
HAL Id: inria-00320204
https://inria.hal.science/inria-00320204v2

Submitted on 11 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Entropy: a Consolidation Manager for Clusters
Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, Julia

Lawall

To cite this version:
Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, Julia Lawall. Entropy: a Consol-
idation Manager for Clusters. [Research Report] RR-6639, INRIA. 2008. �inria-00320204v2�

https://inria.hal.science/inria-00320204v2
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
66

39
--

F
R

+
E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Entropy: a Consolidation Manager for Clusters

Fabien Hermenier — Xavier Lorca — Jean-Marc Menaud — Gilles Muller — Julia Lawall

N° 6639

Septembre 2008

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex (France)

Téléphone : +33 2 99 84 71 00 — Télécopie : +33 2 99 84 71 71

Entropy: a Consolidation Manager for ClustersFabien Hermenier∗ , Xavier Lor
a∗ , Jean-Mar
 Menaud∗ , GillesMuller† , Julia Lawall‡Thème COM � Systèmes
ommuni
antsProjet OBASCORapport de re
her
he n° 6639 � Septembre 2008 � 23 pagesAbstra
t: Clusters provide powerful
omputing environments, but in pra
ti
emu
h of this power goes to waste, due to the stati
 allo
ation of tasks to nodes,regardless of their
hanging
omputational requirements. Consolidation is anapproa
h that migrates tasks within a
luster as their
omputational require-ments
hange, both to redu
e the number of nodes that need to be a
tive and toeliminate temporary overload situations. Previous
onsolidation strategies haverelied on task pla
ement heuristi
s that use only lo
al optimization and typi
allydo not take migration overhead into a

ount. However, heuristi
s based on onlylo
al optimization may miss the globally optimal solution, resulting in unne
es-sary resour
e usage, and the overhead for migration may nullify the bene�ts of
onsolidation.In this paper, we propose the Entropy resour
e manager for homogeneous
lusters, whi
h performs
onsolidation based on
onstraint programming andtakes migration overhead into a

ount. The use of
onstraint programming al-lows Entropy to �nd mappings of tasks to nodes that are better than those foundby heuristi
s based on lo
al optimizations, and that are frequently globally opti-mal in the number of nodes. Be
ause migration overhead is taken into a

ount,Entropy
hooses migrations that
an be implemented e�
iently, in
urring a lowperforman
e overhead.Key-words: Virtualization, Consolidation, Cluster, Re
on�guration, Migra-tion
∗ Département Informatique, É
ole des Mines de Nantes � INRIA, LINA, CNRS � �rst-name.lastname�emn.fr
† É
ole des Mines de Nantes � INRIA � Gilles.Muller�emn.fr
‡ DIKU, University of Copenhagen � julia�diku.dk

Entropy: un Gestionnaire de Consolidation pourGrappesRésumé : Les grappes de serveurs fournissent un environnement de
al
ulpuissant. Cependant, une partie de
ette puissan
e est perdue par une allo
a-tion statique des tâ
hes sur les n÷uds de
al
uls qui ne tient pas
ompte dela variations de leurs besoins. En regroupant
es tâ
hes dynamiquement, la
onsolidation permet de réduire le nombre de n÷uds né
essaires à l'exé
utiondes
al
uls, tout en éliminant les situations de saturations temporaires. Lesstratégies de
onsolidation a
tuelle se fo
alisent sur une optimisation lo
ale dupla
ement des tâ
hes et ne tiennent pas
ompte de l'impa
t des migrations. Cesheuristiques manquent la notion d'optimalité globale qui implique une
onsom-mation de resour
es qui n'est pas né
essaire. De plus, l'absen
e de
onsidérationdes migrations réduit de manière notable les performan
es de la grappe, limitantainsi l'interêt de la
onsolidation.Cet arti
le présente Entropy, un gestionnaire de
onsolidation pour grappeshomogènes utilisant une appro
he basée sur la programmation par
ontraintes ettenant
ompte de l'impa
t des migrations. Notre appro
he permet la réalisationd'un agen
ement des tâ
hes globalement meilleur par rapport aux appro
hes
lassiques à base d'heuristiques. De plus, en tenant
ompte des migrationsdes tâ
hes sur la grappe, l'impa
t de la
onsolidation sur les performan
es estdiminuée.Mots-
lés : Virtualisation, Consolidation, Grappe , Re
on�guration, Migra-tion

Entropy: a Consolidation Manager for Clusters 31 Introdu
tionGrid and Cluster
omputing are in
reasingly used to meet the growing
ompu-tational requirements of s
ienti�
 appli
ations. In this setting, a user organizesa job as a
olle
tion of tasks that ea
h should run on a separate pro
essing unit(i.e, an entire node, a CPU, or a
ore) [6℄. To deploy the job, the user makes arequest to a resour
e broker, spe
ifying the number of pro
essing units requiredand the asso
iated memory requirements. If the requested CPU and memoryresour
es are available, the job is a

epted. This stati
 strategy ensures that alljobs a

epted into the
luster will have su�
ient pro
essing units and memoryto
omplete their work. Nevertheless, it
an lead to a waste of resour
es, asmany s
ienti�

omputations pro
eed in phases, not all of whi
h use all of theallo
ated pro
essing units at all times.Consolidation is a well-known te
hnique to dynami
ally redu
e the numberof nodes used within a running
luster by liberating nodes that are not neededby the
urrent phase of the
omputation. Liberating nodes
an allow more jobsto be a

epted into the
luster, or
an allow powering down unused nodes tosave energy. To make
onsolidation transparent, regardless of the programminglanguage, middleware, or operating system used by the appli
ation, it is
onve-nient to host ea
h task in a virtual ma
hine (VM), managed by a VM Monitor(VMM) su
h as Xen [1℄, for whi
h e�
ient migration te
hniques are available [5℄.Consolidation then amounts to identifying ina
tive VMs that
an be migratedto other nodes that have su�
ient unused memory. A VM that is ina
tive atone point in time may, however, later be
ome a
tive, possibly
ausing the nodethat is hosting it to be
ome overloaded. A
onsolidation strategy must thus alsomove VMs from overloaded nodes to underloaded ones.Several approa
hes to
onsolidation have been proposed [3, 7, 11℄. These ap-proa
hes, however, have fo
used on how to
al
ulate a new
on�guration, andhave negle
ted the ensuing migration time. However,
onsolidation is only ben-e�
ial when the extra pro
essing unit time in
urred for migration is signi�
antlyless than the amount of pro
essing unit time that
onsolidation makes available.While migrating a single Xen VM
an be very e�
ient, in
urring an overheadof only between 6 and 26 se
onds in our measurements, it may not be possibleto migrate a VM to its
hosen destination immediately; instead other VMs may�rst have to be moved out of the way to free su�
ient memory. Delaying themigration of an ina
tive VM only
auses unne
essary node usage. On the otherhand, delaying the migration of an a
tive VM that is running on a pro
essingunit overloaded with n other VMs degrades the performan
e of those VMs fora period of time by a fa
tor of n as
ompared to a non-
onsolidated solution,in whi
h ea
h VM always has its own pro
essing unit. In
reasing the numberof VMs that need to migrate as
ompared to the amount of available resour
esonly exa
erbates these problems. Thus, it is essential that
onsolidation be ase�
ient and rea
tive as possible.In this paper, we propose a new approa
h to
onsolidation in a homogeneous
luster environment that takes into a

ount both the problem of allo
ating theVMs to the available nodes and the problem of how to migrate the VMs to thesenodes. Our
onsolidation manager, Entropy, works in two phases and is based on
onstraint solving [2, 14℄. The �rst phase, based on
onstraints des
ribing the setof VMs and their CPU and memory requirements,
omputes a pla
ement usingthe minimum number of nodes and a tentative re
on�guration plan to a
hieveRR n° 6639

