
HAL Id: inria-00320204
https://inria.hal.science/inria-00320204v2

Submitted on 11 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Entropy: a Consolidation Manager for Clusters
Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, Julia

Lawall

To cite this version:
Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, Julia Lawall. Entropy: a Consol-
idation Manager for Clusters. [Research Report] RR-6639, INRIA. 2008. �inria-00320204v2�

https://inria.hal.science/inria-00320204v2
https://hal.archives-ouvertes.fr

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
66

39
--

F
R

+
E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Entropy: a Consolidation Manager for Clusters

Fabien Hermenier — Xavier Lorca — Jean-Marc Menaud — Gilles Muller — Julia Lawall

N° 6639

Septembre 2008

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex (France)

Téléphone : +33 2 99 84 71 00 — Télécopie : +33 2 99 84 71 71

Entropy: a Consolidation Manager for ClustersFabien Hermenier∗ , Xavier Lora∗ , Jean-Mar Menaud∗ , GillesMuller† , Julia Lawall‡Thème COM � Systèmes ommuniantsProjet OBASCORapport de reherhe n° 6639 � Septembre 2008 � 23 pagesAbstrat: Clusters provide powerful omputing environments, but in pratiemuh of this power goes to waste, due to the stati alloation of tasks to nodes,regardless of their hanging omputational requirements. Consolidation is anapproah that migrates tasks within a luster as their omputational require-ments hange, both to redue the number of nodes that need to be ative and toeliminate temporary overload situations. Previous onsolidation strategies haverelied on task plaement heuristis that use only loal optimization and typiallydo not take migration overhead into aount. However, heuristis based on onlyloal optimization may miss the globally optimal solution, resulting in unnees-sary resoure usage, and the overhead for migration may nullify the bene�ts ofonsolidation.In this paper, we propose the Entropy resoure manager for homogeneouslusters, whih performs onsolidation based on onstraint programming andtakes migration overhead into aount. The use of onstraint programming al-lows Entropy to �nd mappings of tasks to nodes that are better than those foundby heuristis based on loal optimizations, and that are frequently globally opti-mal in the number of nodes. Beause migration overhead is taken into aount,Entropy hooses migrations that an be implemented e�iently, inurring a lowperformane overhead.Key-words: Virtualization, Consolidation, Cluster, Reon�guration, Migra-tion
∗ Département Informatique, Éole des Mines de Nantes � INRIA, LINA, CNRS � �rst-name.lastname�emn.fr
† Éole des Mines de Nantes � INRIA � Gilles.Muller�emn.fr
‡ DIKU, University of Copenhagen � julia�diku.dk

Entropy: un Gestionnaire de Consolidation pourGrappesRésumé : Les grappes de serveurs fournissent un environnement de alulpuissant. Cependant, une partie de ette puissane est perdue par une alloa-tion statique des tâhes sur les n÷uds de aluls qui ne tient pas ompte dela variations de leurs besoins. En regroupant es tâhes dynamiquement, laonsolidation permet de réduire le nombre de n÷uds néessaires à l'exéutiondes aluls, tout en éliminant les situations de saturations temporaires. Lesstratégies de onsolidation atuelle se foalisent sur une optimisation loale duplaement des tâhes et ne tiennent pas ompte de l'impat des migrations. Cesheuristiques manquent la notion d'optimalité globale qui implique une onsom-mation de resoures qui n'est pas néessaire. De plus, l'absene de onsidérationdes migrations réduit de manière notable les performanes de la grappe, limitantainsi l'interêt de la onsolidation.Cet artile présente Entropy, un gestionnaire de onsolidation pour grappeshomogènes utilisant une approhe basée sur la programmation par ontraintes ettenant ompte de l'impat des migrations. Notre approhe permet la réalisationd'un agenement des tâhes globalement meilleur par rapport aux approheslassiques à base d'heuristiques. De plus, en tenant ompte des migrationsdes tâhes sur la grappe, l'impat de la onsolidation sur les performanes estdiminuée.Mots-lés : Virtualisation, Consolidation, Grappe , Reon�guration, Migra-tion

