(M). This categoryis (weakly) equivalent1 to a full subcategory of (T, δ, d)-coalgebras exhibited by Hyland.If the category C is cartesian, then the categories Λ(M) and the Kleisli category of thecomonad (T, δ, d) are (strongly) equivalent2. See [de Carvalho 2007] for a full exposition.2.1 A relational model for linear logicThe category of sets and relations is denoted by Rel and ◦ denotes its composition. Thefunctor T from Rel to Rel is de�ned by setting1A category C is said to be weakly equivalent to a category D if there exists a functor F : C → D fulland faithful such that every object D of D is isomorphic to F (C) for some object C of C.2A category C is said to be strongly equivalent to a category D if there are functors F : C → D and
G : D → C and natural isomorphisms G ◦ F ∼= idC and F ◦ G ∼= idD. INRIA



Execution Time of λ-Terms 11� for any object A of Rel, T (A) = Mf (A), the set of �nite multisets a whose support,denoted by Supp(a), is a subset of A;� and, for any f ∈ Rel(A, B), T (f) ∈ Rel(T (A), T (B)) de�ned by
T (f) = {([α1, . . . , αn], [β1, . . . , βn]) / n ∈ N and (α1, β1), . . . , (αn, βn) ∈ f} .The natural transformation d from T to the identity functor of Rel is de�ned by setting

dA = {([α], α) / α ∈ A} and the natural transformation δ from T to T ◦ T by setting
δA = {(a1 + . . . + an, [a1, . . . , an]) / n ∈ N and a1, . . . , an ∈ T (A)} . It is easy to showthat (T, δ, d) is a comonad on Rel. It is well-known that this comonad can be providedwith a structure M that provides a model of (I)MELL.This model gives rise to a cartesian closed category Λ(M).2.2 Interpreting simply typed λ-termsWe describe the category Λ(M) induced by the model M of linear logic presented in thepreceding subsection:� objects are �nite sequences of sets;� arrows 〈A1, . . . , Am〉 → 〈B1, . . . , Bn〉 are sequences 〈f1, . . . , fn〉 where every fi is asubset of (

∏m
j=1 Mf(Aj)) × Bi with the convention (

∏m
j=1 Mf (Aj)) × Bi = Bi if

m = 0;� if 〈f1, . . . , fp〉 is an arrow 〈A1, . . . , Am〉 → 〈B1, . . . , Bp〉 and 〈g1, . . . , gq〉 is an arrow
〈B1, . . . , Bp〉 → 〈C1, . . . , Cq〉, then 〈g1, . . . , gq〉◦Λ(M) 〈f1, . . . , fp〉 is 〈h1, . . . , hq〉 with

hl =







((
∑p

k=1

∑nk

i=1 ai,k
1 , . . . ,

∑p
k=1

∑nk

i=1 ai,k
m ), γ) / n1, . . . , np ∈ N andfor 1 ≤ j ≤ m, for 1 ≤ k ≤ p, for 1 ≤ i ≤ nk, ai,k

j ∈ Mf (Aj) s.t.
∃β1

1 , . . . , βn1

1 ∈ B1, . . . ,∃β1
p, . . . , β

np
p ∈ Bp s.t.

(([β1
1 , . . . , βn1

1 ], . . . , [β1
p , . . . , β

np
p ]), γ) ∈ gl andfor 1 ≤ k ≤ p, for 1 ≤ i ≤ nk, ((ai,k

1 , . . . , ai,k
m ), βi

k) ∈ fk





for 1 ≤ l ≤ q, with the conventions
((a1, . . . , am), γ) = γ and (

m∏

j=1

Mf (Aj)) × Cl = Cl if m = 0 .� the identity of 〈A1, . . . , Am〉 is 〈d1, . . . , dm〉 with
dj = {(([], . . . , []

︸ ︷︷ ︸

j−1 times, [α], [], . . . , []
︸ ︷︷ ︸

m−j times), α) / α ∈ Aj} .The category Λ(M) has the following cartesian closed structure
(Λ(M), 1, !, &, π1, π2, 〈·, ·〉M,⇒, Λ, ev) :� the terminal object 1 is the empty sequence 〈〉;� if B1 = 〈B1, . . . , Bp〉 and B2 = 〈Bp+1, . . . , Bp+q〉 are two sequences of sets, then

B1&B2 is the sequence 〈B1, . . . , Bp+q〉;RR n° 6638



12 Daniel de Carvalho� if B1 = 〈B1, . . . , Bp〉 and B2 = 〈Bp+1, . . . , Bp+q〉 are two sequences of sets, then
π1

B1,B2 = 〈d1, . . . , dp〉 : B1&B2 → B1 in Λ(M)and
π2

B1,B2 = 〈dp+1, . . . , dp+q〉 : B1&B2 → B2 in Λ(M)with
dk = {(( [], . . . , []

︸ ︷︷ ︸

k−1 times, [β], [], . . . , []
︸ ︷︷ ︸

p+q−k times), β) / β ∈ Bk} ;� if f1 = 〈f1, . . . , fp〉 : C → A1 and f2 = 〈fp+1, . . . , fp+q〉 : C → A2 in Λ(M), then
〈f1, f2〉M = 〈f1, . . . , fp+q〉 : C → A1&A2;and� 〈A1, . . . , Am〉 ⇒ 〈C1, . . . , Cq〉 is de�ned by induction on m:� 〈〉 ⇒ 〈C1, . . . , Cq〉 = 〈C1, . . . , Cq〉�

〈A1, . . . , Am+1〉 ⇒ 〈C1, . . . , Cq〉

= 〈〈A1, . . . , Am〉 ⇒ (Mf (Am+1) × C1), . . . ,

〈A1, . . . , Am〉 ⇒ (Mf (Am+1) × Cq)〉 ;� if h = 〈h1, . . . , hq〉 : 〈A1, . . . , Am〉&〈B1, . . . , Bp〉 → 〈C1, . . . , Cq〉, then
Λ
〈B1,...,Bp〉

〈A1,...,Am〉,〈C1,...,Cq〉
(h) : 〈A1, . . . , Am〉 → 〈B1 . . . , Bp〉 ⇒ 〈C1, . . . , Cq〉is de�ned by induction on p:� if p = 0, then Λ

〈B1,...,Bp〉

〈A1,...,Am〉,〈C1,...,Cq〉
(h) = h;� if p = 1, then there are two cases:* in the case m = 0, Λ

〈B1,...,Bp〉

〈A1,...,Am〉,〈C1,...,Cq〉
(h) = h;* in the case m 6= 0,

Λ
〈B1,...,Bp〉

〈A1,...,Am〉,〈C1,...,Cq〉
(h) = 〈ξ

Mf (B1)
∏

m
j=1

Mf (Aj),C1
(h1), . . . , ξ

Mf (B1)
∏

m
j=1

Mf (Aj),Cq
(hq)〉 ,where

ξ
Mf (B1)
∏

m
j=1

Mf (Aj),Cl
(hl) = {(a, (b, γ)) ; ((a, b), γ) ∈ hl} ;� if p ≥ 1, then

Λ
〈B1,...,Bp+1〉

A,〈C1,...,Cq〉
(h)

= Λ
〈B1,...,Bp〉

A,〈Mf(Bp+1)×C1,...,Mf (Bp+1)×Cq)〉(Λ
〈Bp+1〉

〈A1,...,Am,B1,...,Bp〉,〈C1,...,Cq〉
(h)) ,where A = 〈A1, . . . , Am〉;
INRIA



Execution Time of λ-Terms 13� evC,B : (B ⇒ C)&B → C is de�ned by settingev〈C1,...,Cq〉,〈B1,...,Bp〉 = 〈ev1
〈C1,...,Cq〉,〈B1,...,Bp〉

, . . . , evq

〈C1,...,Cq〉,〈B1,...,Bp〉
〉where, for 1 ≤ k ≤ q,evk

〈C1,...,Cq〉,〈B1,...,Bp〉

=







(( [], . . . , []
︸ ︷︷ ︸

k−1 times, [((b1, . . . , bp), γ)], [], . . . , []
︸ ︷︷ ︸

q−k times, b1, . . . , bp), γ) /

b1 ∈ Mf(B1), . . . , bp ∈ Mf (Bp), γ ∈ Ck






.2.3 Interpreting type free λ-termsWith the cartesian closed structure on Λ(M), we have a semantics of the simply typed

λ-calculus. Now, in order to have a semantics of the pure λ-calculus, it is thereforeenough to have a re�exive object U of Λ(M), that is to say such that
(U ⇒ U) C U ,that means that there exist s ∈ Λ(M)[U ⇒ U, U ] and r ∈ Λ(M)[U, U ⇒ U ] such that

r ◦Λ(M) s is the identity on U ⇒ U . We will use the following lemma. We recall that
〈f〉 is a retraction of 〈g〉 in Λ(M) means that 〈f〉 ◦Λ(M) 〈g〉 = id〈A〉 (see, for instance,[Mac Lane 1998]). It is also said that (〈g〉, 〈f〉) is a retraction pair.Lemma 13 Let h : A → B be an injection between sets. Set

g = {([α], h(α)) : α ∈ A} : Mf (A) → B in Reland
f = {([h(α)], α)/α ∈ A} : Mf (B) → A in Rel .Then 〈g〉 ∈ Λ(M)(〈A〉, 〈B〉) and 〈f〉 is a retraction of 〈g〉 in Λ(M).Proof. An easy computation shows that we have

〈f〉 ◦Λ(M) 〈g〉 = 〈f ◦ T (g) ◦ δA〉

= 〈dA〉 .

