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Abstract: Clusters provide powerful computing environments, but in practice
much of this power goes to waste, due to the static allocation of tasks to nodes,
regardless of their changing computational requirements. Consolidation is an
approach that migrates tasks within a cluster as their computational require-
ments change, both to reduce the number of nodes that need to be active and to
eliminate temporary overload situations. Previous consolidation strategies have
relied on task placement heuristics that use only local optimization and typically
do not take migration overhead into account. However, heuristics based on only
local optimization may miss the globally optimal solution, resulting in unneces-
sary resource usage, and the overhead for migration may nullify the benefits of
consolidation.

In this paper, we propose the Entropy resource manager for homogeneous
clusters, which performs consolidation based on constraint programming and
takes migration overhead into account. The use of constraint programming al-
lows Entropy to find mappings of tasks to nodes that are better than those found
by heuristics based on local optimizations, and that are frequently globally opti-
mal in the number of nodes. Because migration overhead is taken into account,
Entropy chooses migrations that can be implemented efficiently, incurring a low
performance overhead.
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Entropy: un Gestionnaire de Consolidation pour
Grappes

Résumé : Les grappes de serveurs fournissent un environnement de calcul
puissant. Cependant, une partie de cette puissance est perdue par une alloca-
tion statique des taches sur les nceuds de calculs qui ne tient pas compte de
la variations de leurs besoins. En regroupant ces taches dynamiquement, la
consolidation permet de réduire le nombre de nceuds nécessaires a ’exécution
des calculs, tout en éliminant les situations de saturations temporaires. Les
stratégies de consolidation actuelle se focalisent sur une optimisation locale du
placement des taches et ne tiennent pas compte de 'impact des migrations. Ces
heuristiques manquent la notion d’optimalité globale qui implique une consom-
mation de resources qui n’est pas nécessaire. De plus, I’absence de considération
des migrations réduit de maniére notable les performances de la grappe, limitant
ainsi ’interét de la consolidation.

Cet article présente Entropy, un gestionnaire de consolidation pour grappes
homogeénes utilisant une approche basée sur la programmation par contraintes et
tenant compte de 'impact des migrations. Notre approche permet la réalisation
d’un agencement des taches globalement meilleur par rapport aux approches
classiques & base d’heuristiques. De plus, en tenant compte des migrations
des taches sur la grappe, 'impact de la consolidation sur les performances est
diminuée.

Mots-clés : Virtualisation, Consolidation, Grappe , Reconfiguration, Migra-
tion
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1 Introduction

Grid and Cluster computing are increasingly used to meet the growing compu-
tational requirements of scientific applications. In this setting, a user organizes
a job as a collection of tasks that each should run on a separate processing unit
(i.e, an entire node, a CPU, or a core) [6]. To deploy the job, the user makes a
request to a resource broker, specifying the number of processing units required
and the associated memory requirements. If the requested CPU and memory
resources are available, the job is accepted. This static strategy ensures that all
jobs accepted into the cluster will have sufficient processing units and memory
to complete their work. Nevertheless, it can lead to a waste of resources, as
many scientific computations proceed in phases, not all of which use all of the
allocated processing units at all times.

Consolidation is a well-known technique to dynamically reduce the number
of nodes used within a running cluster by liberating nodes that are not needed
by the current phase of the computation. Liberating nodes can allow more jobs
to be accepted into the cluster, or can allow powering down unused nodes to
save energy. To make consolidation transparent, regardless of the programming
language, middleware, or operating system used by the application, it is conve-
nient to host each task in a virtual machine (VM), managed by a VM Monitor
(VMM) such as Xen [, for which efficient migration techniques are available [5].
Consolidation then amounts to identifying inactive VMs that can be migrated
to other nodes that have sufficient unused memory. A VM that is inactive at
one point in time may, however, later become active, possibly causing the node
that is hosting it to become overloaded. A consolidation strategy must thus also
move VMs from overloaded nodes to underloaded ones.

Several approaches to consolidation have been proposed [3l [7, [[T]. These ap-
proaches, however, have focused on how to calculate a new configuration, and
have neglected the ensuing migration time. However, consolidation is only ben-
eficial when the extra processing unit time incurred for migration is significantly
less than the amount of processing unit time that consolidation makes available.
While migrating a single Xen VM can be very efficient, incurring an overhead
of only between 6 and 26 seconds in our measurements, it may not be possible
to migrate a VM to its chosen destination immediately; instead other VMs may
first have to be moved out of the way to free sufficient memory. Delaying the
migration of an inactive VM only causes unnecessary node usage. On the other
hand, delaying the migration of an active VM that is running on a processing
unit overloaded with n other VMs degrades the performance of those VMs for
a period of time by a factor of n as compared to a non-consolidated solution,
in which each VM always has its own processing unit. Increasing the number
of VMs that need to migrate as compared to the amount of available resources
only exacerbates these problems. Thus, it is essential that consolidation be as
efficient and reactive as possible.

In this paper, we propose a new approach to consolidation in a homogeneous
cluster environment that takes into account both the problem of allocating the
VMs to the available nodes and the problem of how to migrate the VMs to these
nodes. Our consolidation manager, Entropy, works in two phases and is based on
constraint solving |2, [T4]. The first phase, based on constraints describing the set
of VMs and their CPU and memory requirements, computes a placement using
the minimum number of nodes and a tentative reconfiguration plan to achieve
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that placement. The second phase, based on a refined set of constraints that take
feasible migrations into account, tries to improve the plan, to reduce the number
of migrations required. In our experiments, using the NASGrid benchmarks [6]
on a cluster of 39 AMD Opteron 2.0GHz CPU uniprocessors, we find that a
solution without consolidation uses 24.31 nodes per hour, consolidation based
on the previously-used First Fit Decreasing (FFD) heuristic [3l [I7, 18] uses 15.34
nodes per hour, and consolidation based on Entropy uses only 11.72 nodes per
hour, a savings of more than 50% as compared to the static solution.