Entropy: a Consolidation Manager for Clusters 31 IntrodutionGrid and Cluster omputing are inreasingly used to meet the growing ompu-tational requirements of sienti� appliations. In this setting, a user organizesa job as a olletion of tasks that eah should run on a separate proessing unit(i.e, an entire node, a CPU, or a ore) [6℄. To deploy the job, the user makes arequest to a resoure broker, speifying the number of proessing units requiredand the assoiated memory requirements. If the requested CPU and memoryresoures are available, the job is aepted. This stati strategy ensures that alljobs aepted into the luster will have su�ient proessing units and memoryto omplete their work. Nevertheless, it an lead to a waste of resoures, asmany sienti� omputations proeed in phases, not all of whih use all of thealloated proessing units at all times.Consolidation is a well-known tehnique to dynamially redue the numberof nodes used within a running luster by liberating nodes that are not neededby the urrent phase of the omputation. Liberating nodes an allow more jobsto be aepted into the luster, or an allow powering down unused nodes tosave energy. To make onsolidation transparent, regardless of the programminglanguage, middleware, or operating system used by the appliation, it is onve-nient to host eah task in a virtual mahine (VM), managed by a VM Monitor(VMM) suh as Xen [1℄, for whih e�ient migration tehniques are available [5℄.Consolidation then amounts to identifying inative VMs that an be migratedto other nodes that have su�ient unused memory. A VM that is inative atone point in time may, however, later beome ative, possibly ausing the nodethat is hosting it to beome overloaded. A onsolidation strategy must thus alsomove VMs from overloaded nodes to underloaded ones.Several approahes to onsolidation have been proposed [3, 7, 11℄. These ap-proahes, however, have foused on how to alulate a new on�guration, andhave negleted the ensuing migration time. However, onsolidation is only ben-e�ial when the extra proessing unit time inurred for migration is signi�antlyless than the amount of proessing unit time that onsolidation makes available.While migrating a single Xen VM an be very e�ient, inurring an overheadof only between 6 and 26 seonds in our measurements, it may not be possibleto migrate a VM to its hosen destination immediately; instead other VMs may�rst have to be moved out of the way to free su�ient memory. Delaying themigration of an inative VM only auses unneessary node usage. On the otherhand, delaying the migration of an ative VM that is running on a proessingunit overloaded with n other VMs degrades the performane of those VMs fora period of time by a fator of n as ompared to a non-onsolidated solution,in whih eah VM always has its own proessing unit. Inreasing the numberof VMs that need to migrate as ompared to the amount of available resouresonly exaerbates these problems. Thus, it is essential that onsolidation be ase�ient and reative as possible.In this paper, we propose a new approah to onsolidation in a homogeneousluster environment that takes into aount both the problem of alloating theVMs to the available nodes and the problem of how to migrate the VMs to thesenodes. Our onsolidation manager, Entropy, works in two phases and is based ononstraint solving [2, 14℄. The �rst phase, based on onstraints desribing the setof VMs and their CPU and memory requirements, omputes a plaement usingthe minimum number of nodes and a tentative reon�guration plan to ahieveRR n° 6639

4 Fabien Hermenier , Xavier Lora , Jean-Mar Menaud , Gilles Muller , Julia Lawallthat plaement. The seond phase, based on a re�ned set of onstraints that takefeasible migrations into aount, tries to improve the plan, to redue the numberof migrations required. In our experiments, using the NASGrid benhmarks [6℄on a luster of 39 AMD Opteron 2.0GHz CPU uniproessors, we �nd that asolution without onsolidation uses 24.31 nodes per hour, onsolidation basedon the previously-used First Fit Dereasing (FFD) heuristi [3, 17, 18℄ uses 15.34nodes per hour, and onsolidation based on Entropy uses only 11.72 nodes perhour, a savings of more than 50% as ompared to the stati solution.The remainder of this paper is organized as follows. Setion 2 gives anoverview of Entropy. Then, Setion 3 desribes how Entropy uses onstraintprogramming to determine the minimum number of nodes required by a olle-tion of VMs, and Setion 4 presetns how Entropy uses onstraint programmingto minimize the reon�guration plan. Finally, Setion 5 evaluates Entropy usingexperimental results on a luster of the Grid'5000 experimental testbed, Se-tion 6 desribes related work, and Setion 7 presents our onlusions and futurework.2 System ArhitetureA luster typially onsists of a single node dediated to luster resoure man-agement, a olletion of nodes that an host user tasks, and other speializednodes, suh as �le servers. Entropy is built over Xen 3.0.3 [1℄ and is deployed onthe �rst two. It onsists of a reon�guration engine that runs on the node thatprovides luster resoure management and a set of sensors that run in Xen'sDomain-0 on eah node that an host user tasks, i.e., VMs.The goal of Entropy is to e�iently maintain the luster in a on�guration,i.e. a mapping of VMs to nodes, that is (i) viable, i.e. that gives every VMaess to su�ient memory and every ative VM aess to own proessing unit,and (ii) optimal, i.e. that uses the minimum number of nodes. For this, the En-tropy reon�guration engine iteratively 1) waits to be informed by the Entropysensors that a VM has hanged state, from ative to inative or vie versa, 2)tries to ompute a reon�guration plan starting from the urrent on�gurationthat requires the fewest possible migrations and leaves the luster in a viable,optimal on�guration, and 3) if suessful, initiates migration of the VMs, ifthe new on�guration uses fewer nodes than the urrent one, or if the urrenton�guration is not viable. The reon�guration engine then waits 5 seondsbefore repeating the iteration, to aumulate new information about resoureusage. In this proess, the Entropy sensors periodially send requests to theHTTP interfae of the Xen hypervisor on the urrent node to obtain the CPUusage of the loal VMs, and infer state hanges from this information. An En-tropy sensor also reeives a message from the reon�guration engine when a VMshould be migrated, and sends requests to the Xen hypervisor HTTP interfaeto inform it whih VM should be migrated and to whih node.Previous approahes to ahieving a viable, on�guration have used heuristisin whih a loally optimal plaement is hosen for eah VM aording to somestrategy [3, 7, 11, 17℄. However, loal optimization does not always lead to aglobally optimal solution, and may fail to produe any solution at all. Entropyinstead uses Constraint Programming (CP), whih is able to determine a glob-ally optimal solution, if one exists, by using a more exhaustive searh, basedINRIA