�If D is a set, then 〈D〉 ⇒ 〈D〉 = 〈Mf (D) × D〉. From now on, we assume that D isa non-empty set and that h is an injection from Mf(D) × D to D. Set
g = {([α], h(α)) / α ∈ Mf(D) × D} : Mf (Mf (D) × D) → D in Reland

f = {([h(α)], α) / α ∈ Mf (D) × D} : Mf (D) → Mf (D) × D in Rel .We have
(〈D〉 ⇒ 〈D〉) C 〈D〉and, more precisely, 〈g〉 ∈ Λ(M)(〈D〉 ⇒ 〈D〉, 〈D〉) and f is a retraction of g.We can therefore de�ne the interpretation of any λ-term.RR n° 6638



14 Daniel de CarvalhoDe�nition 14 For any λ-term t possibly containing constants from P(D), for any x1, . . . , xm ∈
V distinct such that FV (t) ⊆ {x1, . . . , xm}, we de�ne, by induction on t, JtKx1,...,xm

⊆
(
∏m

j=1 Mf (D)) × D:� JxjKx1,...,xm
= {(( [], . . . , []

︸ ︷︷ ︸

j−1 times, [α], [], . . . , []
︸ ︷︷ ︸

m−j times), α) / α ∈ D};� for any c ∈ P(D), JcKx1,...,xm
= (

∏m
j=1 Mf (D)) × c;� Jλx.uKx1,...,xm

= {((a1, . . . , am), h(a, α)) / ((a1, . . . , am, a), α) ∈ JuKx1,...,xm,x};�
J(v)uKx1,...,xm

=







((
∑n

i=0 ai
1, . . . ,

∑n
i=0 ai

m), α) / ∃(α1, . . . , αn) s.t.
((a0

1, . . . , a
0
m), h([α1, . . . , αn], α)) ∈ JvKx1,...,xmand, for 1 ≤ i ≤ n, ((ai

1, . . . , a
i
m), αi) ∈ JuKx1,...,xm

)






;with the conventions (

∏m
j=1 Mf (D)) × D = D and ((a1, . . . , am), α) = α if m = 0.Now, we can de�ne the interpretation of any λ-term in any environment.De�nition 15 For any ρ ∈ P(D)

V and for any λ-term t possibly containing constantsfrom P(D) such that FV (t) = {x1, . . . , xm}, we set
JtKρ = {α ∈ D / ((a1, . . . , am), α) ∈ JtKx1,...,xm

and, for 1 ≤ j ≤ m, ai ∈ Mf(ρ(xj))} .For any d1, d2 ∈ P(D), we set
d1 ∗ d2 = {α ∈ D / ∃a (h(a, α)) ∈ d1 and Supp(a) ⊆ d2} .The triple (P(D), ∗, J−K−) is a λ-algebra (Theorem 5.5.6 of [Barendregt 1984]). Butthe following proposition, a corollary of Proposition 17, states that it is not a λ-model.We recall that a λ-model is a λ-algebra (D, ∗, J−K−) such that the following property,expressing the ξ-rule, holds:for any ρ ∈ DV , for any x ∈ V and for any λ-terms t1 and t2, we have
(∀d ∈ D Jt1Kρ[x:=d] = Jt2Kρ[x:=d] ⇒ Jλx.t1Kρ = Jλx.t2Kρ) .Proposition 16 The λ-algebra (P(D), ∗, J−K−) is not a λ-model.In other words, there exist ρ ∈ P(D)V , x ∈ V and two λ-terms t1 and t2 such that

(∀d ∈ P(D) Jt1Kρ[x:=d] = Jt2Kρ[x:=d] and Jλx.t1Kρ 6= Jλx.t2Kρ) .In particular, JtKρ can not be de�ned by induction on t (an interpretation by polyno-mials is nevertheless possible in such a way that the ξ-rule holds - see [Selinger 2002]).Before stating Proposition 17, we recall that any object A of any category K with aterminal object is said to have enough points if for any terminal object 1 of K and forany y, z ∈ K(A, A), we have (∀x ∈ K(1, A) y ◦K x = z ◦K x ⇒ y = z) .Remark: it does not follow necessarily that the same holds for any y, z ∈ K(A, B).Proposition 17 Let A be a non-empty set. Then 〈A〉 does not have enough points in
Λ(M). INRIA



Execution Time of λ-Terms 15Proof. Let α ∈ A. Set
y = {([α], α)} : Mf (A) → A in Reland

z = {([α, α], α)} : Mf (A) → A in Rel .We have 〈y〉, 〈z〉 : 〈A〉 → 〈A〉 in Λ(M).We recall that the terminal object in Λ(M) is the empty sequence 〈〉. Now, for any
x : 〈〉 → 〈A〉 in Λ(M), we have 〈y〉 ◦Λ(M) x = 〈z〉 ◦Λ(M) x. �This proposition explains why Proposition 16 holds. A more direct proof of Propo-sition 16 consists by considering the two λ-terms t1 = (y)x and t2 = (z)x with ρ(y) =
{([α], α)} and ρ(z) = {([α, α], α)}.2.4 Non-uniformityExample 18 illustrates the non-uniformity of the semantics. It is based on the followingidea.Consider the program

λx.if x then 1else if x then 1else 0applied to a boolean. The second then is never read. A uniform semantics wouldignore it. It is not the case when the semantics is non-uniform.Example 18 Set 0 = λx.λy.y and 1 = λx.λy.x. Assume that h is the inclusion from
Mf (D) × D to D.Let γ ∈ D; set δ = ([], ([γ], γ)) and β = ([γ], ([], γ)). We have� ([([], ([δ], δ))], ([δ], δ)) ∈ J(x)1Kx;� and ([([], ([δ], δ))], δ) ∈ J(x)10Kx.Hence we have α1 = ([([], ([δ], δ)), ([], ([δ], δ))], δ) ∈ Jλx.(x)1(x)10K .We have� ([([], ([β], β))], ([β], β)) ∈ J(x)1Kx;� and ([([β], ([], β))], β) ∈ J(x)10Kx .Hence we have α2 = ([([], ([β], β)), ([β], ([], β))], β) ∈ Jλx.(x)1(x)10K .In an uniform semantics (as in [Girard 1986]), the point α1 would appear in the se-mantics of this λ-term, but not the point α2, because [([], ([β], β)), ([β], ([], β))] correspondsto a chimerical argument: the argument is read twice and provides two contradictory val-ues.3 Non-idempotent intersection typesFrom now on, D =

⋃

n∈N
Dn, where Dn is de�ned by induction on n: D0 is a non-emptyset A that does not contain any pairs and Dn+1 = A ∪ (Mf (Dn) × Dn). We have

D = A∪̇(Mf (D) × D), where ∪̇ is the disjoint union; the injection h from Mf (D) × Dto D will be the inclusion. Hence any element of D can be written a1 . . . amα, where
a1, . . . , am ∈ Mf (D), α ∈ D and a1 . . . amα is de�ned by induction on m:RR n° 6638



16 Daniel de Carvalho� a1 . . . a0α = α;� a1 . . . am+1α = (a1 . . . am, (am+1, α)).In the preceding section, we de�ned the semantics we consider: De�nition 14 de�nes
JtKx1,...,xm

for any λ-term t and for any x1, . . . , xm ∈ V distinct such that FV (t) ⊆

{x1, . . . , xm}; De�nition 15 de�nes JtKρ for any λ-term t and for any ρ ∈ P(D)
V . Now,we want to put this semantics in a logical framework: the elements of D are viewed aspropositional formulas. More precisely, a comma separating a multiset of types and atype is understood as an arrow and a non-empty multiset is understood as the uniformconjunction of its elements (their intersection). Note that this means we are consideringa commutative but not necessarily idempotent intersection.3.1 System RA context Γ is a function from V to Mf (D) such that {x ∈ V / Γ(x) 6= []} is �nite. If

x1, . . . , xm ∈ V are distinct and a1, . . . , am ∈ Mf (D), then x1 : a1, . . . , xm : am denotesthe context de�ned by x 7→

{
aj if x = xj[] else . We denote by Φ the set of contexts. For

Γ1, Γ2 ∈ Φ, Γ1 + Γ2 is the context de�ned by (Γ1 + Γ2)(x) = Γ1(x) + Γ2(x), where thesecond + denotes the sum of multisets given by term-by-term addition of multiplicities.Typing rules concern judgements of the form Γ `R t : α, where Γ is a context, t is a
λ-term and α ∈ D.De�nition 19 The typing rules of System R are the following:

x : [α] `R x : α

Γ, x : a `R v : α

Γ `R λx.v : (a, α)

Γ0 `R v : ([α1, . . . , αn], α) Γ1 `R u : α1, . . . , Γn `R u : αn
n ∈ N

Γ0 + Γ1 + . . . + Γn `R (v)u : αThe typing rule of the application has n + 1 premisses. In particular, in the casewhere n = 0, we obtain the following rule: Γ0 `R v : ([], α)

Γ0 `R (v)u : α
for any λ-term u. So, theempty multiset plays the role of the universal type Ω.The intersection we consider is not idempotent in the following sense: if a closed λ-term t has the type a1 . . . amα and, for 1 ≤ j ≤ m, Supp(a′

j) = Supp(aj), it does not follownecessarily that t has the type a′
1 . . . a′

mα. For instance, the λ-term λz.λx.(z)x has types
([([α], α)], ([α], α)) and ([([α, α], α)], ([α, α], α)) but not the type ([([α], α)], ([α, α], α)).On the contrary, the system presented in [Ronchi Della Rocca 1988] and the System Dpresented in [Krivine 1990] consider an idempotent intersection. System λ of [Kfoury 2000]and System I of [Neergaard and Mairson 2004] consider a non-idempotent intersection,but the treatment of weakening is not the same.Interestingly, System R can be seen as a reformulation of the sytem of [Coppo et al. 1980].More precisely, types of System R correspond to their normalized types. As stated inSection 5 of that paper, the authors thought that a particular property should hold inthe corresponding semantics (assertion vi) of their Theorem 8. But our Proposition 16shows that this is not the case. INRIA