The remainder of this paper is organized as follows. Section B gives an
overview of Entropy. Then, Section Bl describes how Entropy uses constraint
programming to determine the minimum number of nodes required by a collec-
tion of VMs, and Section Hl presetns how Entropy uses constraint programming
to minimize the reconfiguration plan. Finally, Section [l evaluates Entropy using
experimental results on a cluster of the Grid’5000 experimental testbed, Sec-
tion [ describes related work, and Section [ presents our conclusions and future
work.

2 System Architecture

A cluster typically consists of a single node dedicated to cluster resource man-
agement, a collection of nodes that can host user tasks, and other specialized
nodes, such as file servers. Entropy is built over Xen 3.0.3 [I] and is deployed on
the first two. It consists of a reconfiguration engine that runs on the node that
provides cluster resource management and a set of sensors that run in Xen’s
Domain-0 on each node that can host user tasks, i.e., VMs.

The goal of Entropy is to efficiently maintain the cluster in a configuration,
i.e. a mapping of VMs to nodes, that is (i) viable, i.e. that gives every VM
access to sufficient memory and every active VM access to own processing unit,
and (ii) optimal, i.e. that uses the minimum number of nodes. For this, the En-
tropy reconfiguration engine iteratively 1) waits to be informed by the Entropy
sensors that a VM has changed state, from active to inactive or vice versa, 2)
tries to compute a reconfiguration plan starting from the current configuration
that requires the fewest possible migrations and leaves the cluster in a viable,
optimal configuration, and 3) if successful, initiates migration of the VMs, if
the new configuration uses fewer nodes than the current one, or if the current
configuration is not viable. The reconfiguration engine then waits 5 seconds
before repeating the iteration, to accumulate new information about resource
usage. In this process, the Entropy sensors periodically send requests to the
HTTP interface of the Xen hypervisor on the current node to obtain the CPU
usage of the local VMs, and infer state changes from this information. An En-
tropy sensor also receives a message from the reconfiguration engine when a VM
should be migrated, and sends requests to the Xen hypervisor HT'TP interface
to inform it which VM should be migrated and to which node.

Previous approaches to achieving a viable, configuration have used heuristics
in which a locally optimal placement is chosen for each VM according to some
strategy [3, [, 1, 7). However, local optimization does not always lead to a
globally optimal solution, and may fail to produce any solution at all. Entropy
instead uses Constraint Programming (CP), which is able to determine a glob-
ally optimal solution, if one exists, by using a more exhaustive search, based
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// Instantiating a new problem
Problem pb = new Problem();

// Declaration of the variables and their associated domains
IntDomainVar x = pb.makeEnumIntVar("x", 0, 10);
IntDomainVar y = pb.makeEnumIntVar("y", 0, 10);
IntDomainVar z = pb.makeEnumIntVar("z", 0, 10);

// Declaration of the constraint
IntExp exp = pb.plus(x,y);
Constraint ¢ = pb.eq(exp, z);

// The constraint is plugged into the problem
pb.post(c);

// We start solving.
pb.solve();

Figure 1: Java code using the Choco library for finding values of variables x, ,
and z in the range 0 to 10, such that z +y = 2

on a depth first search. The idea of CP is to define a problem by stating con-
straints (logical relations) that must be satisfied by the solution. A Constraint
Satisfaction Problem (CSP) is defined as a set of variables, a set of domains that
represent the set of possible values that each variable can take on and a set of
constraints that represent required relations between the values of the variables.
A solution for a CSP is a variable assignment (a value for each variable) that
simultaneously satisfies the constraints. To solve CSPs, Entropy uses the Choco
library [I0], which can solve a CSP where the goal is to minimize or maximize
the value of a single variable. Figure [[l shows an example of Choco code, which
solves the problem of finding values of variables x, y, and z in the range 0 to
10, such that x + y = z.

Because Choco can only solve optimization problems of a single variable,
the reconfiguration algorithm proceeds in two phases. The first phase finds the
minimum number n of nodes that are necessary to host all VMs. We refer to this
problem as the Virtual Machine Packing Problem (VMPP). The second phase
minimizes the reconfiguration time, given the chosen number of nodes n. We
refer to this problem as the Virtual Machine Replacement Problem (VMRP).
Solving these problems may be time-consuming. While the reconfiguration en-
gine runs on the cluster resource management node, and thus does not compete
with VMs for CPU and memory, it is important to produce a new configuration
quickly to maximize the benefit of consolidation. Thus, we limit the total com-
putation time for both problems to 1 minute, of which the first phase has at
most 15 seconds, and the second phase has the remaining time. These durations
are sufficient to give a nontrivial improvement in the solution, as compared to
the FFD heuristic, as shown in Section Bl Furthermore, the constraint solver is
implemented such that if the computation times out without the solver having
found a solution that has been proved to be optimal, then the best solution
found so far is returned.

RR n°® 6639
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6 Fabien Hermenier , Xavier Lorca , Jean-Marc Menaud , Gilles Muller , Julia Lawall

3 The Virtual Machine Packing Problem

The objective of the VMPP is to determine the minimum number of nodes
that can host the VMs, given their current processing unit and memory re-
quirements. We first present several examples that illustrate the constraints on
the assignment of VMs to nodes, then consider how to express the VMPP as
a constraint satisfaction problem, and finally describe some optimizations that
we use in implementing a solver for this problem using Choco.