4 Fabien Hermenier , Xavier Lor
a , Jean-Mar
 Menaud , Gilles Muller , Julia Lawallthat pla
ement. The se
ond phase, based on a re�ned set of
onstraints that takefeasible migrations into a

ount, tries to improve the plan, to redu
e the numberof migrations required. In our experiments, using the NASGrid ben
hmarks [6℄on a
luster of 39 AMD Opteron 2.0GHz CPU unipro
essors, we �nd that asolution without
onsolidation uses 24.31 nodes per hour,
onsolidation basedon the previously-used First Fit De
reasing (FFD) heuristi
 [3, 17, 18℄ uses 15.34nodes per hour, and
onsolidation based on Entropy uses only 11.72 nodes perhour, a savings of more than 50% as
ompared to the stati
 solution.The remainder of this paper is organized as follows. Se
tion 2 gives anoverview of Entropy. Then, Se
tion 3 des
ribes how Entropy uses
onstraintprogramming to determine the minimum number of nodes required by a
olle
-tion of VMs, and Se
tion 4 presetns how Entropy uses
onstraint programmingto minimize the re
on�guration plan. Finally, Se
tion 5 evaluates Entropy usingexperimental results on a
luster of the Grid'5000 experimental testbed, Se
-tion 6 des
ribes related work, and Se
tion 7 presents our
on
lusions and futurework.2 System Ar
hite
tureA
luster typi
ally
onsists of a single node dedi
ated to
luster resour
e man-agement, a
olle
tion of nodes that
an host user tasks, and other spe
ializednodes, su
h as �le servers. Entropy is built over Xen 3.0.3 [1℄ and is deployed onthe �rst two. It
onsists of a re
on�guration engine that runs on the node thatprovides
luster resour
e management and a set of sensors that run in Xen'sDomain-0 on ea
h node that
an host user tasks, i.e., VMs.The goal of Entropy is to e�
iently maintain the
luster in a
on�guration,i.e. a mapping of VMs to nodes, that is (i) viable, i.e. that gives every VMa

ess to su�
ient memory and every a
tive VM a

ess to own pro
essing unit,and (ii) optimal, i.e. that uses the minimum number of nodes. For this, the En-tropy re
on�guration engine iteratively 1) waits to be informed by the Entropysensors that a VM has
hanged state, from a
tive to ina
tive or vi
e versa, 2)tries to
ompute a re
on�guration plan starting from the
urrent
on�gurationthat requires the fewest possible migrations and leaves the
luster in a viable,optimal
on�guration, and 3) if su

essful, initiates migration of the VMs, ifthe new
on�guration uses fewer nodes than the
urrent one, or if the
urrent
on�guration is not viable. The re
on�guration engine then waits 5 se
ondsbefore repeating the iteration, to a

umulate new information about resour
eusage. In this pro
ess, the Entropy sensors periodi
ally send requests to theHTTP interfa
e of the Xen hypervisor on the
urrent node to obtain the CPUusage of the lo
al VMs, and infer state
hanges from this information. An En-tropy sensor also re
eives a message from the re
on�guration engine when a VMshould be migrated, and sends requests to the Xen hypervisor HTTP interfa
eto inform it whi
h VM should be migrated and to whi
h node.Previous approa
hes to a
hieving a viable,
on�guration have used heuristi
sin whi
h a lo
ally optimal pla
ement is
hosen for ea
h VM a

ording to somestrategy [3, 7, 11, 17℄. However, lo
al optimization does not always lead to aglobally optimal solution, and may fail to produ
e any solution at all. Entropyinstead uses Constraint Programming (CP), whi
h is able to determine a glob-ally optimal solution, if one exists, by using a more exhaustive sear
h, basedINRIA

Entropy: a Consolidation Manager for Clusters 5// Instantiating a new problem 1Problem pb = new Problem(); 23// De
laration of the variables and their asso
iated domains 4IntDomainVar x = pb.makeEnumIntVar("x", 0, 10); 5IntDomainVar y = pb.makeEnumIntVar("y", 0, 10); 6IntDomainVar z = pb.makeEnumIntVar("z", 0, 10); 78// De
laration of the
onstraint 9IntExp exp = pb.plus(x,y); 10Constraint
 = pb.eq(exp, z); 1112// The
onstraint is plugged into the problem 13pb.post(
); 1415// We start solving. 16pb.solve(); 17Figure 1: Java
ode using the Cho
o library for �nding values of variables x, y,and z in the range 0 to 10, su
h that x + y = zon a depth �rst sear
h. The idea of CP is to de�ne a problem by stating
on-straints (logi
al relations) that must be satis�ed by the solution. A ConstraintSatisfa
tion Problem (CSP) is de�ned as a set of variables, a set of domains thatrepresent the set of possible values that ea
h variable
an take on and a set of
onstraints that represent required relations between the values of the variables.A solution for a CSP is a variable assignment (a value for ea
h variable) thatsimultaneously satis�es the
onstraints. To solve CSPs, Entropy uses the Cho
olibrary [10℄, whi
h
an solve a CSP where the goal is to minimize or maximizethe value of a single variable. Figure 1 shows an example of Cho
o
ode, whi
hsolves the problem of �nding values of variables x, y, and z in the range 0 to10, su
h that x + y = z.Be
ause Cho
o
an only solve optimization problems of a single variable,the re
on�guration algorithm pro
eeds in two phases. The �rst phase �nds theminimum number n of nodes that are ne
essary to host all VMs. We refer to thisproblem as the Virtual Ma
hine Pa
king Problem (VMPP). The se
ond phaseminimizes the re
on�guration time, given the
hosen number of nodes n. Werefer to this problem as the Virtual Ma
hine Repla
ement Problem (VMRP).Solving these problems may be time-
onsuming. While the re
on�guration en-gine runs on the
luster resour
e management node, and thus does not
ompetewith VMs for CPU and memory, it is important to produ
e a new
on�gurationqui
kly to maximize the bene�t of
onsolidation. Thus, we limit the total
om-putation time for both problems to 1 minute, of whi
h the �rst phase has atmost 15 se
onds, and the se
ond phase has the remaining time. These durationsare su�
ient to give a nontrivial improvement in the solution, as
ompared tothe FFD heuristi
, as shown in Se
tion 5. Furthermore, the
onstraint solver isimplemented su
h that if the
omputation times out without the solver havingfound a solution that has been proved to be optimal, then the best solutionfound so far is returned.
RR n° 6639

6 Fabien Hermenier , Xavier Lor
a , Jean-Mar
 Menaud , Gilles Muller , Julia Lawall3 The Virtual Ma
hine Pa
king ProblemThe obje
tive of the VMPP is to determine the minimum number of nodesthat
an host the VMs, given their
urrent pro
essing unit and memory re-quirements. We �rst present several examples that illustrate the
onstraints onthe assignment of VMs to nodes, then
onsider how to express the VMPP asa
onstraint satisfa
tion problem, and �nally des
ribe some optimizations thatwe use in implementing a solver for this problem using Cho
o.3.1 Constraints on the assignment of VMs to nodesEa
h node in a
luster provides a
ertain amount of memory and number ofpro
essing units, and ea
h VM requires a
ertain amount of memory, and, ifa
tive, a pro
essing unit. These
onstraints must be satis�ed by a viable
on-�guration. For example, if every node is a unipro
essor, then the
on�gurationin Figure 2(a) is not viable be
ause it in
ludes two a
tive VMs on node N1. Onthe other hand, the
on�guration in Figure 2(b) is viable be
ause ea
h VM hasa

ess to su�
ient memory and ea
h node hosts at most one a
tive VM.
(a) Non-viable
on�guration (b) Viable
on-�gurationFigure 2: Non-viable and viable
on�gurations. VM2 and VM3 are a
tive
(a) A minimalviable
on�gura-tion (b) Anotherminimal viable
on�gurationFigure 3: Viable
on�gurations. VM2 and VM3 are a
tiveTo a
hieve
onsolidation, we must �nd a viable
on�guration that uses theminimum number of nodes. For example, the
on�guration shown in Figure 2(b)is viable, but it is not minimal, be
ause, as shown in Figure 3(a), VM2
ould behosted on node N2, using one fewer node. The problem of �nding a minimal,viable
on�guration is redu
tible to the NP-Hard 2-Dimensional Bin Pa
kingProblem [15℄, where the dimensions
orrespond to the amount of memory andnumber of pro
essing units.The VMPP may have multiple solutions, as illustrated by Figures 3(a)and 3(b), whi
h both use two nodes. These solutions, however, may not allentail the same number of migrations. For example, if we perform
onsolidationINRIA