Execution Time of λ-Terms 173.2 Relating types and semanticsWe prove in this subsection that the semantics of a closed λ-term as de�ned in Subsection2.3 is the set of its types in System R. The following assertions relate more preciselytypes and semantics of any λ-term.Theorem 20 For any λ-term t such that FV (t) ⊆ {x1, . . . , xm}, we have
JtKx1,...,xm

= {((a1, . . . , am), α) ∈ (

m∏

j=1

Mf (D)) × D / x1 : a1, . . . , xm : am `R t : α} .Proof. By induction on t. �Corollary 21 For any λ-terms t and t′ such that t =β t′, if Γ `R t : α, then we have
Γ `R t′ : α.Theorem 22 For any λ-term t and for any Γ ∈ Φ, we have
{α ∈ D / Γ `R t : α} ⊆ {α ∈ D / ∀ρ ∈ P(D)

V
(∀x ∈ V Γ(x) ∈ Mf (ρ(x)) ⇒ α ∈ JtKρ)}.Proof. Apply Theorem 20. �Remark 23 The reverse inclusion is not true.Theorem 24 For any λ-term t and for any ρ ∈ P(D)

V , we have
JtKρ = {α ∈ D / ∃Γ ∈ Φ (∀x ∈ V Γ(x) ∈ Mf(ρ(x)) and Γ `R t : α)} .Proof. Apply Theorems 20 and 22. �There is another way to compute the interpretation of λ-terms in this semantics.Indeed, it is well-known that we can translate λ-terms into linear logic proof nets labelledwith the types I, O, ?I and !O (as in [Regnier 1992]): this translation is de�ned byinduction on the λ-terms. Now, we can do experiments to compute the semantics of theproof net in the multiset based relational model: all the translations corresponding tothe encoding A ⇒ B ≡?A⊥℘B have the same semantics. And this semantics is the sameas the semantics de�ned here.For a survey of translations of λ-terms in proof nets, see [Guerrini 2004].3.3 An equivalence relation on derivationsDe�nition 26 introduces an equivalence relation on the set of derivations of a given λ-term. This relation, as well as the notion of substitution de�ned immediately after, willplay a role in Subsection 5.5.De�nition 25 For any λ-term t, for any (Γ, α) ∈ Φ × D, we denote by ∆(t, (Γ, α)) theset of derivations of Γ `R t : α.For any closed λ-term t, for any α ∈ D, we denote by ∆(t, α) the set of derivationsof `R t : α.For any λ-term t, we set ∆(t) =

⋃

(Γ,α)∈Φ×D ∆(t, (Γ, α)).RR n° 6638



18 Daniel de CarvalhoDe�nition 26 Let t be a λ-term t. For any Π, Π′ ∈ ∆(t), we de�ne, by induction on Π,when Π ∼ Π′ holds:� if Π is only a leaf, then Π ∼ Π′ if, and only if, Π′ is a leaf too;� if Π =

Π0

Γ, x : a `R v : α

Γ `R λx.v : (a, α)

, then Π ∼ Π′ if, and only if, Π′ =

Π′
0

Γ′, x : a′ `R v : α′

Γ′ `R λx.v : (a′, α′)and Π0 ∼ Π′
0;� if

Π =

Π0

Γ0 `R v : ([α1, . . . , αn], α)
Π1 . . . Πn

Γ1 `R u : α1 . . . Γn ` u : αn

Γ0 + Γ1 + . . . + Γn `R (v)u : α

,then Π ∼ Π′ if, and only if,� Π′ =

Π′
0

Γ′
0 `R v : ([α′

1, . . . , α
′
n], α′)

Π′
1 . . . Π′

n

Γ′
1 `R u : α′

1 . . . Γ′
n ` u : α′

n

Γ′
0 + Γ′

1 + . . . + Γ′
n `R (v)u : α′ ,

,� Π0 ∼ Π′
0� and there exists a permutation σ ∈ Sn s.t., for any i ∈ {1, . . . , n}, Πi ∼ Π′

σ(i).An equivalence class of derivations of a λ-term t in System R can be seen as a simpleresource term of the shape of t that does not reduce to 0. Resource λ-calculus is de�ned in[Ehrhard and Regnier 2006] and is similar to resource oriented versions of the λ-calculuspreviously introduced and studied in [Boudol et al. 1999] and [Kfoury 2000]. For a fullexposition of a precise relation between this equivalence relation and simple resourceterms, see [de Carvalho 2007].De�nition 27 A substitution σ is a function from D to D such thatfor any α, α1, . . . , αn ∈ D, σ([α1, . . . , αn], α) = ([σ(α1), . . . , σ(αn)], σ(α)) .We denote by S the set of substitutions.For any σ ∈ S, we denote by σ the function from Mf (D) to Mf (D) de�ned by
σ([α1, . . . , αn]) = [σ(α1), . . . , σ(αn)].Proposition 28 Let Π be a derivation of Γ `R t : α and let σ be a substitution. Thenthere exists a derivation Π′ of σ ◦ Γ `R t : σ(α) such that Π ∼ Π′.Proof. By induction on t. �4 Qualitative resultsIn this section, inspired by [Krivine 1990], we prove Theorem 33, which formulates qual-itative relations between assignable types and normalization properties: it characterizesthe (head) normalizable λ-terms by semantics means. We also answer to the followingquestion: if v and u are two closed normal λ-terms, is it the case that (v)u is (head) nor-malizable? The answer is given only referring to JvK and JuK in Corollary 34. Quantitativeversions of this last result will be proved in Section 5. INRIA



Execution Time of λ-Terms 19Proposition 29 (i) Every head-normalizable λ-term is typable in System R.(ii) For any normalizable λ-term t, there exist α ∈ D in which [] has no positive occur-rences and Γ ∈ Φ in which [] has no negative occurrences such that Γ `R t : α.Proof.(i) Let t be a head-normalizable λ-term. There exist k, n ∈ N, x, x1, . . . , xk ∈ V ,
n λ-terms v1, . . . , vn such that (λx1. . . . λxk.t)v1 . . . vn =β x. Now, x is typable.Therefore, by Corollary 21, the λ-term (λx1. . . . λxk.t)v1 . . . vn is typable. Hence
λx1. . . . λxk.t is typable.(ii) We prove, by induction on t, that for any normal λ-term t, the following propertieshold:� there exist α ∈ D in which [] has no positive occurrences and Γ ∈ Φ in which

[] has no negative occurrences such that Γ `R t : α;� if, moreover, t does not begin with λ, then, for any α ∈ D in which [] has nopositive occurrences, there exists Γ ∈ Φ in which [] has no negative occurrencessuch that Γ `R t : α.Next, just apply Corollary 21.
�If X1 and X2 are two sets of λ-terms, then X1 → X2 denotes the set of λ-terms v suchthat for any u ∈ X1, (v)u ∈ X2. A set X of λ-terms is said to be saturated if for any

λ-terms t1, . . . , tn, u and for any x ∈ V , ((u[t/x])t1 . . . tn ∈ X ⇒ (λx.u)tt1 . . . tn ∈ X ).An interpretation is a map from A to the set of saturated set. For any interpretation Iand for any δ ∈ D ∪Mf (D), we de�ne, by induction on δ, a saturated set |δ|I :� if δ ∈ A, then |δ|I = I(δ) ;� if δ = [], then |δ|I is the set of all λ-terms ;� if δ = [α1, . . . , αn+1], then |δ|I =
⋂n+1

i=1 |αi|I .� if δ = (a, α), then |δ|I = |a|I → |α|I .Lemma 30 Let I be an interpretation and let u be a λ-term such that x1 : a1, . . . , xk :
ak `R u : α. If t1 ∈ |a1|I , . . ., tk ∈ |ak|I, then u[t1/x1, . . . , tk/xk] ∈ |α|I .Proof. By induction on u. �Lemma 31 (i) Let N be the set of head-normalizable terms. For any γ ∈ A, we set

I(γ) = N . Then, for any α ∈ D, we have V ⊆ |α|I ⊆ N .(ii) Let N be the set of normalizable terms. For any γ ∈ A, we set I(γ) = N . For any
α ∈ D with no negative (respectively positive) occurences of [], we have V ⊆ |α|I(respectively |α|I ⊆ N ).Proof.RR n° 6638



20 Daniel de Carvalho(i) Set N0 = {(x)t1 . . . tn / x ∈ V , t1, . . . , tn ∈ Λ}. We prove, by induction on α, thatwe have N0 ⊆ |α|I ⊆ N .If α = (b, β), then, by induction hypothesis, we have N0 ⊆ |β|I ⊆ N and N0 ⊆ |b|I .Hence we have N0 ⊆ Λ → N0 ⊆ |α|I and |α|I ⊆ N0 → N ⊆ N .(ii) Set N0 = {(x)t1 . . . tn / x ∈ V , t1, . . . , tn ∈ N}. We prove, by induction on α, that� if [] has no negative occurrences in α, then we have N0 ⊆ |α|I ;� if [] has no positive occurrences in α, then we have |α|I ⊆ N .Suppose α = (b, β) ∈ Mf (D) × D.� If [] has no negative occurrences in α, then [] has no positive occurrences(respectively negative) in b (respectively in β). By induction hypothesis, wehave |b|I ⊆ N and N0 ⊆ |β|I . Hence N0 ⊆ N → N0 ⊆ |b|I → |β|I = |α|I .� If [] has no positive occurrences in α, then [] has no negative occurrences(respectively positive) in b (respectively in β). By induction hypothesis, wehave N0 ⊆ |b|I and |β|I ⊆ N . Donc |α|I = |b|I → |β|I ⊆ N0 → N ⊆ N (thislast inclusion follows from the fact that for any λ-term t, for any variable xthat is not free in t, if (t)x is normalizable, then t is normalizable, fact thatcan be proved by induction on the number of left-reductions of (t)x).
�Proposition 32 (i) Every typable λ-term in System R is head-normalizable.(ii) Let t be a λ-term, α ∈ D in which [] has no positive occurrences and Γ ∈ Φ inwhich [] has no negative occurrences such that Γ `R t : α. Then t is normalizable.Proof.(i) Let Γ be the context x1 : a1, . . . , xk : ak. For any γ ∈ A, we set I(γ) = N , where