3.1 Constraints on the assignment of VMs to nodes

Each node in a cluster provides a certain amount of memory and number of
processing units, and each VM requires a certain amount of memory, and, if
active, a processing unit. These constraints must be satisfied by a viable con-
figuration. For example, if every node is a uniprocessor, then the configuration
in Figure is not viable because it includes two active VMs on node N;. On
the other hand, the configuration in Figure is viable because each VM has
access to sufficient memory and each node hosts at most one active VM.

1
VMa
VM3 . VM1
VM2 VM1 VM4 VM2
. VM3
N1 N2

N3 N1 N2 N3
(a) Non-viable (b) Viable con-
configuration figuration

Figure 2: Non-viable and viable configurations. VMy and VM3 are active

1
-

VM3 VM3

vM1 VM2 VM4 VM2

N1 N2 N3 N1 N2 N3
(a) A minimal (b) Another
viable configura- minimal viable
tion configuration

Figure 3: Viable configurations. VMy and VM3 are active

To achieve consolidation, we must find a viable configuration that uses the
minimum number of nodes. For example, the configuration shown in Figure
is viable, but it is not minimal, because, as shown in Figure VM, could be
hosted on node Ns, using one fewer node. The problem of finding a minimal,
viable configuration is reductible to the NP-Hard 2-Dimensional Bin Packing
Problem [15], where the dimensions correspond to the amount of memory and
number of processing units.

The VMPP may have multiple solutions, as illustrated by Figures
and which both use two nodes. These solutions, however, may not all
entail the same number of migrations. For example, if we perform consolidation

INRIA



Entropy: a Consolidation Manager for Clusters 7

with Figureas the initial configuration, we observe that only 1 migration is
necessary to reach the configuration shown in Figure B(a)] (moving VM, onto Na),
but 2 are necessary to reach the configuration shown in Figure B(b)] (moving VMs
onto Ny and VM; onto N3).

3.2 Expressing the VMPP as a constraint satisfaction prob-
lem

To express the VMPP as a CSP, we consider a set of nodes N and a set of VMs
V. The goal is to find a viable configuration that minimizes the number of nodes
used. The notation H;, defined below, is used to describe a configuration.

Definition 3.1 For each noden; € N, the bit vector H; = (hi1,...,hij, ..., h)
denotes the set of VMs assigned to node n; (i.e., h;j = 1 iff the node n; is hosting
the VM ’Uj).

We express the constraints that a viable configuration must respect each
VM’s processing unit and memory requirements as follows. Let R, be the
vector of processing unit demand of each VM, C, be the vector of processing
unit capacity associated with each node, R, be the vector of memory demand
of each VM, and C,, be the vector of memory capacity associated with each
node. Then, the following inequalities express the processing unit and memory
constraints:

Rp -H; < Cp(l) Vn; € N
Rom - H; < Con(i) Vs € N

Given these constraints, our goal is to minimize the value of the variable X,
defined as follows, where the variable w; is 1 if the node ¢ hosts at least one VM,
and 0 otherwise.

1,3, hii =1
X = Z u;, where u; =< Vi € V | b (1)
by 0, otherwise

We let Zympp denote this solution.

The solver dynamically evaluates the remaining free place (in terms of both
processing unit and memory availability) on each node during the search for
a minimum value of X. This is done by solving Multiple Knapsack problems
using a dynamic programming approach [16].

3.3 Optimizations

In principle, the constraint solver must enumerate each possible configuration,
check whether it is viable, and compare the number of nodes to the minimum
found so far. In practice, this approach is unnecessarily expensive. Our imple-
mentation reduces the computation cost using a number of optimizations.
Choco incrementally checks the viability and minimality of a configuration as
it is being constructed and discards a partial configuration as soon as it is found
to be non-viable or to use more than the minimum number of nodes found so
far. This strategy reduces the number of configurations that must be considered.

RR n°® 6639
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It furthermore tries to detect non-viable configurations as early as possible, by
using a first fail approach [8] in which VMs that are active and have greater
memory requirements are treated earlier than VMs with lesser requirements.
This strategy reduces the chance of computing an almost complete configuration
and then finding that the remaining VMs cannot be placed within the current
minimum number of nodes.

In principle, the domain of the variable X is the entire set of non-negative
integers. We can, however, significantly reduce the search space and improve
the performance of the solver by identifying lower and upper bounds that are
close to the optimal value and are easy to compute. As a lower bound, we take
the number of active VMs divided by number of processing units available per
node (Equation B). If we find a solution using this number of VMs, then it is
known to be optimal with no further tests. As an upper bound, we take the
value computed by the First Fit Decreasing (FFD) heuristic, which has been
used in other work on consolidation [3|, [I7, 8] (Equation B). The FFD heuristic
assigns each VM to the first node it finds satisfying the VM’s processing unit and
memory requirements, starting with the VMs that require the biggest amount
of memory. This heuristic tends to provide a good value, in a very short time
(less than a second) but the result is not guaranteed to be optimal and the
heuristic may indeed not find any solution. In the latter case, the upper bound
is the minimum of the number of nodes and the number of VMs.

Z Rop(i)

X > min |22 ,nj €N (2)

Co(7)

<o . (3)
min(|N|, |V]), otherwise

Furthermore, we observe that some nodes or VMs may be equivalent, in
terms of their processing unit and memory capacity or demand, and try to ex-
ploit this information to improve the pruning of the search tree. If the resources
offered by a node n; are not sufficient to host a VM v;, then they are also not
sufficient to host any VM v; with the same requirements. Furthermore, the VM
v; cannot be hosted by any other node n; with the same characteristics as n;.
These equivalences are defined as follows:

Vni,nj€N|niEnj<i>C() Cp(j) A
() m(J) (4)

Rm(@) = m(J) (5)

4 The Virtual Machine Replacement Problem

The solution to the VMPP provides the minimum number of nodes required to
host the VMs. However, as illustrated in Section Bl for a given collection of

INRIA
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VMs, there can be multiple configurations that minimize the number of used
nodes and the number of migrations required to reach these configurations can
vary. The objective of the Virtual Machine Replacement Problem (VMRP) is
to construct a reconfiguration plan for each possible configuration that uses the
number of nodes determined by the VMPP, and to choose the one with the
lowest estimated reconfiguration cost. In the rest of this section, we consider
how to construct a reconfiguration plan, how to estimate its cost, and how to
combine these steps into a solution for the VMRP.