Entropy: a Consolidation Manager for Clusters 7with Figure 2(b) as the initial
on�guration, we observe that only 1 migration isne
essary to rea
h the
on�guration shown in Figure 3(a) (moving VM2 onto N2),but 2 are ne
essary to rea
h the
on�guration shown in Figure 3(b) (moving VM3onto N2 and VM1 onto N3).3.2 Expressing the VMPP as a
onstraint satisfa
tion prob-lemTo express the VMPP as a CSP, we
onsider a set of nodes N and a set of VMs
V . The goal is to �nd a viable
on�guration that minimizes the number of nodesused. The notation Hi, de�ned below, is used to des
ribe a
on�guration.De�nition 3.1 For ea
h node ni ∈ N , the bit ve
tor Hi = 〈hi1, . . . , hij , . . . , hik〉denotes the set of VMs assigned to node ni (i.e., hij = 1 i� the node ni is hostingthe VM vj).We express the
onstraints that a viable
on�guration must respe
t ea
hVM's pro
essing unit and memory requirements as follows. Let Rp be theve
tor of pro
essing unit demand of ea
h VM, Cp be the ve
tor of pro
essingunit
apa
ity asso
iated with ea
h node, Rm be the ve
tor of memory demandof ea
h VM, and Cm be the ve
tor of memory
apa
ity asso
iated with ea
hnode. Then, the following inequalities express the pro
essing unit and memory
onstraints:

Rp · Hi ≤ Cp(i) ∀ni ∈ N
Rm · Hi ≤ Cm(i) ∀ni ∈ NGiven these
onstraints, our goal is to minimize the value of the variable X ,de�ned as follows, where the variable ui is 1 if the node i hosts at least one VM,and 0 otherwise.

X =
∑

i∈N

ui, where ui =

{

1, ∃vj ∈ V | hij = 1

0, otherwise (1)We let xvmpp denote this solution.The solver dynami
ally evaluates the remaining free pla
e (in terms of bothpro
essing unit and memory availability) on ea
h node during the sear
h fora minimum value of X . This is done by solving Multiple Knapsa
k problemsusing a dynami
 programming approa
h [16℄.3.3 OptimizationsIn prin
iple, the
onstraint solver must enumerate ea
h possible
on�guration,
he
k whether it is viable, and
ompare the number of nodes to the minimumfound so far. In pra
ti
e, this approa
h is unne
essarily expensive. Our imple-mentation redu
es the
omputation
ost using a number of optimizations.Cho
o in
rementally
he
ks the viability and minimality of a
on�guration asit is being
onstru
ted and dis
ards a partial
on�guration as soon as it is foundto be non-viable or to use more than the minimum number of nodes found sofar. This strategy redu
es the number of
on�gurations that must be
onsidered.RR n° 6639

8 Fabien Hermenier , Xavier Lor
a , Jean-Mar
 Menaud , Gilles Muller , Julia LawallIt furthermore tries to dete
t non-viable
on�gurations as early as possible, byusing a �rst fail approa
h [8℄ in whi
h VMs that are a
tive and have greatermemory requirements are treated earlier than VMs with lesser requirements.This strategy redu
es the
han
e of
omputing an almost
omplete
on�gurationand then �nding that the remaining VMs
annot be pla
ed within the
urrentminimum number of nodes.In prin
iple, the domain of the variable X is the entire set of non-negativeintegers. We
an, however, signi�
antly redu
e the sear
h spa
e and improvethe performan
e of the solver by identifying lower and upper bounds that are
lose to the optimal value and are easy to
ompute. As a lower bound, we takethe number of a
tive VMs divided by number of pro
essing units available pernode (Equation 2). If we �nd a solution using this number of VMs, then it isknown to be optimal with no further tests. As an upper bound, we take thevalue
omputed by the First Fit De
reasing (FFD) heuristi
, whi
h has beenused in other work on
onsolidation [3, 17, 18℄ (Equation 3). The FFD heuristi
assigns ea
h VM to the �rst node it �nds satisfying the VM's pro
essing unit andmemory requirements, starting with the VMs that require the biggest amountof memory. This heuristi
 tends to provide a good value, in a very short time(less than a se
ond) but the result is not guaranteed to be optimal and theheuristi
 may indeed not �nd any solution. In the latter
ase, the upper boundis the minimum of the number of nodes and the number of VMs.
X ≥ min











∑

vi∈V

Rp(i)

Cp(j)













, nj ∈ N (2)
X ≤

{

x�dmin(|N |, |V|), otherwise (3)Furthermore, we observe that some nodes or VMs may be equivalent, interms of their pro
essing unit and memory
apa
ity or demand, and try to ex-ploit this information to improve the pruning of the sear
h tree. If the resour
eso�ered by a node ni are not su�
ient to host a VM vi, then they are also notsu�
ient to host any VM vj with the same requirements. Furthermore, the VM
vi
annot be hosted by any other node nj with the same
hara
teristi
s as ni.These equivalen
es are de�ned as follows:

∀ni, nj ∈ N | ni ≡ nj ⇔ Cp(i) = Cp(j) ∧

Cm(i) = Cm(j) (4)
∀vi, vj ∈ V | vi ≡ vj ⇔ Rp(i) = Rp(j) ∧

Rm(i) = Rm(j) (5)4 The Virtual Ma
hine Repla
ement ProblemThe solution to the VMPP provides the minimum number of nodes required tohost the VMs. However, as illustrated in Se
tion 3.1, for a given
olle
tion ofINRIA

Entropy: a Consolidation Manager for Clusters 9VMs, there
an be multiple
on�gurations that minimize the number of usednodes and the number of migrations required to rea
h these
on�gurations
anvary. The obje
tive of the Virtual Ma
hine Repla
ement Problem (VMRP) isto
onstru
t a re
on�guration plan for ea
h possible
on�guration that uses thenumber of nodes determined by the VMPP, and to
hoose the one with thelowest estimated re
on�guration
ost. In the rest of this se
tion, we
onsiderhow to
onstru
t a re
on�guration plan, how to estimate its
ost, and how to
ombine these steps into a solution for the VMRP.4.1 Constru
ting a re
on�guration planThe
onstraint of viability has to be taken into a

ount both in the �nal
on-�guration and also during migration. A migration is feasible if the destinationnode has a su�
ient amount of free memory and, when the migrated VM isa
tive, if the destination node has a free pro
essing unit. However, to obtain anoptimal solution it is often ne
essary to
onsider a
on�guration in whi
h somemigrations are not immediately feasible. We identify two kinds of
onstraintson migrations: sequential
onstraints and
y
li

onstraints.A sequential
onstraint o

urs when one migration
an only begin whenanother one has
ompleted. As an example,
onsider the migrations representedby the re
on�guration graph shown in Figure 4. A re
on�guration graph is anoriented multigraph where ea
h edge denotes the migration of a VM betweentwo nodes. Ea
h edge spe
i�es the virtual ma
hine to migrate, the amount ofmemory Rm required to host it and its state A (a
tive) or I (ina
tive). Ea
hnode denotes a node of the
luster, with its
urrent amount of free memory
Cm and its
urrent free
apa
ity for hosting a
tive virtual ma
hines Cp. Inthe example in Figure 4, it is possible to
onsolidate the VMs onto only twonodes, by moving VM1 from N1 to N2 and moving VM2 from N2 to N3. Butthese migrations
annot happen in parallel, be
ause as long as VM2 is on N2, it
onsumes all of the available memory. Thus, the migration of VM1 from N1 to
N2
an only begin on
e the migration of VM2 from N2 to N3 has
ompleted.