N is the set of head-normalizable terms. By Lemma 31 (i), we have x1 ∈ |a1|I , . . .,
xk ∈ |ak|I . Hence, by Lemma 30, we have t = t[x1/x1, . . . , xk/xk] ∈ |α|I . Usingagain Lemma 31 (i), we obtain |α|I ⊆ N .(ii) Let Γ be the context x1 : a1, . . . , xk : ak. For any γ ∈ A, we set I(γ) = N , where
N is the set of normalizable terms. By Lemma 31 (ii), we have x1 ∈ |a1|I , . . .,
xk ∈ |ak|I . Hence, by Lemma 30, we have t = t[x1/x1, . . . , xk/xk] ∈ |α|I . Usingagain Lemma 31 (ii), we obtain |α|I ⊆ N .

�Theorem 33 (i) For any t ∈ Λ, t is head-normalizable if, and only if, t is typable inSystem R.(ii) For any t ∈ Λ, t is normalizable if, and only if, there exist α ∈ D in which [] hasno positive occurrences and Γ ∈ Φ in which [] has no negative occurrences such that
Γ `R t : α. INRIA



Execution Time of λ-Terms 21Proof.(i) Apply Proposition 29 (i) and Proposition 32 (i).(ii) Apply Proposition 29 (ii) and Proposition 32 (ii).
�This theorem is not surprising: although SystemR is not considered in [Dezani-Ciancaglini et al.],it is quite obvious that its typing power is the same as that of the systems containing Ωconsidered by this paper. We can note here a di�erence with Systems λ and I alreadymentioned: in these systems, only strongly normalizable terms are typable.Corollary 34 Let v and u two closed normal terms.(i) There exist a ∈ Mf (D), α ∈ D such that (a, α) ∈ JvK and Supp(a) ⊆ JuK if, andonly if, (v)u is head-normalizable.(ii) There exist a ∈ Mf (D), α ∈ D such that (a, α) ∈ JvK, Supp(a) ⊆ JuK and [] has nopositive occurrences in α if, and only if, (v)u is normalizable.5 Quantitative resultsWe now turn our attention to the quantitative aspects of reduction. The aim is to givea purely semantic account of execution time. Of course, if t′ is the normal form of t, weknow that JtK = Jt′K, so that from JtK it is clearly impossible to determine the numberof reduction steps from t to t′. Nevertheless, if v and u are two normal λ-terms, we canwonder what is the number of steps leading from (v)u to its (principal head) normalnorm. We prove in this section that we can answer the question by only referring to JvKand JuK (Theorem 59).5.1 Type Derivations for StatesWe now extend the type derivations for λ-terms to type derivations for closures (De�ni-tion 35) and for states (De�nition 38). We will de�ne also the size |Π| of such derivations

Π; naturally, the size |Π| of a derivation Π of System R is quite simply its size as a tree,i.e. the number of its nodes.De�nition 35 For any closure c = (t, e), for any (Γ, α) ∈ Φ × D (respectively (Γ, a) ∈
Φ × Mf (D)), we de�ne, by induction on d(e), what is a derivation Π of Γ ` c : α(respectively Γ ` c : a) and what is |Π| for such a derivation :� � if e = ∅, then a derivation of Γ ` c : α is a pair (Π0, ∅) with Π0 ∈ ∆(t, (Γ, α));� if e = {(x1, c1), . . . , (xm, cm)} with m 6= 0, then a derivation of Γ ` c : α is apair (Π0, {(x1, Π1), . . . , (xm, Πm)}), where* Π0 is a derivation of Γ0, x1 : a1, . . . , xm : am `R t : α;* for any j ∈ {1, . . . , m}, Πj is a derivation of Γj ` cj : aj ;* and Γ =

∑m
j=0 Γj .If Π = (Π0, {(x1, Π1), . . . , (xm, Πm)}) is a derivation of Γ ` c : α, then we set

|Π| =
∑m

j=0 |Πj |.RR n° 6638



22 Daniel de Carvalho� For any integer p, a derivation of Γ ` c : [α1, . . . , αp] is a p-tuple (Π1, . . . , Πp) suchthat there exists (Γ1, . . . , Γp) ∈ Φp and� for 1 ≤ i ≤ p, Πi is a derivation of Γi ` c : αi;� and Γ =
∑p

i=1 Γi;If Π = (Π1, . . . , Πp) is a derivation of Γ ` c : a, then we set |Π| =
∑p

i=1 |Π
i|.De�nition 35 is not so easy to use directly. This is why we introduce Lemmas 36 and37, that will be useful for proving Propositions 43 and 49.Lemma 36 Let ((v)u, e) ∈ C. For any b ∈ Mf (D), Γ′, Γ′′ ∈ Φ, if Π′ is a derivation of

Γ′ ` (v, e) : (b, α) and Π′′ is a derivation of Γ′′ ` (u, e) : b, then there exists a derivation
Π of Γ′ + Γ′′ ` ((v)u, e) : α such that |Π| = |Π′| + |Π′′| + 1.Proof. Set e = {(x1, c1), . . . , (xm, cm)} and Π′ = (Π′

0, {(x1, Π
′
1), . . . , (xm, Π′

m)}), where� Π′
0 is a derivation of Γ′

0, x1 : a′
1, . . . , xm : a′

m `R v : (b, α),� for 1 ≤ j ≤ m, Π′
j is a derivation of Γ′

j ` cj : a′
j� and Γ′ =

∑m
j=0 Γ′

j.Set b = [β1, . . . , βp] and Π′′ = (Π′′1, . . . , Π′′p) where, for 1 ≤ k ≤ p, Π′′k is a derivation
(Π′′k

0 , {(xj , Π
′′k

j )}1≤j≤m) of Γ′′k ` (u, e) : βk with Γ′′ =
∑p

k=1 Γ′′k. For k ∈ {1, . . . , p},� Π′′k
0 is a derivation of Γ′′k

0 , x1 : a′′k
1 , . . . , xm : a′′k

m `R u : βk,� for 1 ≤ j ≤ m, Π′′k
j is a derivation of Γ′′k

j ` cj : a′′k
j� and Γ′′k =

∑m
j=0 Γ′′k

j .For j ∈ {0, . . . , m}, we set Γj = Γ′
j +

∑p
k=1 Γ′′k

j and aj = a′
j +

∑p
k=1 a′′k

j . There exists aderivation Π0 of Γ0, x1 : a1, . . . , xm : am `R (v)u : α with |Π0| = |Π′
0| +

∑p
k=1 |Π

′′k
0 | + 1.Moreover, for j ∈ {1, . . . , m}, Πj = Π′

j ∗ Π′′1
j ∗ . . . ∗ Π′′p

j , where ∗ is the concatenation of�nite sequences, is a derivation of Γj ` cj : aj . We have
m∑

j=1

Γj =

m∑

j=0

(Γ′
j +

p
∑

k=1

Γ′′k
j )

=

m∑

j=0

Γ′
j +

m∑

j=0

p
∑

k=1

Γ′′k
j

= Γ′ + Γ′′ .Hence Π = (Π0, {(x1, Π1), . . . , (xm, Πm)}) is a derivation of Γ′ + Γ′′ ` ((v)u, e) : α. Wehave
|Π| =

m∑

j=0

|Πj |

= |Π′
0| +

p
∑

k=1

|Π′′k
0 | + 1 +

m∑

j=1

|Πj | INRIA



Execution Time of λ-Terms 23
= |Π′

0| +

p
∑

k=1

|Π′′k
0 | + 1 +

m∑

j=1

(|Π′
j | +

p
∑

k=1

|Π′′k
j |)

= |Π′| +

p
∑

k=1

|Π′′k| + 1

= |Π′| + |Π′′| + 1 .

�Lemma 37 For any closure (u, e), for any derivation Π′ of Γ, x : b ` (u, e) : β, thereexists a derivation Π of Γ ` (λx.u, e) : (b, β) such that |Π| = |Π′| + 1.Proof. We set e = {(x1, c1), . . . , (xm, cm)} and Π′ = (Π′
0, {(x1, Π

′
1), . . . , (xm, Π′

m)}).We know that Π′
0 is a derivation of Γ, x : b, x1 : a1, . . . , xm : am `R u : β, hencethere exists a derivation Π0 of Γ, x1 : a1, . . . , xm : am `R λx.u : (b, β). We set Π =

(Π0, {(x1, Π
′
1), . . . , (xm, Π′

m)}) : it is a derivation of Γ ` (λx.u, e) : (b, β) and we have
|Π| = |Π0| +

m∑

j=1

|Π′
j |

= |Π′
0| + 1 +

m∑

j=1

|Π′
j |

= |Π′| + 1 .