4.1 Constructing a reconfiguration plan

The constraint of viability has to be taken into account both in the final con-
figuration and also during migration. A migration is feasible if the destination
node has a sufficient amount of free memory and, when the migrated VM is
active, if the destination node has a free processing unit. However, to obtain an
optimal solution it is often necessary to consider a configuration in which some
migrations are not immediately feasible. We identify two kinds of constraints
on migrations: sequential constraints and cyclic constraints.

A sequential constraint occurs when one migration can only begin when
another one has completed. As an example, consider the migrations represented
by the reconfiguration graph shown in Figure Bl A reconfiguration graph is an
oriented multigraph where each edge denotes the migration of a VM between
two nodes. Each edge specifies the virtual machine to migrate, the amount of
memory R,, required to host it and its state A (active) or I (inactive). Each
node denotes a node of the cluster, with its current amount of free memory
Cn, and its current free capacity for hosting active virtual machines C,. In
the example in Figure Bl it is possible to consolidate the VMs onto only two
nodes, by moving VM; from N; to Ny and moving VMy from Ny to N3. But
these migrations cannot happen in parallel, because as long as VMs is on Ny, it
consumes all of the available memory. Thus, the migration of VM; from Nj to
Ny can only begin once the migration of VMy from Ny to N3 has completed.

Rom=200,A Rom=400,1

N3
Crn=400,Cp=0

Cpn=400,C,=0

Figure 4: A sequence of migration

A cyclic constraint occurs when a set of infeasible migrations forms a cycle.
An example is shown in Figure where, due to memory constraints, VM;
can only migrate from node N; to node Ny when VMs has migrated from node
N, and VMy can only migrate from node Ns to node N; when VM; has migrated
from node N;. We can break such a cycle by inserting an additional migration.
A pivot node outside the cycle is chosen to temporarily host one or more of the
VMs. For example, in Figure the cycle between VM; and VM; is broken by
migrating VM; to the node N3, which is used as a pivot. After breaking all cycles
of infeasible migrations in this way, an order can be chosen for the migrations
as in the previous example. These migrations include moving the VMs on the
pivot nodes to their original destinations.

RR n°® 6639
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VM1
Rm=256,A

VM VM ; ’
Rm=256,1 Rm=256,A Rim=256,1 ,
AN
Rom=256,A
(a) Inter-dependant (b) A bypass migration breaks the cycle
migrations

Figure 5: Cycle of non-feasible migrations

Taking the above issues into account, the algorithm for constructing a re-
configuration plan is as follows. Starting with a reconfiguration graph, the first
step is to identify each cycle of infeasible migrations, identify a node in each
such cycle where the VMs to migrate have the smallest total memory require-
ment, and select a pivot node that can accomodate these VMs’ processing unit
and memory requirements. The result is an extended reconfiguration graph in
which for each such chosen VM, the migration from the current node to the
destination node in the desired configuration is replaced by a migration to the
pivot followed by a migration to the destination node. Subsequently, the goal is
to try to do as many migrations in parallel as possible, so that each migration
will take place with the minimum possible delay. Thus, the migration plan is
composed of a sequence of steps, executed sequentially, where the first step con-
sists of all of the migrations that are initially feasible, and each subsequent step
consists of all of the migrations that have been made feasible by the preceding
steps. As an example, Figure B shows a reconfiguration graph that has been
extended with a migration of VM5 first to node N3 and then to node N3 to break
a cycle of infeasible migrations. From this reconfiguration graph, we obtain a
three-step reconfiguration plan. The first step migrates VM;, VM3, VMy and VM5
(to the pivot N3). Then the second step migrates VMa and VM7. Finally, the
third step migrates VM5 to its final destination.

1. VM4
Rm=256,1

Rom=256,1
m ) 1. VM,
Rm=256,1

] > ~
I IIL v Ns IL. vMr
IRm=256,4 K Cm=768,C,=0 Ron=384,A
I
‘\ IL. VM,

Ron=512,A4

N1
Cpn=640,C,=0

Figure 6: A reconfiguration plan
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4.2 Estimating the cost of a reconfiguration plan

The cost of performing a reconfiguration includes both the overhead incurred
by the migrations themselves and the degradation in performance that occurs
when multiple active VMs share a processing unit, as occurs when a migration
is delayed due to sequential or cyclic constraints. The latter is determined by
the duration of preceding migrations. In this section, we first measure the cost
and duration of a single migration, and then propose a cost model for comparing
the costs of possible reconfiguration plans.

Migration cost Migrating a VM from one node to another requires some
CPU and memory bandwidth on both the source and destination nodes. When
there is an active VM on either the source or destination node, it will have
reduced access to these resources, and thus will take longer to complete its task.
In this section, we examine these costs in the context of a homogeneous cluster.