N1

Cm=400,Cp=0 N2

Cm=0,Cp=1 N3

Cm=400,Cp=0VM1

Rm=200,A VM2

Rm=400,IFigure 4: A sequen
e of migrationA
y
li

onstraint o

urs when a set of infeasible migrations forms a
y
le.An example is shown in Figure 5(a), where, due to memory
onstraints, VM1
an only migrate from node N1 to node N2 when VM2 has migrated from node
N2, and VM2
an only migrate from node N2 to node N1 when VM1 has migratedfrom node N1. We
an break su
h a
y
le by inserting an additional migration.A pivot node outside the
y
le is
hosen to temporarily host one or more of theVMs. For example, in Figure 5(b), the
y
le between VM1 and VM1 is broken bymigrating VM1 to the node N3, whi
h is used as a pivot. After breaking all
y
lesof infeasible migrations in this way, an order
an be
hosen for the migrationsas in the previous example. These migrations in
lude moving the VMs on thepivot nodes to their original destinations.RR n° 6639

10 Fabien Hermenier , Xavier Lor
a , Jean-Mar
 Menaud , Gilles Muller , Julia Lawall
N1

Cm=0,Cp=-1
N2

Cm=0,Cp=1 VM1

Rm=256,AVM2

Rm=256,I(a) Inter-dependantmigrations
N1

Cm=0,Cp=-1 N3

Cm=512,Cp=1
N2

Cm=0,Cp=1
VM1

Rm=256,A
VM1

Rm=256,AVM2

Rm=256,I(b) A bypass migration breaks the
y
leFigure 5: Cy
le of non-feasible migrationsTaking the above issues into a

ount, the algorithm for
onstru
ting a re-
on�guration plan is as follows. Starting with a re
on�guration graph, the �rststep is to identify ea
h
y
le of infeasible migrations, identify a node in ea
hsu
h
y
le where the VMs to migrate have the smallest total memory require-ment, and sele
t a pivot node that
an a

omodate these VMs' pro
essing unitand memory requirements. The result is an extended re
on�guration graph inwhi
h for ea
h su
h
hosen VM, the migration from the
urrent node to thedestination node in the desired
on�guration is repla
ed by a migration to thepivot followed by a migration to the destination node. Subsequently, the goal isto try to do as many migrations in parallel as possible, so that ea
h migrationwill take pla
e with the minimum possible delay. Thus, the migration plan is
omposed of a sequen
e of steps, exe
uted sequentially, where the �rst step
on-sists of all of the migrations that are initially feasible, and ea
h subsequent step
onsists of all of the migrations that have been made feasible by the pre
edingsteps. As an example, Figure 6 shows a re
on�guration graph that has beenextended with a migration of VM5 �rst to node N2 and then to node N3 to breaka
y
le of infeasible migrations. From this re
on�guration graph, we obtain athree-step re
on�guration plan. The �rst step migrates VM1, VM3, VM4 and VM5(to the pivot N2). Then the se
ond step migrates VM2 and VM7. Finally, thethird step migrates VM5 to its �nal destination.
N2

Cm=512,Cp=1 N4

Cm=512,Cp=1
N5

Cm=768,Cp=0
N3

Cm=512,Cp=0 N1

Cm=640,Cp=0
I. VM4

Rm=256,II. VM3
Rm=256,IIII. VM5

Rm=256,A II. VM7
Rm=384,AII. VM2

Rm=512,A
I. VM1

Rm=256,II. VM5
Figure 6: A re
on�guration plan INRIA

Entropy: a Consolidation Manager for Clusters 114.2 Estimating the
ost of a re
on�guration planThe
ost of performing a re
on�guration in
ludes both the overhead in
urredby the migrations themselves and the degradation in performan
e that o

urswhen multiple a
tive VMs share a pro
essing unit, as o

urs when a migrationis delayed due to sequential or
y
li

onstraints. The latter is determined bythe duration of pre
eding migrations. In this se
tion, we �rst measure the
ostand duration of a single migration, and then propose a
ost model for
omparingthe
osts of possible re
on�guration plans.Migration
ost Migrating a VM from one node to another requires someCPU and memory bandwidth on both the sour
e and destination nodes. Whenthere is an a
tive VM on either the sour
e or destination node, it will haveredu
ed a

ess to these resour
es, and thus will take longer to
omplete its task.In this se
tion, we examine these
osts in the
ontext of a homogeneous
luster.Figure 7 shows the set of possible
ontexts in whi
h a migration
an o

ur,depending on the state of the a�e
ted VMs, in the
ase where ea
h node isa unipro
essor. Be
ause a migration only has an impa
t on the a
tive andmigrated VMs, we ignore the presen
e of ina
tive, non-migrated VMs in thisanalysis. An ina
tive VM
an move from an ina
tive node to a node hosting ana
tive VM (Ina
tive To A
tive, or ITA), from a node hosting an a
tive VM toan ina
tive node (Ina
tive From A
tive, or IFA), or from one node hosting ana
tive VM to another (Ina
tive From A
tive To A
tive, or IFATA). Similarly, ana
tive VM
an move to an ina
tive node (A
tive To Ina
tive, or ATI) or to ana
tive node (A
tive To A
tive, or ATA), although the latter is never interestingin a unipro
essor setting as a unipro
essor node should not host multiple a
tiveVMs at one time.
(a) ITA (b) IFA (
) IFATA

(d) ATI (e) ATAFigure 7: Di�erent
ontexts for a migration. VM2 is a
tiveIn order to evaluate the impa
t of a migration for ea
h
ontext, we measureboth the duration of the migration and the performan
e loss on a
tive VMs.Tests are performed on two identi
al nodes, ea
h with a single AMD Opteron2.4GHz CPU and 4Gb of RAM inter
onne
ted through a 1Gb link. We use threeRR n° 6639

12 Fabien Hermenier , Xavier Lor
a , Jean-Mar
 Menaud , Gilles Muller , Julia Lawall

 0

 5

 10

 15

 20

 25

 512 1024 1536 2048

M
ig

ra
tio

n
tim

e
in

 s
ec

.

Memory used by the migrated VM, in MB

IFATA
ITA
ATI
IFAFigure 8: Duration of VM migration

 0

 5

 10

 15

 20

 25

 30

 512 1024 1536 2048

M
ig

ra
tio

n
ov

er
he

ad
 in

 s
ec

.