�De�nition 38 Let s = (c, (c1, . . . , cq)) be a state. A pair (Π0, (Π1, . . . , Πq)) is said tobe a derivation of Γ ` s : α if there exist b1, . . . , bq ∈ Mf (D), Γ0, . . . , Γq ∈ Φ such that� Π0 is a derivation of Γ0 ` c : b1 . . . bqα ;� for any k ∈ {1, . . . , q}, Πk is a derivation of Γk ` ck : bk ;� and Γ =
∑q

k=0 Γk.In this case, we set |(Π0, (Π1, . . . , Πq))| =
∑q

k=0 |Πk|.De�nition 38 is not so easy to use directly. This is why we introduce Lemmas 39 and40, that will be useful for proving Propositions 43 and 49.Lemma 39 Let m, j0 ∈ N such that 1 ≤ j0 ≤ m. Let s = (c′j0 , (c1, . . . , cq)) ∈ S,
x1, . . . , xm ∈ V, c′1, . . . , c

′
m ∈ C. For any (Γ, α) ∈ Φ×D, if Π′ is a derivation of Γ ` s : α,then there exists a derivation Π of Γ ` ((xj0 , {(x1, c

′
1), . . . , (xm, c′m)}), (c1, . . . , cq)) : αsuch that |Π| = |Π′| + 1.Proof. We set Π′ = (Π′′, (Π1, . . . , Πq)) with Π′′ a derivation of Γ′′ ` c′j0 : b1 . . . bqα. Wedenote by Π0 the derivation of x : [b1 . . . bqα] `R x : b1 . . . bqα. For any j ∈ {1, . . . , m},we set

Π′′
j =

{
(Π′′) if j = j0 ;
ε else.RR n° 6638



24 Daniel de CarvalhoThe pair ((Π0, {(x1, Π
′′
1 ), . . . , (xm, Π′′

m)}), (Π1, . . . , Πq)) is a derivation of
Γ ` ((xj0 , {(x1, c

′
1), . . . , (xm, c′m)}), (c1, . . . , cq)) : αand we have

|((Π0, {(x1, Π
′′
1 ), . . . , (xm, Π′′

m)}, (Π1, . . . , Πq))| =

n∑

i=1

|Π′′
1 | +

q
∑

k=1

|Πk| + |Π0|

= |Π′′| +

q
∑

k=1

|Πk| + 1

= |(Π′′, (Π1, . . . , Πq))| + 1

= |Π′| + 1 .

�Lemma 40 For any state s = ((u, {(x, c)} ∪ e), (c1, . . . , cq)), for any derivation Π′ of
Γ ` s : α, there exists a derivation Π of Γ ` ((λx.u, e), (c, c1, . . . , cq)) : α s.t. |Π| =
|Π′| + 1.Proof. Set e = {(x1, c

′
1), . . . , (xm, c′m)} and

Π′ = ((Π′
0, {(x, Π′′), (x1, Π

′′
1 ), . . . , (xmΠ′′

m)}), (Π′
1, . . . , Π

′
q)) .We know that Π′

0 is a derivation of Γ, x1 : a1, . . . , xm : am, x : a `R u : b1 . . . bqα,hence there exists a derivation Π0 of x1 : a1, . . . , xm : am `R λx.u : ab1 . . . bqα suchthat |Π0| = |Π′
0| + 1. Set Π = ((Π0, {(x1, Π

′
1), . . . , (xm, Π′

m)}), (Π′′, Π′
1, . . . , Π

′
q)): it is aderivation of Γ ` ((λx.u, e), (c, c1, . . . , cq)) : α and we have

|Π| = |Π0| +
m∑

j=1

|Π′
j | + |Π′′| +

q
∑

k=1

|Π′
k|

= |Π′
0| + 1 +

m∑

j=1

|Π′
j | + |Π′′| +

q
∑

k=1

|Π′
k|

= |Π′| + 1 .

�5.2 Relating size of derivations and execution timeThe aim of this subsection is to prove Theorem 44, that gives the exact number of stepsleading to the principal head normal form by means of derivations in System R.Lemma 41 Let ((v)u, e) be a closure and let (Γ, α) ∈ Φ × D. For any derivation Π of
Γ ` ((v)u, e) : α, there exist b ∈ Mf (D), Γ′, Γ′′ ∈ Φ, a derivation Π′ of Γ′ ` (v, e) : (b, α)and a derivation Π′′ of Γ′′ ` (u, e) : b such that Γ = Γ′ + Γ′′ and |Π| = |Π′| + |Π′′| + 1.Proof. Set e = {(x1, c1), . . . , (xm, cm)} and Π = (Π0, {(x1, Π1), . . . , (xm, Πm)}) where(i) Π0 is a derivation of Γ0, x1 : a1, . . . , xm : am `R (v)u : α, INRIA



Execution Time of λ-Terms 25(ii) for 1 ≤ j ≤ m, Πj is a derivation of Γj ` cj : aj ,(iii) Γ =
∑m

j=0 Γj .By (i), there exist p ∈ N, β1, . . . , βp ∈ D, a derivation Π0
0 of Γ0

0, x1 : a′
1, . . . , xm : a′

m `R

v : ([β1, . . . , βp], α) and, for 1 ≤ k ≤ p, a derivation Πk
0 of Γk

0 , x1 : a′′
1

k
, . . . , xm : a′′

m
k `R

u : βk such that� Γ0 =
∑p

k=0 Γk
0 ,� for 1 ≤ j ≤ m, aj = a′

j +
∑p

k=1 a′′
j

k� and |Π0| =
∑p

k=0 |Π
k
0 | + 1.For any j ∈ {1, . . . , m}, we set a′′

j =
∑p

k=1 a′′
j

k. By (ii), for any j ∈ {1, . . . , m}, thereexist Γ′
j, Γ′′

j , a derivation Π′
j of Γ′

j ` cj : a′
j and a derivation Π′′

j of Γ′′
j ` cj : a′′

j such that� Γj = Γ′
j + Γ′′

j� and |Πj | = |Π′
j | + |Π′′

j |.Set� b = [β1, . . . , βp],� Γ′ = Γ0
0 +

∑m
j=1 Γ′

j ,� Γ′′ =
∑p

k=1 Γk
0 +

∑m
j=1 Γ′′

j ,� Π′ = (Π0
0, {(x1, Π

′
1), . . . , (xm, Π′

m)})� and Π′′ = ((Π1
0, . . . , Π

p
0), {(x1, Π

′′
1 ), . . . , (xm, Π′′

m)}).We have
Γ =

m∑

j=0

Γm(by (iii))
=

p
∑

k=0

Γk
0 +

m∑

j=1

(Γ′
j + Γ′′

j )

= Γ′ + Γ′′and
|Π| =

m∑

j=0

|Πj |

=

p
∑

k=0

|Πk
0 | + 1 +

m∑

j=1

(|Π′
j | + |Π′′

j |)

= |Π′| + |Π′′| + 1 .

�RR n° 6638



26 Daniel de CarvalhoProposition 42 Let t be a head normalizable λ-term. For any (Γ, α) ∈ Φ × D, for any
Π ∈ ∆(t, (Γ, α)), we have lh((t, ∅), ε) ≤ |Π|.Proof. By Theorem 10, we can prove, by induction on lh(s), that for any s ∈ S suchthat s is head normalizable, for any (Γ, α) ∈ Φ × D, for any derivation Π of Γ ` s : α,we have lh(s) ≤ |Π|.The base case is trivial, because we never have lh(s) = 0. The inductive step isdivided into �ve cases:� In the case where s = ((x, e), π), x ∈ V and x /∈ dom(e), lh(s) = 1 ≤ |Π|.� In the case where s = ((xj0,{(x1, c

′
1), . . . , (xm, c′m)}), (c1, . . . , cq)) and 1 ≤ j0 ≤ m,we have Π = (Π0, (Π1, . . . , Πq)), where Π0 = (Π′

0, {(x1, Π
′
1), . . . , (xm, Π′

m)}) with� Π′
0 is a derivation of Γ′

0, x1 : a1, . . . , xm : am `R xj0 : b1 . . . bqα,� for any j ∈ {1, . . . , m}, Π′
j is a derivation of Γ′

j ` c′j : aj ,� Γ0 =
∑m

j=1 Γ′
j ,� for 1 ≤ k ≤ q, Πk is a derivation of Γk ` ck : bk� and Γ =

∑q
k=0 Γk.Hence a′

j0
= [b1 . . . bqα]. The pair (Π′

j0
, (Π1, . . . , Πq)) is a derivation of

Γ′
j0

+

q
∑

k=1

Γk ` (c′j0 , (c1, . . . , cq)) : α .We have
lh(s) = lh(c′j0 , (c1, . . . , cq)) + 1

≤ |(Π′
j0

, (Π1, . . . , Πq))| + 1(by induction hypothesis)
= |Π′

j0
| +

q
∑

k=1

|Πk| + 1

≤ |Π0| +

q
∑

k=1

|Πk|

= |Π| .� In the case where s = ((λx.u, {(x1, c
′
1), . . . , (xn, c′m)}), (c′, c1, . . . , cq)), we have Π =

((Π′
0, Π

′′
0), (Π′, Π1, . . . , Πq)) with� Π′
0 is a derivation of Γ′

0, x1 : a1, . . . , xm : am `R λx.u : b′b1 . . . bqα;� Π′′
0 = {(xj , Π

′
j)}1≤j≤m where, for 1 ≤ j ≤ m, Π′

j is a derivation of Γ′
j ` c′j : aj ;� Γ0 =

∑m
j=0 Γ′

j ;� Π′ is a derivation of Γ′ ` b′ : c′;� for 1 ≤ k ≤ q, Πk is a derivation of Γk ` bk : ck. INRIA