Entropy: a Consolidation Manager for Clusters 5// Instantiating a new problem 1Problem pb = new Problem(); 23// Delaration of the variables and their assoiated domains 4IntDomainVar x = pb.makeEnumIntVar("x", 0, 10); 5IntDomainVar y = pb.makeEnumIntVar("y", 0, 10); 6IntDomainVar z = pb.makeEnumIntVar("z", 0, 10); 78// Delaration of the onstraint 9IntExp exp = pb.plus(x,y); 10Constraint = pb.eq(exp, z); 1112// The onstraint is plugged into the problem 13pb.post(); 1415// We start solving. 16pb.solve(); 17Figure 1: Java ode using the Choo library for �nding values of variables x, y,and z in the range 0 to 10, suh that x + y = zon a depth �rst searh. The idea of CP is to de�ne a problem by stating on-straints (logial relations) that must be satis�ed by the solution. A ConstraintSatisfation Problem (CSP) is de�ned as a set of variables, a set of domains thatrepresent the set of possible values that eah variable an take on and a set ofonstraints that represent required relations between the values of the variables.A solution for a CSP is a variable assignment (a value for eah variable) thatsimultaneously satis�es the onstraints. To solve CSPs, Entropy uses the Choolibrary [10℄, whih an solve a CSP where the goal is to minimize or maximizethe value of a single variable. Figure 1 shows an example of Choo ode, whihsolves the problem of �nding values of variables x, y, and z in the range 0 to10, suh that x + y = z.Beause Choo an only solve optimization problems of a single variable,the reon�guration algorithm proeeds in two phases. The �rst phase �nds theminimum number n of nodes that are neessary to host all VMs. We refer to thisproblem as the Virtual Mahine Paking Problem (VMPP). The seond phaseminimizes the reon�guration time, given the hosen number of nodes n. Werefer to this problem as the Virtual Mahine Replaement Problem (VMRP).Solving these problems may be time-onsuming. While the reon�guration en-gine runs on the luster resoure management node, and thus does not ompetewith VMs for CPU and memory, it is important to produe a new on�gurationquikly to maximize the bene�t of onsolidation. Thus, we limit the total om-putation time for both problems to 1 minute, of whih the �rst phase has atmost 15 seonds, and the seond phase has the remaining time. These durationsare su�ient to give a nontrivial improvement in the solution, as ompared tothe FFD heuristi, as shown in Setion 5. Furthermore, the onstraint solver isimplemented suh that if the omputation times out without the solver havingfound a solution that has been proved to be optimal, then the best solutionfound so far is returned.
RR n° 6639

6 Fabien Hermenier , Xavier Lora , Jean-Mar Menaud , Gilles Muller , Julia Lawall3 The Virtual Mahine Paking ProblemThe objetive of the VMPP is to determine the minimum number of nodesthat an host the VMs, given their urrent proessing unit and memory re-quirements. We �rst present several examples that illustrate the onstraints onthe assignment of VMs to nodes, then onsider how to express the VMPP asa onstraint satisfation problem, and �nally desribe some optimizations thatwe use in implementing a solver for this problem using Choo.3.1 Constraints on the assignment of VMs to nodesEah node in a luster provides a ertain amount of memory and number ofproessing units, and eah VM requires a ertain amount of memory, and, ifative, a proessing unit. These onstraints must be satis�ed by a viable on-�guration. For example, if every node is a uniproessor, then the on�gurationin Figure 2(a) is not viable beause it inludes two ative VMs on node N1. Onthe other hand, the on�guration in Figure 2(b) is viable beause eah VM hasaess to su�ient memory and eah node hosts at most one ative VM.
(a) Non-viableon�guration (b) Viable on-�gurationFigure 2: Non-viable and viable on�gurations. VM2 and VM3 are ative
(a) A minimalviable on�gura-tion (b) Anotherminimal viableon�gurationFigure 3: Viable on�gurations. VM2 and VM3 are ativeTo ahieve onsolidation, we must �nd a viable on�guration that uses theminimum number of nodes. For example, the on�guration shown in Figure 2(b)is viable, but it is not minimal, beause, as shown in Figure 3(a), VM2 ould behosted on node N2, using one fewer node. The problem of �nding a minimal,viable on�guration is redutible to the NP-Hard 2-Dimensional Bin PakingProblem [15℄, where the dimensions orrespond to the amount of memory andnumber of proessing units.The VMPP may have multiple solutions, as illustrated by Figures 3(a)and 3(b), whih both use two nodes. These solutions, however, may not allentail the same number of migrations. For example, if we perform onsolidationINRIA

Entropy: a Consolidation Manager for Clusters 7with Figure 2(b) as the initial on�guration, we observe that only 1 migration isneessary to reah the on�guration shown in Figure 3(a) (moving VM2 onto N2),but 2 are neessary to reah the on�guration shown in Figure 3(b) (moving VM3onto N2 and VM1 onto N3).3.2 Expressing the VMPP as a onstraint satisfation prob-lemTo express the VMPP as a CSP, we onsider a set of nodes N and a set of VMs
V . The goal is to �nd a viable on�guration that minimizes the number of nodesused. The notation Hi, de�ned below, is used to desribe a on�guration.De�nition 3.1 For eah node ni ∈ N , the bit vetor Hi = 〈hi1, . . . , hij , . . . , hik〉denotes the set of VMs assigned to node ni (i.e., hij = 1 i� the node ni is hostingthe VM vj).We express the onstraints that a viable on�guration must respet eahVM's proessing unit and memory requirements as follows. Let Rp be thevetor of proessing unit demand of eah VM, Cp be the vetor of proessingunit apaity assoiated with eah node, Rm be the vetor of memory demandof eah VM, and Cm be the vetor of memory apaity assoiated with eahnode. Then, the following inequalities express the proessing unit and memoryonstraints:

Rp · Hi ≤ Cp(i) ∀ni ∈ N
Rm · Hi ≤ Cm(i) ∀ni ∈ NGiven these onstraints, our goal is to minimize the value of the variable X ,de�ned as follows, where the variable ui is 1 if the node i hosts at least one VM,and 0 otherwise.