Memory used by the migrated VM, in MB

IFATA
ITA
ATI
IFAFigure 9: Impa
t of migration on VM performan
eVMs: VM1, whi
h is ina
tive, and VM2 and VM3, whi
h are a
tive and exe
ute aBT.W task embedded in a NASGRID ED ben
hmark [6℄. The VMs are pla
edon the nodes a

ording to the IFATA, ITA, ATI, and IFA
on�gurations. Wevary the amount of memory allo
ated to the migrated VM from 512 to 2048 MB.Figure 8 shows the average duration of the migration in terms of the amountof memory allo
ated to the migrated VM. Figure 9 shows the in
rease of theduration of the ben
hmark due to the migration of a VM using a given amountof memory.We observe �rst that the duration of the migration mostly depends on theamount of memory used by the migrated VM. Se
ond, the performan
e lossvaries signi�
antly a

ording to the
ontext of the migration. For the
ontextIFA, the only overhead
omes from reading the memory pages on node N1, aswriting the pages on the ina
tive node N2 does not have any impa
t on an a
tiveVM. For the
ontext ATI, it is the a
tive VM that migrates; in this situation,the migration is a little more expensive: be
ause Xen uses an in
remental
opy-on-write me
hanism to migrate the memory pages of a VM [5℄, multiple passesare needed to re
opy memory pages that are updated by the a
tivity of theVM during the migration pro
ess. The
ontext ITA in
urs an even higheroverhead, as writing the memory pages of VM1 on node N2 uses up most of theCPU resour
es on that node, whi
h are then not available to VM2. Finally, theINRIA

Entropy: a Consolidation Manager for Clusters 13
ontext IFATA in
urs the highest overhead as the migrations a
t on both thesour
e and the destination node. This overhead is
omparable to the sum of theoverhead of
ontexts IFA and ITA.This evaluation of the
ost of migrations shows that migrating a VM has animpa
t on both the sour
e and destination nodes. The migration redu
es theperforman
e of
o-hosted a
tive virtual ma
hines for a duration that dependson the
ontext of the migration. In the worst
ase, the performan
e loss of a
omputational task is about the same as the duration of the migration. Althoughthe overhead
an be heavy during the migration time, the migration time is fairlyshort, and thus has little impa
t on the overall performan
e. Nevertheless, thesenumbers suggest that the number of migrations should be kept to a minimum.Migration
ost model Figures 8 and 9 show that the overhead for a singlemigration and the delay in
urred for pre
eding migrations both vary prin
ipallyin terms of the amount of memory allo
ated to the migrated VMs. Thus, webase the
ost model on this quantity.The
ost fun
tion f is de�ned as follows. The estimated
ost f(p) of are
on�guration plan p is the sum of the
osts of the migrations of ea
h migratedVM v (Equation 6). The estimated
ost f(v) of the migration of a VM v is thesum of the estimated
osts of the pre
eding steps, plus the amount of memoryallo
ated to v (Equation 7). Finally, the estimated
ost f(s) of a step s isequal to the largest amount of memory allo
ated to any VM that is migratedin step s. This estimated
ost
onservatively assumes that one step
an onlybegin when all of the migrations of the previous step have
ompleted. For there
on�guration plan shown in Figure 6, the estimated
ost of step II is 512, theestimated
ost of the migration of VM2 is 768, and the estimated
ost of thewhole re
on�guration plan is 4224.
f(p) =

∑

v∈p

f(v) (6)
f(v) = Rm(v) +

∑

s∈prevs(v)

f(s) (7)
f(s) = max(Rm(v)), v ∈ s (8)4.3 Implementing and optimizing the VMRPTo express the VMRP as a CSP, we again use the
onstraints that a
on�gurationmust be viable, as des
ribed in Se
tion 3.2, and additionally spe
ify that thenumber of nodes used in a
on�guration is equal to the solution of the VMPP(Equation 9):

∑

i∈N

ui = xvmpp (9)For ea
h
on�guration that satis�es these
onstraints, the solver
onstru
ts are
on�guration plan p, if possible. The optimal solution k is the one that mini-mizes the variable K, de�ned as follows (Equation 10):RR n° 6639

14 Fabien Hermenier , Xavier Lor
a , Jean-Mar
 Menaud , Gilles Muller , Julia Lawall
K = f(p) (10)Minimizing the
ost of a re
on�guration provides a plan with fewer migrationsand steps, and a maximum degree of parallelism, thus redu
ing the durationand the impa
t of a re
on�guration.The lower bound for K is the sum of the
ost of migrating ea
h VM that mustmigrate i.e. when multiple a
tive VMs are hosted on the same node. The upperbound
orresponds to the
ost of the re
on�guration plan pvmpp asso
iated withthe
on�guration previously
omputed by VMPP:

(
∑

v∈VmigrateRm(v)) ≤ K ≤ f(pvmpp) (11)Like the VMPP, the VMRP uses equivalen
es to redu
e the time requiredto �nd viable
on�gurations. For the VMRP, however, the equivalen
e relationbetween VMs has to be more restri
tive to take into a

ount the impa
t of theirmigration. Indeed, migration of equivalent VMs must have the same impa
ton the re
on�guration pro
ess. Thus, equivalent VMs must have the sameresour
e demands and must be hosted on the same nodes. In this situation, theequivalen
e relation between two VMs is formalized by Equation 12.
∃vi, vj ∈ V | vi ≡ vj ⇔Rp(i) = Rp(j) ∧

Rm(i) = Rm(j) ∧

host(vi) = host(vj) (12)Entropy dynami
ally estimates the
ost of the plan asso
iated with the
on-�guration being
onstru
ted based on information about the VMs that havealready been assigned to a node. Then, Entropy estimates a minimum
ost forthe
omplete future re
on�guration plan. For ea
h VM that has not yet beenassigned to a node, the solver looks at VMs that
an not be hosted by their
ur-rent node and in
reases the
ost with these future migrations. Finally, the solverdetermines whether the future
on�guration based on this partial assignmentmight improve the solution or will ne
essarily be worse. In the latter situation,the solver abandons the
on�guration
urrently being
onstru
ted and sear
hesfor another assignment.5 EvaluationsEntropy uses
onstraint programming in order to �nd a better re
on�gurationplan than that found using lo
ally optimal heuristi
s. Nevertheless, the moreexhaustive sear
h performed by
onstraint programming is only justi�ed if itleads to a better solution within a reasonable amount of time. In this se
tion,we �rst evaluate the two phases of the re
on�guration algorithm of Entropyon simulation data, to illustrate the range of bene�t that Entropy
an provide.We then use Entropy on a
luster in the Grid'5000 experimental testbed on a
olle
tion of programs from the NASGrid ben
hmark suite [6℄. INRIA

Entropy: a Consolidation Manager for Clusters 155.1 Evaluation of the VMPP and VMRPThe VMPP in
ludes the number of nodes in the
on�guration identi�ed by theFFD heuristi
 as an initial upper bound, and thus neither its solution nor thatof the VMRP will ever use more nodes than the FFD solution. In this se
tion,we measure the time required for our
onstraint-based re
on�guration engine tosigni�
antly redu
e both the number of nodes and the
ost of the re
on�gurationplan, as
ompared to the solution proposed by the FFD heuristi
, on a range ofsimulated data. We have used these results as the basis of the timeouts
hosenin Entropy, as des
ribed in Se
tion 2. In our evaluation, we
onsider solvingthe VMPP and the VMRP using either FFD or Entropy. The FFD solutionto the VMPP is the number of nodes in the
on�guration
hosen by the FFDheuristi
, and the FFD solution to the VMRP is the minimal re
on�gurationplan that produ
es this
on�guration.We
onsider two
lasses of problem sizes, ea
h using 64 or 128 nodes and anequal number of VMs. For ea
h
lass, we have randomly generated 100
on�g-urations with the following properties: Ea
h VM needs zero or one pro
essingunits, depending on its state, and 1 or 2 GB of memory. Nodes ea
h haveone pro
essing unit and 3GB of memory. The same
on�gurations are used forevaluating the solutions of both the FFD and Entropy implementations of theVMPP and the VMRP. The dedi
ated node that exe
utes the re
on�gurationalgorithm has an AMD Opteron 2.0GHz CPU and 2GB of RAM. The re
on�g-uration algorithm is implemented in Java and runs on the standard Sun Java1.5 virtual ma
hine.
 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

%
 o

f
m

in
im

iz
ed

 c
o
n
fi

g
u
ra

ti
o
n
s

Computation time in sec.