Execution Time of λ-Terms 27Hence there exists a derivation Π′′ of
Γ′

0, x1 : a1, . . . , xm : am, x : b′ `R u : b1 . . . bqαwith |Π′
0| = |Π′′|+ 1. The pair (Π′′, {(x1, Π

′
1), . . . , (xm, Π′

m), Π′}) is a derivation of
Γ0 + Γ′ ` (u, {(x1, c

′
1), . . . , (xm, c′m), (x, c)}) : b1 . . . bqα .Hence ((Π′′, {(x1, Π

′
1), . . . , (xm, Π′

m), (x, Π′)}), (Π1, . . . , Πq)) is a derivation of
Γ ` ((u, {(x1, c

′
1), . . . , (xm, c′m), (x, c)}), (c1, . . . , cq)) : α .We have

lh(s) = lh((u, {(x1, c
′
1), . . . , (xm, c′m), (x, c)}), (c1, . . . , cq)) + 1

≤ |((Π′′, {Π′
1, . . . , Π

′
m, Π′}), (Π1, . . . , Πq))| + 1(by induction hypothesis)

= |Π′′| +
m∑

j=1

|Π′
j | + |Π′| +

q
∑

k=1

|Πk| + 1

= |Π′
0| +

m∑

j=1

|Π′
j | + |Π′| +

q
∑

k=1

|Πk|

= |Π′
0| + |Π′′

0 | + |Π′| +

q
∑

k=1

|Πk|

= |((Π′
0, Π

′′
0 ), (Π′, Π1, . . . , Πq))|

= |Π| .� In the case where s = (((v)u, e), (c1, . . . , cq)), we have Π = (Π0, (Π1, . . . , Πq)) with� Π0 is a derivation of Γ0 ` ((v)u, e) : b1 . . . bqα;� for 1 ≤ k ≤ q, Πk is a derivation of Γk ` ck : bk;� Γ =
∑q

k=0 Γk.By Lemma 41, there exist b ∈ Mf (D), Γ′
0, Γ

′′
0 ∈ Φ, a derivation Π′

0 of Γ′
0 `

(u, e) : bb1 . . . bqα and a derivation Π′′
0 of Γ′′

0 ` (u, e) : b such that Γ0 = Γ′
0 + Γ′′

0and |Π0| = |Π′
0| + |Π′′

0 | + 1. The pair (Π′
0, (Π

′′
0 , Π1, . . . , Πq)) is a derivation of

Γ ` ((v, e), ((u, e), c1, . . . , cq)) : α. We have
lh(s) = lh((v, e), ((u, e), c1, . . . , cq)) + 1

≤ |(Π′
0, (Π

′′
0 , Π1, . . . , Πq))| + 1(by induction hypothesis)

= |Π′
0| + |Π′′

0 | +

q
∑

k=1

|Πk| + 1

= |Π0| +

q
∑

k=1

|Πk|

= |(Π0, (Π1, . . . , Πq))|

= |Π| .RR n° 6638



28 Daniel de Carvalho� In the case where s = ((λx.u, {(xj , c
′
j)}1≤j≤m), ε), we have Π = ((Π′

0, Π
′′
0), ε) with� Π′

0 is a derivation of Γ′
0, x1 : a1, . . . , xm : am `R λx.u : α;� Π′′

0 = {(xj , Π
′
j)}1≤j≤m where, for 1 ≤ j ≤ m, Π′

j is a derivation of Γ′
j ` c′j : aj ;� Γ =

∑m
j=0 Γ′

j.Hence there exists a derivation Π′′ of Γ′
0, x1 : a1, . . . , xm : am, x : b `R u : β suchthat α = (b, β) and |Π′

0| = |Π′′| + 1. The pair ((Π′′, Π′′
0 ), ε) is a derivation of

Γ, x : b ` ((u, {(x1, c1), . . . , (xm, cm)}), ε) : β .We have
lh(s) = lh((u, {(x1, c1), . . . , (xm, cm)}), ε) + 1

≤ |((Π′′, Π′′
0 ), ε)| + 1

= |Π′′| +
m∑

j=1

|Π′
j | + 1

= |Π′
0| +

m∑

j=1

|Π′
j |

= |(Π′
0, Π

′′
0 )|

= |Π| .

�Proposition 43 Let t be a head normalizable λ-term. There exist (Γ, α) ∈ Φ × D and
Π ∈ ∆(t, (Γ, α)) such that lh((t, ∅), ε) = |Π|.Proof. By Theorem 10, we can prove, by induction on lh(s), that for any s ∈ S suchthat s is head normalizable, there exist (Γ, α) and a derivation Π of Γ ` s : α such thatwe have lh(s) = |Π|.The base case is trivial, because we never have lh(s) = 0. The inductive step isdivided into �ve cases :� In the case where s = ((x, e), (c1, . . . , cq)), x ∈ V and x /∈ dom(e), we have lh(s) = 1and there exists a derivation Π = (Π0, (Π1, . . . , Πq)) of x : [[] . . . []

︸ ︷︷ ︸

q times α] ` (x, e) :

[] . . . []
︸ ︷︷ ︸

q times α with |Π0| = 1 and |Π1| = . . . = |Πq| = 0.� In the case where s = ((xj0 , {(x1, c
′
1), . . . , (xm, c′m)}), (c1, . . . , cq)), apply Lemma39.� In the case where the current subterm is an application, apply Lemma 36.� In the case where the current subterm is an abstraction and the stack is empty,apply Lemma 37. INRIA



Execution Time of λ-Terms 29� In the case where the current subterm is an abstraction and the stack is not empty,apply Lemma 40.
�Theorem 44 For any λ-term t, we have

lh((t, ∅), ε) = inf{|Π| / ∃(Γ, α) ∈ Φ × D s.t. Π ∈ ∆(t, (Γ, α))} .Proof. We distinguish between two cases.� The λ-term t is not head normalizable : apply Theorem 33 (i) and Theorem 9.� The λ-term t is head normalizable: apply Proposition 42 and Proposition 43.
�5.3 Principal typings and 1-typingsIn the preceding subsection, we related lh(t) and the size of the derivations of t for any

λ-term t. Now, we want to relate lβ(t) and the size of the derivations of t. We will showthat if the value of lβ(t) is �nite (i.e. t is normalizable), then it is the size of the leastderivations of t with typings that satisfy a particular property and that, otherwise, thereis no such derivation. In particular, in the �nite case, it is the size of the derivations of twith 1-typings of the normal form of t. This notion of 1-typing, de�ned in De�nition 46,is a generalization of the notion of principal typing.The work of [Coppo et al. 1980] can be adapted in order to show that all normal
λ-terms have a principal typing in System R if A is in�nite. A typing (Γ, α) for a λ-term is a principal typing if all other typings for the same λ-term can be derived from
(Γ, α) by some set of operations. Here, the operations are substitution (see De�nition27) and expansion (complicated to de�ne). The di�erence with [Coppo et al. 1980] is thefact that we have (and we need) the notion of 0-expansion ([Coppo et al. 1980] has thenotion of n-expansion only for n ≥ 1). For any (Γ, α), (Γ′, α′) ∈ Φ×D, (Γ, α) → (Γ′, α′)will denote the fact that there exists an integer n such that (Γ′, α′) is a n-expansion of
(Γ, α). We denote by →∗ the re�exive transitive closure of →.De�nition 45 Principal typing of normal λ-terms :

γ ∈ A
x : [γ] `P x : γ

Γ, x : a `P t : α

Γ `P λx.t : (a, α)

Γ1 `P u1 : α1 . . . Γn `P un : αn (∗)∑n
i=1 Γi + {(x, [[α1] . . . [αn]γ])} `P (x)u1 . . . un : γ

(∗) the atoms in Γj are disjoint from those in Γk if j 6= k and γ ∈ A does not appear inthe ΓiRR n° 6638



30 Daniel de CarvalhoIf ∆ `P t : β, then (∆, β) is said to be a principal typing of t. We could show thatwhenever (∆, β) is a principal typing of a normal λ-term t, then we have Γ `R t : α if, andonly if, there exists (Γ′, α′) such that (∆, β) →∗ (Γ′, α′) and (Γ, α) can be obtained from
(Γ′, α′) by a substitution (exactly as in [Coppo et al. 1980], except that we consider the
0-expansions too). But we do not need this result to prove the theorems of the followingsubsection; we mention it only to justify the terminology we use.The reader acquainted with the concept of experiment on proof nets in linear logiccould notice that a principal typing of a normal λ-term is the same thing as the resultof what [Tortora de Falco 2000] calls an injective obsessional 1-experiment of the proofnet obtained by the translation of this λ-term mentioned in Subsection 3.2.The notion of 1-typing is more general than the notion of principal typing. It is theresult of an obsessional 1-experiment.De�nition 46 1-typing of normal λ-terms :

γ ∈ A
x : [γ] `1 x : γ

Γ, x : a `1 t : α

Γ `1 λx.t : (a, α)