X =
∑

i∈N

ui, where ui =

{

1, ∃vj ∈ V | hij = 1

0, otherwise (1)We let xvmpp denote this solution.The solver dynamially evaluates the remaining free plae (in terms of bothproessing unit and memory availability) on eah node during the searh fora minimum value of X . This is done by solving Multiple Knapsak problemsusing a dynami programming approah [16℄.3.3 OptimizationsIn priniple, the onstraint solver must enumerate eah possible on�guration,hek whether it is viable, and ompare the number of nodes to the minimumfound so far. In pratie, this approah is unneessarily expensive. Our imple-mentation redues the omputation ost using a number of optimizations.Choo inrementally heks the viability and minimality of a on�guration asit is being onstruted and disards a partial on�guration as soon as it is foundto be non-viable or to use more than the minimum number of nodes found sofar. This strategy redues the number of on�gurations that must be onsidered.RR n° 6639

8 Fabien Hermenier , Xavier Lora , Jean-Mar Menaud , Gilles Muller , Julia LawallIt furthermore tries to detet non-viable on�gurations as early as possible, byusing a �rst fail approah [8℄ in whih VMs that are ative and have greatermemory requirements are treated earlier than VMs with lesser requirements.This strategy redues the hane of omputing an almost omplete on�gurationand then �nding that the remaining VMs annot be plaed within the urrentminimum number of nodes.In priniple, the domain of the variable X is the entire set of non-negativeintegers. We an, however, signi�antly redue the searh spae and improvethe performane of the solver by identifying lower and upper bounds that arelose to the optimal value and are easy to ompute. As a lower bound, we takethe number of ative VMs divided by number of proessing units available pernode (Equation 2). If we �nd a solution using this number of VMs, then it isknown to be optimal with no further tests. As an upper bound, we take thevalue omputed by the First Fit Dereasing (FFD) heuristi, whih has beenused in other work on onsolidation [3, 17, 18℄ (Equation 3). The FFD heuristiassigns eah VM to the �rst node it �nds satisfying the VM's proessing unit andmemory requirements, starting with the VMs that require the biggest amountof memory. This heuristi tends to provide a good value, in a very short time(less than a seond) but the result is not guaranteed to be optimal and theheuristi may indeed not �nd any solution. In the latter ase, the upper boundis the minimum of the number of nodes and the number of VMs.
X ≥ min

∑

vi∈V

Rp(i)

Cp(j)

, nj ∈ N (2)
X ≤

{

x�dmin(|N |, |V|), otherwise (3)Furthermore, we observe that some nodes or VMs may be equivalent, interms of their proessing unit and memory apaity or demand, and try to ex-ploit this information to improve the pruning of the searh tree. If the resoureso�ered by a node ni are not su�ient to host a VM vi, then they are also notsu�ient to host any VM vj with the same requirements. Furthermore, the VM
vi annot be hosted by any other node nj with the same harateristis as ni.These equivalenes are de�ned as follows:

∀ni, nj ∈ N | ni ≡ nj ⇔ Cp(i) = Cp(j) ∧

Cm(i) = Cm(j) (4)
∀vi, vj ∈ V | vi ≡ vj ⇔ Rp(i) = Rp(j) ∧

Rm(i) = Rm(j) (5)4 The Virtual Mahine Replaement ProblemThe solution to the VMPP provides the minimum number of nodes required tohost the VMs. However, as illustrated in Setion 3.1, for a given olletion ofINRIA

Entropy: a Consolidation Manager for Clusters 9VMs, there an be multiple on�gurations that minimize the number of usednodes and the number of migrations required to reah these on�gurations anvary. The objetive of the Virtual Mahine Replaement Problem (VMRP) isto onstrut a reon�guration plan for eah possible on�guration that uses thenumber of nodes determined by the VMPP, and to hoose the one with thelowest estimated reon�guration ost. In the rest of this setion, we onsiderhow to onstrut a reon�guration plan, how to estimate its ost, and how toombine these steps into a solution for the VMRP.4.1 Construting a reon�guration planThe onstraint of viability has to be taken into aount both in the �nal on-�guration and also during migration. A migration is feasible if the destinationnode has a su�ient amount of free memory and, when the migrated VM isative, if the destination node has a free proessing unit. However, to obtain anoptimal solution it is often neessary to onsider a on�guration in whih somemigrations are not immediately feasible. We identify two kinds of onstraintson migrations: sequential onstraints and yli onstraints.A sequential onstraint ours when one migration an only begin whenanother one has ompleted. As an example, onsider the migrations representedby the reon�guration graph shown in Figure 4. A reon�guration graph is anoriented multigraph where eah edge denotes the migration of a VM betweentwo nodes. Eah edge spei�es the virtual mahine to migrate, the amount ofmemory Rm required to host it and its state A (ative) or I (inative). Eahnode denotes a node of the luster, with its urrent amount of free memory
Cm and its urrent free apaity for hosting ative virtual mahines Cp. Inthe example in Figure 4, it is possible to onsolidate the VMs onto only twonodes, by moving VM1 from N1 to N2 and moving VM2 from N2 to N3. Butthese migrations annot happen in parallel, beause as long as VM2 is on N2, itonsumes all of the available memory. Thus, the migration of VM1 from N1 to
N2 an only begin one the migration of VM2 from N2 to N3 has ompleted.