Figure [ shows the set of possible contexts in which a migration can occur,
depending on the state of the affected VMs, in the case where each node is
a uniprocessor. Because a migration only has an impact on the active and
migrated VMs, we ignore the presence of inactive, non-migrated VMs in this
analysis. An inactive VM can move from an inactive node to a node hosting an
active VM (Inactive To Active, or ITA), from a node hosting an active VM to
an inactive node (Inactive From Active, or IFA), or from one node hosting an
active VM to another (Inactive From Active To Active, or IFATA). Similarly, an
active VM can move to an inactive node (Active To Inactive, or ATI) or to an
active node (Active To Active, or ATA), although the latter is never interesting
in a uniprocessor setting as a uniprocessor node should not host multiple active
VMs at one time.

J) VM2 VM3
VM1 VM2 VM1

VM2 VM1
N1 N2 N1 N2 N1 N2
(a) TTA (b) TFA (c) TFATA

VM2 L f

VM1 VM2 VM1

N1 N2 N1 N2
(d) ATI (e) ATA

Figure 7: Different contexts for a migration. VM, is active

In order to evaluate the impact of a migration for each context, we measure
both the duration of the migration and the performance loss on active VMs.
Tests are performed on two identical nodes, each with a single AMD Opteron
2.4GHz CPU and 4Gb of RAM interconnected through a 1Gb link. We use three
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Migration time in sec.

. .
512 1024 1536 2048
Memory used by the migrated VM, in MB

Figure 8: Duration of VM migration

Migration overhead in sec.

. .
512 1024 1536 2048
Memory used by the migrated VM, in MB

Figure 9: Impact of migration on VM performance

VMs: VM;, which is inactive, and VM; and VM3, which are active and execute a
BT.W task embedded in a NASGRID ED benchmark [6]. The VMs are placed
on the nodes according to the IFATA, ITA, ATI, and IFA configurations. We
vary the amount of memory allocated to the migrated VM from 512 to 2048 MB.
Figure | shows the average duration of the migration in terms of the amount
of memory allocated to the migrated VM. Figure [ shows the increase of the
duration of the benchmark due to the migration of a VM using a given amount
of memory.

We observe first that the duration of the migration mostly depends on the
amount of memory used by the migrated VM. Second, the performance loss
varies significantly according to the context of the migration. For the context
IFA, the only overhead comes from reading the memory pages on node Ny, as
writing the pages on the inactive node Ny does not have any impact on an active
VM. For the context ATI, it is the active VM that migrates; in this situation,
the migration is a little more expensive: because Xen uses an incremental copy-
on-write mechanism to migrate the memory pages of a VM [3], multiple passes
are needed to recopy memory pages that are updated by the activity of the
VM during the migration process. The context ITA incurs an even higher
overhead, as writing the memory pages of VM; on node N> uses up most of the
CPU resources on that node, which are then not available to VM,. Finally, the

INRIA



Entropy: a Consolidation Manager for Clusters 13

context IFATA incurs the highest overhead as the migrations act on both the
source and the destination node. This overhead is comparable to the sum of the
overhead of contexts IFA and ITA.

This evaluation of the cost of migrations shows that migrating a VM has an
impact on both the source and destination nodes. The migration reduces the
performance of co-hosted active virtual machines for a duration that depends
on the context of the migration. In the worst case, the performance loss of a
computational task is about the same as the duration of the migration. Although
the overhead can be heavy during the migration time, the migration time is fairly
short, and thus has little impact on the overall performance. Nevertheless, these
numbers suggest that the number of migrations should be kept to a minimum.

Migration cost model Figures B and [ show that the overhead for a single
migration and the delay incurred for preceding migrations both vary principally
in terms of the amount of memory allocated to the migrated VMs. Thus, we
base the cost model on this quantity.

The cost function f is defined as follows. The estimated cost f(p) of a
reconfiguration plan p is the sum of the costs of the migrations of each migrated
VM v (Equation ). The estimated cost f(v) of the migration of a VM v is the
sum of the estimated costs of the preceding steps, plus the amount of memory
allocated to v (Equation ). Finally, the estimated cost f(s) of a step s is
equal to the largest amount of memory allocated to any VM that is migrated
in step s. This estimated cost conservatively assumes that one step can only
begin when all of the migrations of the previous step have completed. For the
reconfiguration plan shown in Figure [l the estimated cost of step IT is 512, the
estimated cost of the migration of VM, is 768, and the estimated cost of the
whole reconfiguration plan is 4224.

f) =) fv) (6)

f)=Ru@) + Y f(s) (7)
seprevs(v)
f(s) = maz(R,,(v)),v € s (8)

4.3 Implementing and optimizing the VMRP

To express the VMRP as a CSP, we again use the constraints that a configuration
must be viable, as described in Section B2, and additionally specify that the
number of nodes used in a configuration is equal to the solution of the VMPP
(Equation @):

Z Ui = Lympp 9)

iEN

For each configuration that satisfies these constraints, the solver constructs a
reconfiguration plan p, if possible. The optimal solution k is the one that mini-
mizes the variable K, defined as follows (Equation [):
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K = f(p) (10)

Minimizing the cost of a reconfiguration provides a plan with fewer migrations
and steps, and a maximum degree of parallelism, thus reducing the duration
and the impact of a reconfiguration.

The lower bound for K is the sum of the cost of migrating each VM that must
migrate i.e. when multiple active VMs are hosted on the same node. The upper
bound corresponds to the cost of the reconfiguration plan pym,p, associated with
the configuration previously computed by VMPP:

( Z Rin(v)) < K < f(Pumpp) (11)

vEVmigrate

Like the VMPP, the VMRP uses equivalences to reduce the time required
to find viable configurations. For the VMRP, however, the equivalence relation
between VMs has to be more restrictive to take into account the impact of their
migration. Indeed, migration of equivalent VMs must have the same impact
on the reconfiguration process. Thus, equivalent VMs must have the same
resource demands and must be hosted on the same nodes. In this situation, the
equivalence relation between two VMs is formalized by Equation T2

Jui,v; €V v =vj & Rp(i) = Rp(j) A
R (i) = R (5) A
host(v;) = host(v;) (12)

Entropy dynamically estimates the cost of the plan associated with the con-
figuration being constructed based on information about the VMs that have
already been assigned to a node. Then, Entropy estimates a minimum cost for
the complete future reconfiguration plan. For each VM that has not yet been
assigned to a node, the solver looks at VMs that can not be hosted by their cur-
rent node and increases the cost with these future migrations. Finally, the solver
determines whether the future configuration based on this partial assignment
might improve the solution or will necessarily be worse. In the latter situation,
the solver abandons the configuration currently being constructed and searches
for another assignment.