Γ1 `1 u1 : α1 . . . Γn `1 un : αn
∑n

i=1 Γi + {(x, [[α1] . . . [αn]γ])} `1 (x)u1 . . . un : γNote that if t is a normalizable λ-term and (Γ, α) is a 1-typing of its normal form,then (Γ, α) has the following property: [] has no positive occurrences in α and no negativeoccurrences in Γ.Lemma 47 Let (x, e) be a closure and let Γ ∈ Φ such that [] has only positive occurrencesin Γ. Assume that there exists a derivation of Γ ` (x, e) : b1 . . . bqα, with x /∈ dom(e),then for any k ∈ {1, . . . , q}, we have bk 6= [].Proof. Let Π be such a derivation. Set e = {(x1, c1), . . . , (xm, cm)}.We have Π = (Π0, {(x1, Π1), . . . , (xm, Πm)}), where(i) Π0 is a derivation of Γ0, x1 : a1, . . . , xm : am `R x : b1 . . . bqα,(ii) for j ∈ {1, . . . , m}, Πi is a derivation of Γj ` cj : aj(iii) and Γ =
∑m

j=0 Γj .By (i), since x /∈ dom(e), Γ0(x) = [b1 . . . bqα]. Hence, by (iii), if there existed k ∈
{1, . . . , q} such that bk = [], then there would be a negative occurrence of [] in Γ. �Proposition 48 Let t be a normalizable λ-term. If Π is a derivation of Γ `R t : α and
(Γ, α) is such that [] has only negative occurrences in α and only positive occurrences in
Γ, then we have lβ((t, ∅), ε) ≤ |Π|.Proof. By Theorem 12, we can prove, by induction on lβ(s), that for any s =
(c0, (c1, . . . , cq)) ∈ S such that (c0)c1 . . . cq is normalizable, for any (Γ, α) ∈ Φ × D,if Π is a derivation of Γ ` s : α and (Γ, α) is such that [] has only negative occurrencesin α and only positive occurrences in Γ, then we have lβ(s) ≤ |Π|.In the case where s = ((x, e), (c1, . . . , cq)) and x /∈ dom(e), we apply Lemma 47. �INRIA



Execution Time of λ-Terms 31Proposition 49 Assume that t is a normalizable λ-term and that (Γ, α) is a 1-typing ofits normal form. Then there exists a derivation Π of Γ `R t : α such that lβ((t, ∅), ε) =
|Π|.Proof. By Theorem 12, we can prove, by induction on lβ(s), that for any s ∈ S suchthat s is normalizable and for any 1-typing (Γ, α) of the normal form of s, there exists aderivation Π of Γ ` s : α such that lβ(s) = |Π|.The base case is trivial, because we never have lβ(s) = 0. The inductive step isdivided into �ve cases:� In the case where s = ((x, e), (c1, . . . , cq)) and x /∈ dom(e), (Γ, α) is a 1-typing of

(x)t1 . . . tq, where t1, . . . , tq are the respective normal forms of c1, . . . , cq, hencethere exist Γ1, . . . , Γq, α1, . . . , αq such that� Γ =
∑q

k=1 Γk + {(x, [[α1] . . . [αq]α])}� and (Γ1, α1), . . . , (Γq, αq) are 1-typings of t1, . . . , tq respectively.By induction hypothesis, there exist q derivations Π1, . . . , Πq of Γ1 `R t1 : α1, . . . ,
Γq `R tq : αq respectively. We denote by x1, . . . , xm the elements of dom(e). Wedenote by Π0 the derivation of

x : [[α1] . . . [αq]α] `R x : α .Set Π = ((Π0, {(x1, ε), . . . , (xm, ε)}), (Π1, . . . , Πq)) : it is a derivation of Γ `R s : αand we have
lβ(s) =

q
∑

k=1

lβ(ck) + 1

=

q
∑

k=1

|Πk| + 1(by induction hypothesis)
= |Π0| +

q
∑

k=1

|Πk|

= |((Π0, {(x1, ε), . . . , (xm, ε)}), (Π1, . . . , Πq))|

= |Π| .� In the case where s = ((xj0,{(x1, c
′
1), . . . , (xm, c′m)}), (c1, . . . , cq)) with 1 ≤ j0 ≤ m,by induction hypothesis, there exists a derivation Π′ of Γ ` (c′j0 , (c1, . . . , cq)) : αsuch that� t is the normal form of (c′j0)c1 . . . cq ;� (Γ, α) is a 1-typing of t ;� and lβ(c′j0 , (c1, . . . , cq)) = |Π′|.By Lemma 39, there exists a derivation Π of Γ ` s : α such that |Π| = |Π′|+ 1. Wehave

lβ(s) = lβ((c′j0 , (c1, . . . , cq)) + 1

= |Π′| + 1(by induction hypothesis)
= |Π| .RR n° 6638



32 Daniel de Carvalho� In the case where s = (((v)u, e), (c1, . . . , cq)), apply Lemma 36.� In the case where s = ((λx.u, e), ε), apply Lemma 37.� In the case where s = ((λx.u, e), π) and π 6= ε, apply Lemma 40.
�Theorem 50 For any λ-term t, we have

lβ((t, ∅), ε) = inf






|Π| /

∃(Γ, α) s.t. Π ∈ ∆(t, (Γ, α)),
[] has no positive occurences in αand no negative occurrences in Γ






.Proof. We distinguish between two cases.� The λ-term t is not normalizable : apply Theorem 33 (ii) and Theorem 12.� The λ-term t is normalizable : apply Proposition 48 and Proposition 49.

�5.4 Relating semantics and execution timeIn this subsection, we prove the �rst truly semantic measure of execution time of thispaper by bounding (by purely semantic means, i.e. without considering derivations) thenumber of steps of the computation of the principal head normal form (Theorem 55).We de�ne the size |δ| of any type δ and of any �nite multiset δ of types, using anauxiliary function s.De�nition 51 For any δ ∈ D ∪Mf (D), we de�ne, by induction on δ, |δ| and s(δ):� if δ ∈ A, then |δ| = 1 and s(δ) = 0;� if δ = [α1, . . . , αn], then |δ| =
∑n

i=1 |αi| and s(δ) =
∑n

i=1 s(αi);� if δ = (a, α), then |δ| = s(a) + |α| + 1 and s(δ) = |a| + s(α) + 1.Notice that for any α ∈ D, the size |α| of α is the sum of the number of positiveoccurrences of atoms in α and of the number of commas separating a multiset of typesand a type.Example 52 Let γ ∈ A. Set α = ([γ], γ) and a = [α, . . . , α
︸ ︷︷ ︸

n times ]. We have |(a, α)| = 2n + 3.Lemma 53 For any λ-term u, if there exists a derivation Π of x1 : a1, . . . , xm : am `R

u : α, then |a1 . . . amα| = s(a1 . . . amα).Proof. By induction on Π. �INRIA



Execution Time of λ-Terms 33Lemma 54 Let v be a normal λ-term and let Π be a derivation of x1 : a1, . . . , xm :
am `R v : α. Then we have |Π| ≤ |a1 . . . amα|.Proof. By induction on v. �Theorem 55 Let v and u be two closed normal λ-terms. Assume (a, α) ∈ JvK andSupp(a) ⊆ JuK.(i) We have

lh(((v)u, ∅), ε) ≤ 2|a| + |α| + 2 .(ii) If, moreover, [] has no positive occurrences in α, then we have
lβ(((v)u, ∅), ε) ≤ 2|a| + |α| + 2 .Proof. Set a = [α1, . . . , αn]. There exist a derivation Π0 of `R v : (a, α) and nderivations Π1, . . . , Πn of `R u : α1, . . . , `R u : αn respectively. Hence there exists aderivation Π of `R (v)u : α such that |Π| =

∑n
i=0 |Πi| + 1.(i) We have

lh(((v)u, ∅), ε) ≤
n∑

i=0

|Πi| + 1(by Proposition 42)
≤ |(a, α)| +

n∑

i=1

|αi| + 1(by Lemma 54)
=

n∑

i=1

s(αi) + |α| + 1 + |a| + 1

=

n∑

i=1

|αi| + |α| + 1 + |a| + 1(by Lemma 53)
= 2|a| + |α| + 2 .(ii) The only di�erence with the proof of (i) is that we apply Proposition 48 instead ofProposition 42.

�5.5 The exact number of stepsThis subsection is devoted to giving the exact number of steps by purely semantic means.For arbitrary points (a, α) ∈ JvK such that Supp(a) ⊆ JuK, it is clearly impossible to obtainan equality in Theorem 55, because there exist such points with di�erent sizes.The only equalities we have by now are Theorem 44 and Theorem 50, which use thesize of the derivations. A �rst idea is then to look for points (a, α) ∈ JvK such thatRR n° 6638



34 Daniel de CarvalhoSupp(a) ⊆ JuK with |(a, α)| equal to the sizes of the derivations used in these theorems.But there are cases in which such points do not exist.A more subtle way out is nevertheless possible, and here is where the notions ofequivalence between derivations and of substitution de�ned in Subsection 3.3 come intothe picture. More precisely, using the notion of substitution, Proposition 58 (the onlyplace where we use the non-�niteness of the set A of atoms through Fact 56 and Lemma57) shows how to �nd, for any β ∈ JtK, an element α ∈ JtK such that |α| = min{|Π| / Π ∈
∆(t, β)}.We remind that A = D \ (Mf (D)×D). The equivalence relation ∼ has been de�nedin De�nition 26 and the notion of substitution has been de�ned in De�nition 27. Werecall that we denote by S the set of substitutions.Fact 56 Let v be a normal λ-term and let Π be a derivation of x1 : b1, . . . , xm : bm `R

v : β. There exist a1, . . . , am, α and a derivation Π′ of x1 : a1, . . . , xm : am `R v : α suchthat Π′ ∼ Π and |Π′|+ m = |a1 . . . amα|. If, moreover, A is in�nite, then we can choose
Π′ in such a way that there exists a substitution σ such that σ(a1) = b1, . . . , σ(am) = bmand σ(α) = β.Proof. By induction on v. �In the case whereA is in�nite, the derivationΠ′ of the lemma is what [Coppo et al. 1980]calls a ground deduction for v.Lemma 57 Assume A is in�nite. Let t be a closed normal λ-term, let β ∈ D and let
Π ∈ ∆(t, β). Then we have

|Π| = min{|α| / α ∈ D s.t. ∃Π′ ∈ ∆(t, α), σ ∈ S s.t. (Π′ ∼ Π and σ(α) = β)} .Proof. Apply Lemma 54 and Fact 56. �Proposition 58 Assume A is in�nite. Let t be a closed normal λ-term and let β ∈ JtK.We have min{|Π| / Π ∈ ∆(t, β)} = min{|α| / α ∈ JtK s.t. ∃σ ∈ S s.t. σ(α) = β} .Proof. Set
m = min{|Π| / Π ∈ ∆(t, β)}and

n = min{|α| / α ∈ JtK s.t. ∃σ ∈ S s.t. σ(α) = β} .First, we prove that m ≤ n. Let α ∈ JtK such that ∃σ ∈ S s.t. σ(α) = β. By Theorem 20,
∆(t, α) 6= ∅: let Π′ ∈ ∆(t, α). By Proposition 28, there exists Π ∈ ∆(t, β) such that
Π ∼ Π′. By Lemma 54, we have |Π′| ≤ |α|. Hence we obtain m ≤ |Π| = |Π′| ≤ |α| .Now, we prove the inequality n ≤ m. Let Π ∈ ∆(t, β).