64VMs,64Ns
128VMs,128Ns(a) Minimization of X

 0

 20

 40

 60

 80

 100

64/64 128/128

%
 o

f
to

ta
l

VMS/nodes

Equiv.
1 nodes
2 nodes
3 nodes
4 nodes
5 nodes

(b) Improvement wrt.FFDFigure 10: Properties of the solution of the VMPP for various problem sizesEvaluation of the VMPP Figure 10(a) shows the per
entage of problemsin ea
h
lass for whi
h the minimum number of nodes has been determinedwithin the given amount of time. The
omputation time for solving the VMPPis prin
ipally determined by the total number of VMs and nodes and by thenumber of equivalen
e
lasses, as identi�ed in Se
tion 3.3. For the two
lasses,the solver needs fewer than 5 se
onds to
ompute the minimum number of nodesfor 90% of the
on�gurations.As shown in Figure 10(b), Entropy �nds a better pa
king by up to 5 fewernodes for 47% of the
on�gurations. Contrary to the heuristi
 that stop after the�rst
omplete assignment of the VMs, Entropy
ontinues to
ompute a bettersolution until it times out or proves the optimality of the
urrent one.RR n° 6639

16 Fabien Hermenier , Xavier Lor
a , Jean-Mar
 Menaud , Gilles Muller , Julia LawallEvaluation of the VMRP Figure 11(a) shows the progression in �nding a
on�guration with minimum
ost, K. Be
ause of the high
ost of
reating andevaluating the re
on�guration plans, the solver is never able to prove that a
on�guration has the smallest re
on�guration plan in the time allotted. Thus,we
onsider a solution to be minimal until one with a 10% lower re
on�gura-tion
ost is
omputed.1 The graph denotes the per
entage of solutions wherethe re
on�guration
ost asso
iated with the
omputed
on�guration is minimal,over time. The ne
essary time for
omputing a
on�guration with a minimalre
on�guration
ost is prin
ipally determined by the number of VMs and nodes.After 10 se
onds, 90% of the
on�gurations with 64 nodes are minimal. Con�g-urations with 128 nodes require a
omputation time of 20 se
onds.Figure 11(b) shows the e�e
tiveness of the redu
tion of K by
omparingthe re
on�guration
ost of the original solution
omputed by Entropy for theVMPP with the
ost of the �nal
on�guration. The solution produ
ed for theVMRP uses the same number of nodes as the solution produ
ed for the VMPPbut has a re
on�guration
ost that is up to 40% lower. Entropy redu
es there
on�guration
ost for 93% of the
on�gurations.
 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

%
 o

f
m

in
im

iz
ed

 c
o
st

Computation time in sec.

64VMs,64Ns
128VMs,128Ns(a) Minimization of K

 0

 20

 40

 60

 80

 100

64/64 128/128

%
 o

f
to

ta
l

VMs/nodes

Equiv.
1-10%

11-20%
21-30%
31-40%

(b) Improvement wrt.VMPPFigure 11: Properties of the solution of the VMRP for various problem sizes5.2 Experiments on a
lusterWe now apply Entropy on a real
luster
omposed of 39 nodes, ea
h with aAMD Opteron 2.0 GHz CPU and 2GB of RAM. One node is dedi
ated to there
on�guration engine and three nodes are used as �le servers that provide thedisk images for the VMs. The remaining 35 nodes run the Xen Virtual Ma
hineMonitor with 200MB of RAM dedi
ated to Xen's Domain-0. These nodes host atotal of 35 VMs that run ben
hmarks of the NASGrid ben
hmark suite [6℄. Thisben
hmark suite is a
olle
tion of syntheti
 distributed appli
ations designed torate the performan
e and fun
tionalities of
omputation grids. Ea
h ben
hmarkis organized as a graph of tasks where ea
h task
orresponds to a s
ienti�

omputation that is exe
uted on a single VM. Edges in the graph representthe task ordering. This ordering implies that the number of a
tive VMs variesduring the experiment; there are typi
ally from 10 to 15 a
tive VMs. Entropy,however, is unaware of these task graphs, instead relying on the instantaneous1We use the threshold of 10% in this �gure to a

ount for the fa
t that the re
on�guration
ost fun
tion only provides an estimate. INRIA

Entropy: a Consolidation Manager for Clusters 17
(a) ED (b) HC (
) VPFigure 12: Computation graphs of NASGrid Ben
hmarks

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

 0 50000 100000 150000 200000 250000 300000 350000 400000

R
ec

o
n

fi
g

u
ra

ti
o

n
 d

u
ra

ti
o

n
 i

n
 m

in
.

Reconfiguration cost

FFD (9 reconfigurations)
Entropy (18 reconfigurations)Figure 13: Re
on�guration plans
omputed by FFD and Entropydes
riptions provided by the sensors to determine whi
h VMs are a
tive andina
tive.The 35 VMs are assigned to the various tasks of the NASGrid ben
hmarksED, HC, and VP, whose
omputation graphs are shown in Figure 12. Ea
hset of VMs asso
iated with a given ben
hmark has its own NFS �le serverthat
ontains the VMs' disk image. The ED ben
hmark uses 10 VMs with512 MB of RAM ea
h. It has one phase of
omputation that
on
erns all ofits VMs. The HC ben
hmark uses 5 VMs with 764 MB of RAM ea
h. Thisben
hmark is fully sequential and has only one a
tive task at a time. Finally,the VP ben
hmark uses 20 VMs, with 512MB of RAM ea
h. This ben
hmarkhas several phases where the number of a
tive VMs varies. Before starting theexperiment, ea
h VM is started in an ina
tive state, in an initial
on�guration
omputed using Entropy. This
on�guration uses 13 nodes and
orresponds toa maximum pa
king. All three ben
hmarks are started at the same time. Wetest the ben
hmarks using FFD and Entropy as the re
on�guration algorithm.Figure 13 shows the estimated
ost of ea
h re
on�guration plan sele
ted usingFFD and Entropy and the duration of its exe
ution. The relationship betweenthe
ost and the exe
ution time is roughly linear, and thus the
ost fun
tion

f is a reasonable indi
ator of performan
e for plans
reated using both FFDand Entropy. Furthermore, we observe that re
on�guration based on Entropyplans typi
ally
ompletes mu
h faster than re
on�guration based on FFD plans.Indeed, the average exe
ution time for plans
omputed with FFD is about 413RR n° 6639

18 Fabien Hermenier , Xavier Lor
a , Jean-Mar
 Menaud , Gilles Muller , Julia Lawallse
onds while the average exe
ution time for plans
omputed with Entropy isonly 107 se
onds. With short re
on�guration plans, Entropy is able to qui
klyrea
t to the frequent
hanges in the a
tivity of VMs, and thus qui
kly dete
ts and
orre
ts non-viable
on�gurations. Entropy performs 18 short re
on�gurationsover the duration of the experiment, while the FFD-based algorithm performs9 longer ones.Figures 14(a) and 14(b) show the a
tivity of VMs while running the ben
h-marks with FFD and Entropy, in terms of the number of a
tive VMs that aresatis�ed and unsatis�ed. Satis�ed VMs are a
tive VMs that have their own pro-
essing unit. Unsatis�ed VMs are a
tive VMs that share a pro
essing unit. Theaverage number of unsatis�ed VMs is 1.75 for FFD and 1.05 for Entropy. Thenumber of unsatis�ed VMs is a signi�
ant
riterion to rate the bene�t of a re
on-�guration algorithm. An unsatis�ed VM indi
ates a non-viable
on�guration,and thus a performan
e loss.
 0

 5

 10

 15

 20

00:00

00:10

00:20

00:30

00:40

00:50

01:00

01:10

01:20

01:30

01:40

A
ct

iv
e

V
M

s

Time (hours)

Satisfied VMs
Unsatisfied VMs

(a) FFD 0

 5

 10

 15

 20

00:00

00:10

00:20

00:30

00:40

00:50

01:00

01:10

01:20

01:30

01:40

A
ct

iv
e

V
M

s

Time (hours)