5 Evaluations

Entropy uses constraint programming in order to find a better reconfiguration
plan than that found using locally optimal heuristics. Nevertheless, the more
exhaustive search performed by constraint programming is only justified if it
leads to a better solution within a reasonable amount of time. In this section,
we first evaluate the two phases of the reconfiguration algorithm of Entropy
on simulation data, to illustrate the range of benefit that Entropy can provide.
We then use Entropy on a cluster in the Grid’5000 experimental testbed on a
collection of programs from the NASGrid benchmark suite [6].
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5.1 Evaluation of the VMPP and VMRP

The VMPP includes the number of nodes in the configuration identified by the
FFD heuristic as an initial upper bound, and thus neither its solution nor that
of the VMRP will ever use more nodes than the FFD solution. In this section,
we measure the time required for our constraint-based reconfiguration engine to
significantly reduce both the number of nodes and the cost of the reconfiguration
plan, as compared to the solution proposed by the FFD heuristic, on a range of
simulated data. We have used these results as the basis of the timeouts chosen
in Entropy, as described in Section In our evaluation, we consider solving
the VMPP and the VMRP using either FFD or Entropy. The FFD solution
to the VMPP is the number of nodes in the configuration chosen by the FFD
heuristic, and the FFD solution to the VMRP is the minimal reconfiguration
plan that produces this configuration.

We consider two classes of problem sizes, each using 64 or 128 nodes and an
equal number of VMs. For each class, we have randomly generated 100 config-
urations with the following properties: Each VM needs zero or one processing
units, depending on its state, and 1 or 2 GB of memory. Nodes each have
one processing unit and 3GB of memory. The same configurations are used for
evaluating the solutions of both the FFD and Entropy implementations of the
VMPP and the VMRP. The dedicated node that executes the reconfiguration
algorithm has an AMD Opteron 2.0GHz CPU and 2GB of RAM. The reconfig-
uration algorithm is implemented in Java and runs on the standard Sun Java
1.5 virtual machine.

5 nodes =
4 nodes
3 nodes £=3
2 nodes ==
1 nodes

Equiv. mmm

ol 60

ninimized configurations
% of total

64VMs,64Ns ——

i 128VMs, 128N wveeere 0 — -
0 1020 30 40 30 0 X 128712
Computation time in sec. VMS/nodes

(a) Minimization of X  (b) Improvement wrt.
FFD

Figure 10: Properties of the solution of the VMPP for various problem sizes

Evaluation of the VMPP Figure shows the percentage of problems
in each class for which the minimum number of nodes has been determined
within the given amount of time. The computation time for solving the VMPP
is principally determined by the total number of VMs and nodes and by the
number of equivalence classes, as identified in Section For the two classes,
the solver needs fewer than 5 seconds to compute the minimum number of nodes
for 90% of the configurations.

Ag shown in Figure Entropy finds a better packing by up to 5 fewer
nodes for 47% of the configurations. Contrary to the heuristic that stop after the
first complete assignment of the VMs, Entropy continues to compute a better
solution until it times out or proves the optimality of the current one.
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Evaluation of the VMRP Figure shows the progression in finding a
configuration with minimum cost, K. Because of the high cost of creating and
evaluating the reconfiguration plans, the solver is never able to prove that a
configuration has the smallest reconfiguration plan in the time allotted. Thus,
we consider a solution to be minimal until one with a 10% lower reconfigura-
tion cost is computedﬂ The graph denotes the percentage of solutions where
the reconfiguration cost associated with the computed configuration is minimal,
over time. The necessary time for computing a configuration with a minimal
reconfiguration cost is principally determined by the number of VMs and nodes.
After 10 seconds, 90% of the configurations with 64 nodes are minimal. Config-
urations with 128 nodes require a computation time of 20 seconds.

Figure shows the effectiveness of the reduction of K by comparing
the reconfiguration cost of the original solution computed by Entropy for the
VMPP with the cost of the final configuration. The solution produced for the
VMRP uses the same number of nodes as the solution produced for the VMPP
but has a reconfiguration cost that is up to 40% lower. Entropy reduces the
reconfiguration cost for 93% of the configurations.

31-40%
21-30% =3
1120% =
1-10%
Equiv. mem

ooffi 60

% of minimized cost
% of total

aof 40

20
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128VMs, 128N wweeeee 0 N —
0 1020 30 40 30 0 o4 12801
Computation time in sec. VMs/nodes

(a) Minimization of K (b) Improvement wrt.
VMPP

Figure 11: Properties of the solution of the VMRP for various problem sizes

5.2 Experiments on a cluster

We now apply Entropy on a real cluster composed of 39 nodes, each with a
AMD Opteron 2.0 GHz CPU and 2GB of RAM. One node is dedicated to the
reconfiguration engine and three nodes are used as file servers that provide the
disk images for the VMs. The remaining 35 nodes run the Xen Virtual Machine
Monitor with 200MB of RAM dedicated to Xen’s Domain-0. These nodes host a
total of 35 VMs that run benchmarks of the NASGrid benchmark suite [6]. This
benchmark suite is a collection of synthetic distributed applications designed to
rate the performance and functionalities of computation grids. Each benchmark
is organized as a graph of tasks where each task corresponds to a scientific
computation that is executed on a single VM. Edges in the graph represent
the task ordering. This ordering implies that the number of active VMs varies
during the experiment; there are typically from 10 to 15 active VMs. Entropy,
however, is unaware of these task graphs, instead relying on the instantaneous

I'We use the threshold of 10% in this figure to account for the fact that the reconfiguration
cost function only provides an estimate.
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Figure 13: Reconfiguration plans computed by FFD and Entropy

descriptions provided by the sensors to determine which VMs are active and
inactive.