N1

Cm=400,Cp=0 N2

Cm=0,Cp=1 N3

Cm=400,Cp=0VM1

Rm=200,A VM2

Rm=400,IFigure 4: A sequene of migrationA yli onstraint ours when a set of infeasible migrations forms a yle.An example is shown in Figure 5(a), where, due to memory onstraints, VM1an only migrate from node N1 to node N2 when VM2 has migrated from node
N2, and VM2 an only migrate from node N2 to node N1 when VM1 has migratedfrom node N1. We an break suh a yle by inserting an additional migration.A pivot node outside the yle is hosen to temporarily host one or more of theVMs. For example, in Figure 5(b), the yle between VM1 and VM1 is broken bymigrating VM1 to the node N3, whih is used as a pivot. After breaking all ylesof infeasible migrations in this way, an order an be hosen for the migrationsas in the previous example. These migrations inlude moving the VMs on thepivot nodes to their original destinations.RR n° 6639

10 Fabien Hermenier , Xavier Lora , Jean-Mar Menaud , Gilles Muller , Julia Lawall
N1

Cm=0,Cp=-1
N2

Cm=0,Cp=1 VM1

Rm=256,AVM2

Rm=256,I(a) Inter-dependantmigrations
N1

Cm=0,Cp=-1 N3

Cm=512,Cp=1
N2

Cm=0,Cp=1
VM1

Rm=256,A
VM1

Rm=256,AVM2

Rm=256,I(b) A bypass migration breaks the yleFigure 5: Cyle of non-feasible migrationsTaking the above issues into aount, the algorithm for onstruting a re-on�guration plan is as follows. Starting with a reon�guration graph, the �rststep is to identify eah yle of infeasible migrations, identify a node in eahsuh yle where the VMs to migrate have the smallest total memory require-ment, and selet a pivot node that an aomodate these VMs' proessing unitand memory requirements. The result is an extended reon�guration graph inwhih for eah suh hosen VM, the migration from the urrent node to thedestination node in the desired on�guration is replaed by a migration to thepivot followed by a migration to the destination node. Subsequently, the goal isto try to do as many migrations in parallel as possible, so that eah migrationwill take plae with the minimum possible delay. Thus, the migration plan isomposed of a sequene of steps, exeuted sequentially, where the �rst step on-sists of all of the migrations that are initially feasible, and eah subsequent steponsists of all of the migrations that have been made feasible by the preedingsteps. As an example, Figure 6 shows a reon�guration graph that has beenextended with a migration of VM5 �rst to node N2 and then to node N3 to breaka yle of infeasible migrations. From this reon�guration graph, we obtain athree-step reon�guration plan. The �rst step migrates VM1, VM3, VM4 and VM5(to the pivot N2). Then the seond step migrates VM2 and VM7. Finally, thethird step migrates VM5 to its �nal destination.
N2

Cm=512,Cp=1 N4

Cm=512,Cp=1
N5

Cm=768,Cp=0
N3

Cm=512,Cp=0 N1

Cm=640,Cp=0
I. VM4

Rm=256,II. VM3
Rm=256,IIII. VM5

Rm=256,A II. VM7
Rm=384,AII. VM2

Rm=512,A
I. VM1

Rm=256,II. VM5
Figure 6: A reon�guration plan INRIA

Entropy: a Consolidation Manager for Clusters 114.2 Estimating the ost of a reon�guration planThe ost of performing a reon�guration inludes both the overhead inurredby the migrations themselves and the degradation in performane that ourswhen multiple ative VMs share a proessing unit, as ours when a migrationis delayed due to sequential or yli onstraints. The latter is determined bythe duration of preeding migrations. In this setion, we �rst measure the ostand duration of a single migration, and then propose a ost model for omparingthe osts of possible reon�guration plans.Migration ost Migrating a VM from one node to another requires someCPU and memory bandwidth on both the soure and destination nodes. Whenthere is an ative VM on either the soure or destination node, it will haveredued aess to these resoures, and thus will take longer to omplete its task.In this setion, we examine these osts in the ontext of a homogeneous luster.Figure 7 shows the set of possible ontexts in whih a migration an our,depending on the state of the a�eted VMs, in the ase where eah node isa uniproessor. Beause a migration only has an impat on the ative andmigrated VMs, we ignore the presene of inative, non-migrated VMs in thisanalysis. An inative VM an move from an inative node to a node hosting anative VM (Inative To Ative, or ITA), from a node hosting an ative VM toan inative node (Inative From Ative, or IFA), or from one node hosting anative VM to another (Inative From Ative To Ative, or IFATA). Similarly, anative VM an move to an inative node (Ative To Inative, or ATI) or to anative node (Ative To Ative, or ATA), although the latter is never interestingin a uniproessor setting as a uniproessor node should not host multiple ativeVMs at one time.
(a) ITA (b) IFA () IFATA

(d) ATI (e) ATAFigure 7: Di�erent ontexts for a migration. VM2 is ativeIn order to evaluate the impat of a migration for eah ontext, we measureboth the duration of the migration and the performane loss on ative VMs.Tests are performed on two idential nodes, eah with a single AMD Opteron2.4GHz CPU and 4Gb of RAM interonneted through a 1Gb link. We use threeRR n° 6639

12 Fabien Hermenier , Xavier Lora , Jean-Mar Menaud , Gilles Muller , Julia Lawall

 0

 5

 10

 15

 20

 25

 512 1024 1536 2048

M
ig

ra
tio

n
tim

e
in

 s
ec

.