Satisfied VMs
Unsatisfied VMs

(b) EntropyFigure 14: A
tivity of VMsWhen the ben
hmarks start, 12 VMs be
ome a
tive at the same time. En-tropy qui
kly remaps the VMs and obtains a viable
on�guration by minute6. FFD, on the other hand, does not rea
h a viable
on�guration until mu
hlater. The total number of a
tive VMs in
reases at minute 10, thus in
reasingthe number of unsatis�ed VMs. As Entropy is not in a re
on�guration state atthat time, it
omputes a new
on�guration and migrates the VMs a

ordingly,to obtain a viable
on�guration by minute 11. FFD, on the other hand, is inthe midst of migrating VMs at the point of the �rst peak of a
tivity, a

ordingto a previously
omputed, and now outdated, re
on�guration plan. FFD onlyrea
hes a viable
on�guration in minute 18. In this situation, we
onsider thatan iteration of the re
on�guration pro
ess using FFD takes too mu
h time as
ompared to the a
tivity of the VMs.The average response time of a re
on�guration pro
ess measures the averageduration between dete
ting the presen
e of unsatis�ed VMs and the next viable
on�guration. It indi
ates the
apa
ity of the re
on�guration pro
ess to s
alewith the a
tivity of VMs. For this experiment, the average response time forFFD is 248 se
onds. For Entropy, the average response time is 142 se
onds.Figure 14(b) shows that number of unsatis�ed VMs is always zero after1:00. This is due to the unequal duration of the ben
hmarks. At minute 50,the ben
hmark HC ends its
omputation. Then the a
tivity of VP
hanges atminutes 54 and 58 and requires a re
on�guration. For the remaining time, thereis no new phase that makes unsatis�ed VMs: The end of the last phase of VPINRIA

Entropy: a Consolidation Manager for Clusters 19at 1:10 does not require a re
on�guration and the a
tivity of the last runningben
hmark, ED, is
onstant.
 10

 12

 14

 16

 18

 20

00:00

00:10

00:20

00:30

00:40

00:50

01:00

01:10

01:20

01:30

01:40

U
se

d
 n

o
d

es

Time (hours)

FFD
Entropy

Figure 15: Number of nodes used with FFD and EntropyFigure 15 shows the number of nodes used to host VMs. Re
on�gurationplans
omputed with FFD require more migrations and thus tend to requiremore pivot nodes. For this experiment, the re
on�guration pro
ess based onFFD requires up to 4 additional pivot nodes. This situation is parti
ularlyunfortunate when
onsolidation is used to save energy, by powering down unusednodes, as nodes have to be turned on just to perform some migrations. Entropy,whi
h
reates smaller plans, requires at most one additional pivot nodes, andthus provides a environment favorable to the shutting down of unused nodes.
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

ED VP HC

R
u
n
ti

m
e

in
 m

in
.

FFD
Entropy

wo. consolidation

Figure 16: Runtime ComparisonBy minimizing the duration of non-viable
on�gurations, Entropy redu
esthe performan
e loss due to
onsolidation. Figure 16 shows the runtime of ea
hben
hmark for FFD, Entropy and for an environment without any
onsolidation.In the latter situation, ea
h VM is de�nitively assigned to its own node to avoidperforman
e loss due to the sharing of pro
essing units. In this
ontext, 35 nodesare required. The global overhead for all ben
hmarks
ompared to a exe
utionwithout
onsolidation is 19.2% for FFD. Entropy redu
es this overhead to 11.5%.We
an summarize the resour
e usage of the various ben
hmarks in termsof the number of nodes used per hour. Without any
onsolidation, running theben
hmarks
onsumes 53.01 nodes per hour. Consolidation using FFD redu
esthis
onsumption to 24.53 nodes per hour. Consolidation using Entropy furtherredu
es this
onsumption to 23.21 nodes per hour. However, these numbers area�e
ted by the duration of ea
h ben
hmark. When all ben
hmarks are running,the
onsolidation only
omes from the re
on�guration engine that dynami
allymixes ina
tive VMs with a
tive VMs in the di�erent phases of the appli
ations.When a ben
hmark stops, it
reates zombie VMs that still require memoryRR n° 6639

20 Fabien Hermenier , Xavier Lor
a , Jean-Mar
 Menaud , Gilles Muller , Julia Lawallresour
es but should be turned o�. Thus, to estimate the
onsumption thatonly results from mixing ina
tive and a
tive non-zombie VMs, we
onsider the
onsumption until the end of the �rst ben
hmark to
omplete, HC. In thissituation, running the three ben
hmarks without
onsolidation
onsumes 24.31nodes per hour, with FFD
onsumes 15.34 nodes per hour, and with Entropy
onsumes only 11.72 nodes per hour.6 Related workPower-Aware VM repla
ement Nathuji et al. [12℄ present power e�
ientme
hanisms to
ontrol and
oordinate the e�e
ts of various power managementpoli
ies. This in
ludes the pa
king of VMs through live migration. They laterextended their work to fo
us on the tradeo� between the Servi
e Level Agree-ments of the appli
ations embedded in the VMs and the ne
essity to satisfyhardware power
onstraints [13℄. Entropy addresses the re
on�guration issuesbrought by the live migration of VMs in a
luster and provides a solution topa
k VMs in terms of their requirements for pro
essing units and memory, whileminimizing the duration of the re
on�guration pro
ess and its impa
t on per-forman
e.Verma et al. [17℄ propose an algorithm that pa
ks VMs a

ording to theirCPU needs while minimizing the number of migrations. This algorithm is anextension of the FFD heuristi
 and migrates VMs lo
ated on overloaded nodesto under-exploited nodes. Restri
ting migrations to only those from overloadednodes to underloaded nodes has the e�e
t that all sele
ted migrations are di-re
tly feasible; the sequential and
y
li

onstraints that we have identi�ed inSe
tion 4
annot arise. Nevertheless, this implies that the approa
h may missopportunities for savings, in
ases where rearranging the VMs within the under-loaded nodes would enable other, even more bene�
ial migrations. In this sit-uation, this approa
h fails, potentially violating any Servi
e Level Agreements,even if there is a possible solution. Entropy exploits a larger set of possible VMmigrations by addressing sequential and
y
li

onstraints, and thus
an be usedto solve the more
omplex re
on�guration problems that
an o

ur in a highlyloaded environment.Performan
e Management through repla
ement Khanna et al. [11℄ pro-pose a re
on�guration algorithm that assigns ea
h VM to a node in order tominimize the unused portion of resour
es. VMs with high resour
e requirementsare migrated �rst. Bobro� et al. [3℄ base their repla
ement engine on a fore-
ast servi
e that predi
ts, for the next fore
ast interval, the resour
e demandsof VMs, a

ording to their history. Then the repla
ement algorithm, whi
his based on an FFD heuristi
, sele
ts a node than
an host the VM duringthis time interval. To ensure e�
ien
y, the fore
ast window takes into a

ountthe duration of the re
on�guration pro
ess. However, this assignment does not
onsider sequential and
y
li

onstraints, whi
h impa
t the feasibility of there
on�guration pro
ess and its duration.VMs repla
ement issues Grit et al. [7℄
onsider some VMs repla
ementissues for resour
e management poli
ies in the
ontext of Shirako [9℄, a system foron-demand leasing of shared networked resour
es in federated
lusters. When aINRIA