n = min{|α| / α ∈ D s.t. ∃Π′ ∈ ∆(t, α), σ ∈ S s.t. σ(α) = β}(by Theorem 20)
≤ min{|α| / α ∈ D s.t. ∃Π′ ∈ ∆(t, α), σ ∈ S s.t. (Π′ ∼ Π and σ(α) = β)}

= |Π|(by Lemma 57).
�INRIA



Execution Time of λ-Terms 35The point of Theorem 59 is that the number of steps of the computation of the(principal head) normal form of (v)u, where v and u are two closed normal λ-terms, canbe determined from JvK and JuK.Theorem 59 Assume A is in�nite. Let v and u be two closed normal λ-terms.(i) We have
lh(((v)u, ∅), ε) = inf






|(a, α)| + |a′| + 1 /

(a, α) ∈ JvK, a′ ∈ Mf (D) s.t.Supp(a′) ⊆ JuKand ∃σ ∈ S s.t. σ(a) = σ(a′)






.(ii) We have

lβ(((v)u, ∅), ε) = inf







|(a, α)| + |a′| + 1 /

(a, α) ∈ JvK, a′ ∈ Mf (D) s.t.Supp(a′) ⊆ JuK and
∃σ ∈ S s.t. σ(a) = σ(a′) and
[] has no positive occurences in σ(α)







.Proof.(i) We distinguish between two cases.� If ∆((v)u) = ∅, then Theorem 44 shows that lh(((v)u, ∅), ε) = ∞ and Theorem20 and Proposition 28 show that





|(a, α)| + |a′| + 1 /

(a, α) ∈ JvK, a′ ∈ Mf (D) s.t.Supp(a′) ⊆ JuKand ∃σ ∈ S s.t. σ(a) = σ(a′)






= ∅ .� Else, we have

lh(((v)u, ∅), ε)

= min







n∑

i=0

|Πi| + 1 /
∃β, β1, . . . , βn ∈ D s.t.

Π0 ∈ ∆(v, ([β1, . . . , βn], β)),
Π1 ∈ ∆(u, β1), . . . , Πn ∈ ∆(u, βn)





(by Theorem 44)
= min







|([α1, . . . , αn], α)|
+

∑n
i=1 |α

′
i|

+1
/

α, α1, . . . , αn, α′
1, . . . , α

′
n ∈ D s.t.

([α1, . . . , αn], α) ∈ JvK, α′
1, . . . , α

′
n ∈ JuKand there exist σ0, σ1, . . . , σn ∈ S s.t.

σ0([α1, . . . , αn]) = [σ1(α
′
1), . . . , σn(α′

n)]





(by applying Proposition 58 n + 1 times)
= min







|([α1, . . . , αn], α)|
+

∑n
i=1 |α

′
i|

+1
/

α, α1, . . . , αn, α′
1, . . . , α

′
n ∈ D s.t.

([α1, . . . , αn], α) ∈ JvK, α′
1, . . . , α

′
n ∈ JuKand there exists σ ∈ S s.t.

σ([α1, . . . , αn]) = σ([α′
1, . . . , α

′
n])





(the atoms in α′
1, . . . , α

′
n can be assumed distinctand distinct of those in α1, . . . , αn).(ii) We distinguish between two cases.RR n° 6638



36 Daniel de Carvalho� If 




Π /

∃β ∈ D s.t.
Π ∈ ∆((v)u, β) and[] has no positive occurrences in β






= ∅, then Theorem 50 showsthat lβ(((v)u, ∅), ε) = ∞ and Theorem 20 and Proposition 28 show that







|(a, α)| + |a′| + 1 /

(a, α) ∈ JvK, a′ ∈ Mf(D) s.t.Supp(a′) ⊆ JuK and
∃σ ∈ S s.t. σ(a) = σ(a′) and
[] has no positive occurences in σ(α)







= ∅ .� Else, we have
lβ(((v)u, ∅), ε)

= min







n∑

i=0

|Πi| + 1/

∃β, β1, . . . , βn ∈ D s.t.
Π0 ∈ ∆(v, ([β1, . . . , βn], β)),
Π1 ∈ ∆(u, β1), . . . , Πn ∈ ∆(u, βn)and [] has no positive occurrences in β





(by Theorem 50).
= min







|([α1, . . . , αn], α)|
+

∑n
i=1 |α

′
i|

+1
/

α, α1, . . . , αn, α′
1, . . . , α

′
n ∈ D s.t.

([α1, . . . , αn], α) ∈ JvK, α′
1, . . . , α

′
n ∈ JuKand ∃σ0, σ1, . . . , σn ∈ S s.t.

σ0([α1, . . . , αn]) = [σ1(α
′
1), . . . , σn(α′

n)]and [] has no positive occurrences in σ0(α)





(by applying Proposition 58 n + 1 times)
= min







|([α1, . . . , αn], α)|
+

∑n
i=1 |α

′
i|

+1
/

α, α1, . . . , αn, α′
1, . . . , α

′
n ∈ D s.t.

([α1, . . . , αn], α) ∈ JvK, α′
1, . . . , α

′
n ∈ JuKand ∃σ ∈ S s.t.

σ([α1, . . . , αn]) = σ([α′
1, . . . , α

′
n])and [] has no positive occurrences in σ(α)





(the atoms in α′
1, . . . , α

′
n can be assumed distinctand distinct of those in α1, . . . , αn).

�Example 60 Set v = λx.(x)x and u = λy.y. Let γ0, γ1 ∈ A. Set� α = γ0;� a = [γ0, ([γ0], γ0)];� a′ = [([γ1], γ1), ([γ2], γ2)].Let σ be a substitution such that σ(γ0) = ([γ0], γ0), σ(γ1) = γ0 and σ(γ2) = α. We have� (a, α) ∈ JvK;� Supp(a′) ⊆ JuK ;� σ(a) = σ(a′); INRIA



Execution Time of λ-Terms 37� |(a, α)| = 4 and |a′| = 4.By Example 7, we know that we have lh(((v)u, ∅), ε) = 9. And we have |(a, α)|+ |a′|+1 =
9. Note that, as the following example illutrates, the non-idempotency is crucial.Example 61 For any integer n ≥ 1, set n = λf.λx. (f) . . . (f)

︸ ︷︷ ︸

n times x and I = λy.y. Let
γ ∈ A. Set α = ([γ], γ) and a = [α, . . . , α

︸ ︷︷ ︸

n times ]. We have (a, α) ∈ JnK and α ∈ JIK. Wehave lh(((n)I, ∅), ε) = 4(n + 1) = 2n + 3 + 2n + 1 = |(a, α)| + |a| + 1 (see Example 52).But in System D (with idempotent types), any Church integer n, for n ≥ 1, has type
((γ → γ) → (γ → γ)).6 ConclusionWe believe that this work can be useful for implicit characterizations of complexity classes(in particular, the PTIME class, as in [Baillot and Terui (2004)]) by providing a semanticsetting in which quantitative aspects can be studied, while taking some distance withthe syntactic details.Note that if this paper, a redacted version of [de Carvalho 2006], concerns the λ-calculus and Krivine's machine, we emphasized connections with proof nets of linearlogic. Because of these connections, we conjectured in [de Carvalho 2007] that we couldobtain some similar results relating on the one hand the length of cut-elimination ofnets with a strategy that mimics this one of Krivine's machine and that extends astrategy de�ned in [Mascari and Pedicini 1994] for a fragment of linear logic, and onthe other hand the size of the results of experiments. This work has been done in[de Carvalho, Pagani and Tortora de Falco 2008] by adapting our work for the λ-calculus.Acknowledgements. This work is partially the result of discussions with ThomasEhrhard: I warmly thank him. I also thank Patrick Baillot, Simona Ronchi della Roccaand Kazushige Terui too for stimulating discussions.References[Barendregt 1984] Barendregt, H. P. (1984) The Lambda Calculus. Its Syntax and Se-mantics, revised edition. North-Holland.[Baillot and Terui (2004)] Baillot, P. and Terui, K. (2004) Light types for polynomialtime computation in lambda-calculus. In Proceedings of LICS 2004, IEEE ComputerSociety Press, 266�275.[Benton et al. 1994] Benton, P.N., Bierman, G.M., de Paiva, V.C.V. and Hy-land, J.M.E. (1992) Term assignment for intuitionistic linear logic. Technical Report262, Computer Laboratory, University of Cambridge.[Bierman 1993] Bierman, G.M. (1993) On Intuitionistic Linear Logic. PhD thesis, Uni-versity of Cambridge.RR n° 6638
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