Memory used by the migrated VM, in MB

IFATA
ITA
ATI
IFAFigure 8: Duration of VM migration

 0

 5

 10

 15

 20

 25

 30

 512 1024 1536 2048

M
ig

ra
tio

n
ov

er
he

ad
 in

 s
ec

.

Memory used by the migrated VM, in MB

IFATA
ITA
ATI
IFAFigure 9: Impat of migration on VM performaneVMs: VM1, whih is inative, and VM2 and VM3, whih are ative and exeute aBT.W task embedded in a NASGRID ED benhmark [6℄. The VMs are plaedon the nodes aording to the IFATA, ITA, ATI, and IFA on�gurations. Wevary the amount of memory alloated to the migrated VM from 512 to 2048 MB.Figure 8 shows the average duration of the migration in terms of the amountof memory alloated to the migrated VM. Figure 9 shows the inrease of theduration of the benhmark due to the migration of a VM using a given amountof memory.We observe �rst that the duration of the migration mostly depends on theamount of memory used by the migrated VM. Seond, the performane lossvaries signi�antly aording to the ontext of the migration. For the ontextIFA, the only overhead omes from reading the memory pages on node N1, aswriting the pages on the inative node N2 does not have any impat on an ativeVM. For the ontext ATI, it is the ative VM that migrates; in this situation,the migration is a little more expensive: beause Xen uses an inremental opy-on-write mehanism to migrate the memory pages of a VM [5℄, multiple passesare needed to reopy memory pages that are updated by the ativity of theVM during the migration proess. The ontext ITA inurs an even higheroverhead, as writing the memory pages of VM1 on node N2 uses up most of theCPU resoures on that node, whih are then not available to VM2. Finally, theINRIA

Entropy: a Consolidation Manager for Clusters 13ontext IFATA inurs the highest overhead as the migrations at on both thesoure and the destination node. This overhead is omparable to the sum of theoverhead of ontexts IFA and ITA.This evaluation of the ost of migrations shows that migrating a VM has animpat on both the soure and destination nodes. The migration redues theperformane of o-hosted ative virtual mahines for a duration that dependson the ontext of the migration. In the worst ase, the performane loss of aomputational task is about the same as the duration of the migration. Althoughthe overhead an be heavy during the migration time, the migration time is fairlyshort, and thus has little impat on the overall performane. Nevertheless, thesenumbers suggest that the number of migrations should be kept to a minimum.Migration ost model Figures 8 and 9 show that the overhead for a singlemigration and the delay inurred for preeding migrations both vary prinipallyin terms of the amount of memory alloated to the migrated VMs. Thus, webase the ost model on this quantity.The ost funtion f is de�ned as follows. The estimated ost f(p) of areon�guration plan p is the sum of the osts of the migrations of eah migratedVM v (Equation 6). The estimated ost f(v) of the migration of a VM v is thesum of the estimated osts of the preeding steps, plus the amount of memoryalloated to v (Equation 7). Finally, the estimated ost f(s) of a step s isequal to the largest amount of memory alloated to any VM that is migratedin step s. This estimated ost onservatively assumes that one step an onlybegin when all of the migrations of the previous step have ompleted. For thereon�guration plan shown in Figure 6, the estimated ost of step II is 512, theestimated ost of the migration of VM2 is 768, and the estimated ost of thewhole reon�guration plan is 4224.
f(p) =

∑

v∈p

f(v) (6)
f(v) = Rm(v) +

∑

s∈prevs(v)

f(s) (7)
f(s) = max(Rm(v)), v ∈ s (8)4.3 Implementing and optimizing the VMRPTo express the VMRP as a CSP, we again use the onstraints that a on�gurationmust be viable, as desribed in Setion 3.2, and additionally speify that thenumber of nodes used in a on�guration is equal to the solution of the VMPP(Equation 9):

∑

i∈N

ui = xvmpp (9)For eah on�guration that satis�es these onstraints, the solver onstruts areon�guration plan p, if possible. The optimal solution k is the one that mini-mizes the variable K, de�ned as follows (Equation 10):RR n° 6639

14 Fabien Hermenier , Xavier Lora , Jean-Mar Menaud , Gilles Muller , Julia Lawall
K = f(p) (10)Minimizing the ost of a reon�guration provides a plan with fewer migrationsand steps, and a maximum degree of parallelism, thus reduing the durationand the impat of a reon�guration.The lower bound for K is the sum of the ost of migrating eah VM that mustmigrate i.e. when multiple ative VMs are hosted on the same node. The upperbound orresponds to the ost of the reon�guration plan pvmpp assoiated withthe on�guration previously omputed by VMPP:

(
∑

v∈VmigrateRm(v)) ≤ K ≤ f(pvmpp) (11)Like the VMPP, the VMRP uses equivalenes to redue the time requiredto �nd viable on�gurations. For the VMRP, however, the equivalene relationbetween VMs has to be more restritive to take into aount the impat of theirmigration. Indeed, migration of equivalent VMs must have the same impaton the reon�guration proess. Thus, equivalent VMs must have the sameresoure demands and must be hosted on the same nodes. In this situation, theequivalene relation between two VMs is formalized by Equation 12.
∃vi, vj ∈ V | vi ≡ vj ⇔Rp(i) = Rp(j) ∧

Rm(i) = Rm(j) ∧

host(vi) = host(vj) (12)Entropy dynamially estimates the ost of the plan assoiated with the on-�guration being onstruted based on information about the VMs that havealready been assigned to a node. Then, Entropy estimates a minimum ost forthe omplete future reon�guration plan. For eah VM that has not yet beenassigned to a node, the solver looks at VMs that an not be hosted by their ur-rent node and inreases the ost with these future migrations. Finally, the solverdetermines whether the future on�guration based on this partial assignmentmight improve the solution or will neessarily be worse. In the latter situation,the solver abandons the on�guration urrently being onstruted and searhesfor another assignment.5 EvaluationsEntropy uses onstraint programming in order to �nd a better reon�gurationplan than that found using loally optimal heuristis. Nevertheless, the moreexhaustive searh performed by onstraint programming is only justi�ed if itleads to a better solution within a reasonable amount of time. In this setion,we �rst evaluate the two phases of the reon�guration algorithm of Entropyon simulation data, to illustrate the range of bene�t that Entropy an provide.We then use Entropy on a luster in the Grid'5000 experimental testbed on aolletion of programs from the NASGrid benhmark suite [6℄. INRIA

Entropy: a Consolidation Manager for Clusters 155.1 Evaluation of the VMPP and VMRPThe VMPP inludes the number of nodes in the on�guration identi�ed by theFFD heuristi as an initial upper bound, and thus neither its solution nor thatof the VMRP will ever use more nodes than the FFD solution. In this setion,we measure the time required for our onstraint-based reon�guration engine tosigni�antly redue both the number of nodes and the ost of the reon�gurationplan, as ompared to the solution proposed by the FFD heuristi, on a range ofsimulated data. We have used these results as the basis of the timeouts hosenin Entropy, as desribed in Setion 2. In our evaluation, we onsider solvingthe VMPP and the VMRP using either FFD or Entropy. The FFD solutionto the VMPP is the number of nodes in the on�guration hosen by the FFDheuristi, and the FFD solution to the VMRP is the minimal reon�gurationplan that produes this on�guration.We onsider two lasses of problem sizes, eah using 64 or 128 nodes and anequal number of VMs. For eah lass, we have randomly generated 100 on�g-urations with the following properties: Eah VM needs zero or one proessingunits, depending on its state, and 1 or 2 GB of memory. Nodes eah haveone proessing unit and 3GB of memory. The same on�gurations are used forevaluating the solutions of both the FFD and Entropy implementations of theVMPP and the VMRP. The dediated node that exeutes the reon�gurationalgorithm has an AMD Opteron 2.0GHz CPU and 2GB of RAM. The reon�g-uration algorithm is implemented in Java and runs on the standard Sun Java1.5 virtual mahine.
 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

%
 o

f
m

in
im

iz
ed

 c
o
n
fi

g
u
ra

ti
o
n
s

Computation time in sec.

64VMs,64Ns
128VMs,128Ns(a) Minimization of X

 0

 20

 40

 60

 80

 100

64/64 128/128

%
 o

f
to

ta
l

VMS/nodes

Equiv.
1 nodes
2 nodes
3 nodes
4 nodes
5 nodes

(b) Improvement wrt.FFDFigure 10: Properties of the solution of the VMPP for various problem sizesEvaluation of the VMPP Figure 10(a) shows the perentage of problemsin eah lass for whih the minimum number of nodes has been determinedwithin the given amount of time. The omputation time for solving the VMPPis prinipally determined by the total number of VMs and nodes and by thenumber of equivalene lasses, as identi�ed in Setion 3.3. For the two lasses,the solver needs fewer than 5 seonds to ompute the minimum number of nodesfor 90% of the on�gurations.As shown in Figure 10(b), Entropy �nds a better paking by up to 5 fewernodes for 47% of the on�gurations. Contrary to the heuristi that stop after the�rst omplete assignment of the VMs, Entropy ontinues to ompute a bettersolution until it times out or proves the optimality of the urrent one.RR n° 6639

16 Fabien Hermenier , Xavier Lora , Jean-Mar Menaud , Gilles Muller , Julia LawallEvaluation of the VMRP Figure 11(a) shows the progression in �nding aon�guration with minimum ost, K. Beause of the high ost of reating andevaluating the reon�guration plans, the solver is never able to prove that aon�guration has the smallest reon�guration plan in the time allotted. Thus,we onsider a solution to be minimal until one with a 10% lower reon�gura-tion ost is omputed.1 The graph denotes the perentage of solutions wherethe reon�guration ost assoiated with the omputed on�guration is minimal,over time. The neessary time for omputing a on�guration with a minimalreon�guration ost is prinipally determined by the number of VMs and nodes.After 10 seonds, 90% of the on�gurations with 64 nodes are minimal. Con�g-urations with 128 nodes require a omputation time of 20 seonds.Figure 11(b) shows the e�etiveness of the redution of K by omparingthe reon�guration ost of the original solution omputed by Entropy for theVMPP with the ost of the �nal on�guration. The solution produed for theVMRP uses the same number of nodes as the solution produed for the VMPPbut has a reon�guration ost that is up to 40% lower. Entropy redues thereon�guration ost for 93% of the on�gurations.
 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

%
 o

f
m

in
im

iz
ed

 c
o
st

Computation time in sec.