The 35 VMs are assigned to the various tasks of the NASGrid benchmarks
ED, HC, and VP, whose computation graphs are shown in Figure Each
set of VMs associated with a given benchmark has its own NFS file server
that contains the VMs’ disk image. The ED benchmark uses 10 VMs with
512 MB of RAM each. It has one phase of computation that concerns all of
its VMs. The HC benchmark uses 5 VMs with 764 MB of RAM each. This
benchmark is fully sequential and has only one active task at a time. Finally,
the VP benchmark uses 20 VMs, with 512MB of RAM each. This benchmark
has several phases where the number of active VMs varies. Before starting the
experiment, each VM is started in an inactive state, in an initial configuration
computed using Entropy. This configuration uses 13 nodes and corresponds to
a maximum packing. All three benchmarks are started at the same time. We
test the benchmarks using FFD and Entropy as the reconfiguration algorithm.

Figure[@shows the estimated cost of each reconfiguration plan selected using
FFD and Entropy and the duration of its execution. The relationship between
the cost and the execution time is roughly linear, and thus the cost function
f is a reasonable indicator of performance for plans created using both FFD
and Entropy. Furthermore, we observe that reconfiguration based on Entropy
plans typically completes much faster than reconfiguration based on FFD plans.
Indeed, the average execution time for plans computed with FFD is about 413

RR n°® 6639



18 Fabien Hermenier , Xavier Lorea , Jean-Marc Menaud , Gilles Muller , Julia Lawall

seconds while the average execution time for plans computed with Entropy is
only 107 seconds. With short reconfiguration plans, Entropy is able to quickly
react to the frequent changes in the activity of VMs, and thus quickly detects and
corrects non-viable configurations. Entropy performs 18 short reconfigurations
over the duration of the experiment, while the FFD-based algorithm performs
9 longer ones.

Figures and show the activity of VMs while running the bench-
marks with FFD and Entropy, in terms of the number of active VMs that are
satisfied and unsatisfied. Satisfied VMs are active VMs that have their own pro-
cessing unit. Unsatisfied VMs are active VMs that share a processing unit. The
average number of unsatisfied VMs is 1.75 for FFD and 1.05 for Entropy. The
number of unsatisfied VMs is a significant criterion to rate the benefit of a recon-
figuration algorithm. An unsatisfied VM indicates a non-viable configuration,
and thus a performance loss.

Satisfied VMs c— Satisfied VMs c—
Unsatisfied VMs mmm Unsatisfied VMs mmm

Active VMs

‘Time (hours) ‘Time (hours)

(a) FFD (b) Entropy
Figure 14: Activity of VMs

When the benchmarks start, 12 VMs become active at the same time. En-
tropy quickly remaps the VMs and obtains a viable configuration by minute
6. FFD, on the other hand, does not reach a viable configuration until much
later. The total number of active VMs increases at minute 10, thus increasing
the number of unsatisfied VMs. As Entropy is not in a reconfiguration state at
that time, it computes a new configuration and migrates the VMs accordingly,
to obtain a viable configuration by minute 11. FFD, on the other hand, is in
the midst of migrating VMs at the point of the first peak of activity, according
to a previously computed, and now outdated, reconfiguration plan. FFD only
reaches a viable configuration in minute 18. In this situation, we consider that
an iteration of the reconfiguration process using FFD takes too much time as
compared to the activity of the VMs.

The average response time of a reconfiguration process measures the average
duration between detecting the presence of unsatisfied VMs and the next viable
configuration. It indicates the capacity of the reconfiguration process to scale
with the activity of VMs. For this experiment, the average response time for
FFD is 248 seconds. For Entropy, the average response time is 142 seconds.

Figure shows that number of unsatisfied VMs is always zero after
1:00. This is due to the unequal duration of the benchmarks. At minute 50,
the benchmark HC ends its computation. Then the activity of VP changes at
minutes 54 and 58 and requires a reconfiguration. For the remaining time, there
is no new phase that makes unsatisfied VMs: The end of the last phase of VP
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at 1:10 does not require a reconfiguration and the activity of the last running
benchmark, ED, is constant.

Entropy —

Used nodes
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Figure 15: Number of nodes used with FFD and Entropy

Figure [[3 shows the number of nodes used to host VMs. Reconfiguration
plans computed with FFD require more migrations and thus tend to require
more pivot nodes. For this experiment, the reconfiguration process based on
FFD requires up to 4 additional pivot nodes. This situation is particularly
unfortunate when consolidation is used to save energy, by powering down unused
nodes, as nodes have to be turned on just to perform some migrations. Entropy,
which creates smaller plans, requires at most one additional pivot nodes, and
thus provides a environment favorable to the shutting down of unused nodes.
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Figure 16: Runtime Comparison

By minimizing the duration of non-viable configurations, Entropy reduces
the performance loss due to consolidation. Figure [[l shows the runtime of each
benchmark for FFD, Entropy and for an environment without any consolidation.
In the latter situation, each VM is definitively assigned to its own node to avoid
performance loss due to the sharing of processing units. In this context, 35 nodes
are required. The global overhead for all benchmarks compared to a execution
without consolidation is 19.2% for FFD. Entropy reduces this overhead to 11.5%.