Entropy: a Consolidation Manager for Clusters 21migration is not dire
tly feasible, due to sequen
e issues, the VM is paused usingsuspend-to-disk. On
e the destination node is available for migration, the VMis resumed on it. Entropy only uses live migrations in order to prevent failuresin the user environment due to suspending part of a distributed appli
ation.Sandpiper [18℄ is a re
on�guration engine, based on an FFD heuristi
, torelo
ate VMs from overloaded to under-utilized nodes. When a migration be-tween two nodes is not dire
tly feasible, the system identi�es a set of VMsto swap in order to free a su�
ient amount of resour
es on the destinationnode. Then the sequen
e of migrations is exe
uted. This approa
h is able tosolve simple repla
ement issues but requires some spa
e for temporarily hostingVMs on either the sour
e or the destination node. By identifying pivot nodesand bypass migrations, Entropy
an resolve
y
les without performing multipleswap operations that in
rease the number of migrations thus the duration ofthe re
on�guration pro
ess.7 Con
lusion and Future WorkPrevious work has reje
ted the use of
onstraints in implementing
onsolidationas being too expensive. In this paper, we have shown that the overhead of
onsolidation is determined not only the time required to
hoose a new
on�g-uration, but also by the time required to migrate VMs to that
on�guration.Our
onstraint-programming based approa
h, whi
h expli
itly takes into a
-
ount the
ost of the migration plan,
an indeed redu
e the number of nodesand the migration time signi�
antly, as
ompared to results obtained with thepreviously used FFD heuristi
. We have implemented this approa
h in our
on-solidation manager Entropy, and shown that it
an redu
e the
onsumption of
luster nodes per hour for a
olle
tion of NASGrid ben
hmarks by over 50% as
ompared to stati
 allo
ation and by almost 25% as
ompared to
onsolidationusing FFD.The
on�gurations
onsidered in this paper are fairly simple, be
ause in the
lusters available in the Grid'5000 experimental testbed, every node has only asingle pro
essor and all nodes have the same amount of memory. Our approa
h,however, is dire
tly appli
able to
lusters providing multipro
essors and nodeswith non-homogeneous memory availability, be
ause the number of pro
essorsand the amount of memory available are simply parameters of the VMPP andVMRP problems. We will extend our results to su
h
lusters when they be
omeavailable to us.In future work, we plan to
onsider the problem of admission
ontrol for
lusters providing
onsolidation. We expe
t that simulation results, like thosedes
ribed in Se
tion 5.1,
an help to identify the number of tasks that a
lusterproviding
onsolidation
an a

ept. We also plan to
onsider the appli
abilityof the approa
h to other kinds of software than s
ienti�

omputations, su
h ase-
ommer
e.A
knowledgmentsExperiments presented in this paper were
arried out using the Grid'5000 exper-imental testbed [4℄, an initiative from the Fren
h Ministry of Resear
h throughRR n° 6639

22 Fabien Hermenier , Xavier Lor
a , Jean-Mar
 Menaud , Gilles Muller , Julia Lawallthe ACI GRID in
entive a
tion, INRIA, CNRS and RENATER and other
on-tributing partners.AvailabilityThe prototype Entropy is available on our webpage:http://www.emn.fr/x-info/entropy/Referen
es[1℄ P. Barham, B. Dragovi
, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-bauer, I. Pratt, and A. War�eld. Xen and the art of virtualization. InPro
eedings of the 19th ACM Symposium on Operating Systems Prin
iples,pages 164�177, Bolton Landing, NY, USA, O
t. 2003. ACM Press.[2℄ F. Benhamou, N. Jussien, and B. O'Sullivan, editors. Trends in ConstraintProgramming. ISTE, London, UK, May 2007.[3℄ N. Bobro�, A. Ko
hut, and K. Beaty. Dynami
 pla
ement of virtual ma-
hines for managing SLA violations. Integrated Network Management,2007. IM '07. 10th IFIP/IEEE International Symposium on, pages 119�128, May 2007.[4℄ R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot, Y. Jé-gou, S. Lantéri, J. Ledu
, N. Melab, G. Mornet, R. Namyst, P. Primet,B. Quetier, O. Ri
hard, E.-G. Talbi, and T. Iréa. Grid'5000: a large s
aleand highly re
on�gurable experimental grid testbed. International Journalof High Performan
e Computing Appli
ations, 20(4):481�494, Nov. 2006.[5℄ C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpa
h, I. Pratt,and A. War�eld. Live migration of virtual ma
hines. In Pro
eedings of the2nd ACM/USENIX Symposium on Networked Systems Design and Imple-mentation (NSDI '05), pages 273�286, Boston, MA, USA, May 2005.[6℄ M. Frumkin and R. F. V. der Wijngaart. NAS grid ben
hmarks: A toolfor grid spa
e exploration. Cluster Computing, 5(3):247�255, 2002.[7℄ L. Grit, D. Irwin, A. Yumerefendi, and J. Chase. Virtual ma
hine hostingfor networked
lusters: Building the foundations for "autonomi
" or
hestra-tion. In Virtualization Te
hnology in Distributed Computing, 2006. VTDC2006. First International Workshop on, pages 1�8, Nov. 2006.[8℄ R. Harali
k and G. Elliott. In
reasing tree sear
h e�
ien
y for
onstraintsatisfa
tion problems. Arti�
ial Intelligen
e, 14(3):263�313, O
tober 1980.[9℄ D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Be
ker, and K. G. Yo
um.Sharing networked resour
es with brokered leases. In ATEC '06: Pro
eed-ings of the annual
onferen
e on USENIX '06 Annual Te
hni
al Conferen
e,pages 18�18, Berkeley, CA, USA, 2006. USENIX Asso
iation. INRIA

Entropy: a Consolidation Manager for Clusters 23[10℄ N. Jussien, G. Ro
hart, and X. Lor
a. The CHOCO
onstraint program-ming solver. In CPAIOR'08 workshop on Open-Sour
e Software for Integerand Contraint Programming (OSSICP'08), Paris, Fran
e, June 2008.[11℄ G. Khanna, K. Beaty, G. Kar, and A. Ko
hut. Appli
ation performan
emanagement in virtualized server environments. Network Operations andManagement Symposium, 2006. NOMS 2006. 10th IEEE/IFIP, pages 373�381, 2006.[12℄ R. Nathuji and K. S
hwan. VirtualPower: Coordinated power managementin virtualizaed entreprise systems. In 21st Symposium on Operating SystemsPrin
iples (SOSP), O
t. 2007.[13℄ R. Nathuji and K. S
hwan. VPM tokens: virtual ma
hine-aware powerbudgeting in data
enters. In HPDC '08: Pro
eedings of the 17th interna-tional symposium on High performan
e distributed
omputing, pages 119�128, New York, NY, USA, 2008. ACM.[14℄ F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming(Foundations of Arti�
ial Intelligen
e). Elsevier S
ien
e In
., New York,NY, USA, 2006.[15℄ P. Shaw. A
onstraint for bin pa
king. In Prin
iples and Pra
ti
e of Con-straint Programming (CP'04), volume 3258 of Le
ture Notes in ComputerS
ien
e, pages 648�662. Springer, 2004.[16℄ M. Tri
k. A dynami
 programming approa
h for
onsisten
y and propa-gation for knapsa
k
onstraints. In Pro
eedings of the Third InternationalWorkshop on Integration of AI and OR Te
hniques in Constraint Program-ming for Combinatorial Optimization Problems (CPAIOR-01), pages 113�124, 2001.[17℄ A. Verma, P. Ahuja, and A. Neogi. Power-aware dynami
 pla
ement ofHPC appli
ations. In P. Zhou, editor, ICS, pages 175�184. ACM, 2008.[18℄ T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif. Bla
k-boxand gray-box strategies for virtual ma
hine migration. In NSDI, 2007.

RR n° 6639

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université- ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau- Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

	Introduction
	System Architecture
	The Virtual Machine Packing Problem
	Constraints on the assignment of VMs to nodes
	Expressing the VMPP as a constraint satisfaction problem
	Optimizations

	The Virtual Machine Replacement Problem
	Constructing a reconfiguration plan
	Estimating the cost of a reconfiguration plan
	Implementing and optimizing the VMRP

	Evaluations
	Evaluation of the VMPP and VMRP
	Experiments on a cluster

	Related work
	Conclusion and Future Work