We can summarize the resource usage of the various benchmarks in terms
of the number of nodes used per hour. Without any consolidation, running the
benchmarks consumes 53.01 nodes per hour. Consolidation using FFD reduces
this consumption to 24.53 nodes per hour. Consolidation using Entropy further
reduces this consumption to 23.21 nodes per hour. However, these numbers are
affected by the duration of each benchmark. When all benchmarks are running,
the consolidation only comes from the reconfiguration engine that dynamically
mixes inactive VMs with active VMs in the different phases of the applications.
When a benchmark stops, it creates zombie VMs that still require memory

RR n°® 6639



20 Fabien Hermenier , Xavier Lorca , Jean-Marc Menaud , Gilles Muller , Julia Lawall

resources but should be turned off. Thus, to estimate the consumption that
only results from mixing inactive and active non-zombie VMs, we consider the
consumption until the end of the first benchmark to complete, HC. In this
situation, running the three benchmarks without consolidation consumes 24.31
nodes per hour, with FFD consumes 15.34 nodes per hour, and with Entropy
consumes only 11.72 nodes per hour.

6 Related work

Power-Aware VM replacement Nathuji et al. [I2] present power efficient
mechanisms to control and coordinate the effects of various power management
policies. This includes the packing of VMs through live migration. They later
extended their work to focus on the tradeoff between the Service Level Agree-
ments of the applications embedded in the VMs and the necessity to satisfy
hardware power constraints [I[3]. Entropy addresses the reconfiguration issues
brought by the live migration of VMs in a cluster and provides a solution to
pack VMs in terms of their requirements for processing units and memory, while
minimizing the duration of the reconfiguration process and its impact on per-
formance.

Verma et al. [I7] propose an algorithm that packs VMs according to their
CPU needs while minimizing the number of migrations. This algorithm is an
extension of the FFD heuristic and migrates VMs located on overloaded nodes
to under-exploited nodes. Restricting migrations to only those from overloaded
nodes to underloaded nodes has the effect that all selected migrations are di-
rectly feasible; the sequential and cyclic constraints that we have identified in
Section Bl cannot arise. Nevertheless, this implies that the approach may miss
opportunities for savings, in cases where rearranging the VMs within the under-
loaded nodes would enable other, even more beneficial migrations. In this sit-
uation, this approach fails, potentially violating any Service Level Agreements,
even if there is a possible solution. Entropy exploits a larger set of possible VM
migrations by addressing sequential and cyclic constraints, and thus can be used
to solve the more complex reconfiguration problems that can occur in a highly
loaded environment.

Performance Management through replacement Khanna et al. [TT] pro-
pose a reconfiguration algorithm that assigns each VM to a node in order to
minimize the unused portion of resources. VMs with high resource requirements
are migrated first. Bobroff et al. [3] base their replacement engine on a fore-
cast service that predicts, for the next forecast interval, the resource demands
of VMs, according to their history. Then the replacement algorithm, which
is based on an FFD heuristic, selects a node than can host the VM during
this time interval. To ensure efficiency, the forecast window takes into account
the duration of the reconfiguration process. However, this assignment does not
consider sequential and cyclic constraints, which impact the feasibility of the
reconfiguration process and its duration.

VMs replacement issues Grit et al. [7] consider some VMs replacement
issues for resource management policies in the context of Shirako [9], a system for
on-demand leasing of shared networked resources in federated clusters. When a
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migration is not directly feasible, due to sequence issues, the VM is paused using
suspend-to-disk. Once the destination node is available for migration, the VM
is resumed on it. Entropy only uses live migrations in order to prevent failures
in the user environment due to suspending part of a distributed application.

Sandpiper [I8] is a reconfiguration engine, based on an FFD heuristic, to
relocate VMs from overloaded to under-utilized nodes. When a migration be-
tween two nodes is not directly feasible, the system identifies a set of VMs
to swap in order to free a sufficient amount of resources on the destination
node. Then the sequence of migrations is executed. This approach is able to
solve simple replacement issues but requires some space for temporarily hosting
VMs on either the source or the destination node. By identifying pivot nodes
and bypass migrations, Entropy can resolve cycles without performing multiple
swap operations that increase the number of migrations thus the duration of
the reconfiguration process.

7 Conclusion and Future Work

Previous work has rejected the use of constraints in implementing consolidation
as being too expensive. In this paper, we have shown that the overhead of
consolidation is determined not only the time required to choose a new config-
uration, but also by the time required to migrate VMs to that configuration.
Our constraint-programming based approach, which explicitly takes into ac-
count the cost of the migration plan, can indeed reduce the number of nodes
and the migration time significantly, as compared to results obtained with the
previously used FFD heuristic. We have implemented this approach in our con-
solidation manager Entropy, and shown that it can reduce the consumption of
cluster nodes per hour for a collection of NASGrid benchmarks by over 50% as
compared to static allocation and by almost 25% as compared to consolidation
using FFD.

The configurations considered in this paper are fairly simple, because in the
clusters available in the Grid’5000 experimental testbed, every node has only a
single processor and all nodes have the same amount of memory. Our approach,
however, is directly applicable to clusters providing multiprocessors and nodes
with non-homogeneous memory availability, because the number of processors
and the amount of memory available are simply parameters of the VMPP and
VMRP problems. We will extend our results to such clusters when they become
available to us.

In future work, we plan to consider the problem of admission control for
clusters providing consolidation. We expect that simulation results, like those
described in Section BTl can help to identify the number of tasks that a cluster
providing consolidation can accept. We also plan to consider the applicability
of the approach to other kinds of software than scientific computations, such as
e-commerce.
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