64VMs,64Ns
128VMs,128Ns(a) Minimization of K

 0

 20

 40

 60

 80

 100

64/64 128/128

%
 o

f
to

ta
l

VMs/nodes

Equiv.
1-10%

11-20%
21-30%
31-40%

(b) Improvement wrt.VMPPFigure 11: Properties of the solution of the VMRP for various problem sizes5.2 Experiments on a lusterWe now apply Entropy on a real luster omposed of 39 nodes, eah with aAMD Opteron 2.0 GHz CPU and 2GB of RAM. One node is dediated to thereon�guration engine and three nodes are used as �le servers that provide thedisk images for the VMs. The remaining 35 nodes run the Xen Virtual MahineMonitor with 200MB of RAM dediated to Xen's Domain-0. These nodes host atotal of 35 VMs that run benhmarks of the NASGrid benhmark suite [6℄. Thisbenhmark suite is a olletion of syntheti distributed appliations designed torate the performane and funtionalities of omputation grids. Eah benhmarkis organized as a graph of tasks where eah task orresponds to a sienti�omputation that is exeuted on a single VM. Edges in the graph representthe task ordering. This ordering implies that the number of ative VMs variesduring the experiment; there are typially from 10 to 15 ative VMs. Entropy,however, is unaware of these task graphs, instead relying on the instantaneous1We use the threshold of 10% in this �gure to aount for the fat that the reon�gurationost funtion only provides an estimate. INRIA

Entropy: a Consolidation Manager for Clusters 17
(a) ED (b) HC () VPFigure 12: Computation graphs of NASGrid Benhmarks

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

 0 50000 100000 150000 200000 250000 300000 350000 400000

R
ec

o
n

fi
g

u
ra

ti
o

n
 d

u
ra

ti
o

n
 i

n
 m

in
.

Reconfiguration cost

FFD (9 reconfigurations)
Entropy (18 reconfigurations)Figure 13: Reon�guration plans omputed by FFD and Entropydesriptions provided by the sensors to determine whih VMs are ative andinative.The 35 VMs are assigned to the various tasks of the NASGrid benhmarksED, HC, and VP, whose omputation graphs are shown in Figure 12. Eahset of VMs assoiated with a given benhmark has its own NFS �le serverthat ontains the VMs' disk image. The ED benhmark uses 10 VMs with512 MB of RAM eah. It has one phase of omputation that onerns all ofits VMs. The HC benhmark uses 5 VMs with 764 MB of RAM eah. Thisbenhmark is fully sequential and has only one ative task at a time. Finally,the VP benhmark uses 20 VMs, with 512MB of RAM eah. This benhmarkhas several phases where the number of ative VMs varies. Before starting theexperiment, eah VM is started in an inative state, in an initial on�gurationomputed using Entropy. This on�guration uses 13 nodes and orresponds toa maximum paking. All three benhmarks are started at the same time. Wetest the benhmarks using FFD and Entropy as the reon�guration algorithm.Figure 13 shows the estimated ost of eah reon�guration plan seleted usingFFD and Entropy and the duration of its exeution. The relationship betweenthe ost and the exeution time is roughly linear, and thus the ost funtion

f is a reasonable indiator of performane for plans reated using both FFDand Entropy. Furthermore, we observe that reon�guration based on Entropyplans typially ompletes muh faster than reon�guration based on FFD plans.Indeed, the average exeution time for plans omputed with FFD is about 413RR n° 6639

18 Fabien Hermenier , Xavier Lora , Jean-Mar Menaud , Gilles Muller , Julia Lawallseonds while the average exeution time for plans omputed with Entropy isonly 107 seonds. With short reon�guration plans, Entropy is able to quiklyreat to the frequent hanges in the ativity of VMs, and thus quikly detets andorrets non-viable on�gurations. Entropy performs 18 short reon�gurationsover the duration of the experiment, while the FFD-based algorithm performs9 longer ones.Figures 14(a) and 14(b) show the ativity of VMs while running the benh-marks with FFD and Entropy, in terms of the number of ative VMs that aresatis�ed and unsatis�ed. Satis�ed VMs are ative VMs that have their own pro-essing unit. Unsatis�ed VMs are ative VMs that share a proessing unit. Theaverage number of unsatis�ed VMs is 1.75 for FFD and 1.05 for Entropy. Thenumber of unsatis�ed VMs is a signi�ant riterion to rate the bene�t of a reon-�guration algorithm. An unsatis�ed VM indiates a non-viable on�guration,and thus a performane loss.
 0

 5

 10

 15

 20

00:00

00:10

00:20

00:30

00:40

00:50

01:00

01:10

01:20

01:30

01:40

A
ct

iv
e

V
M

s

Time (hours)

Satisfied VMs
Unsatisfied VMs

(a) FFD 0

 5

 10

 15

 20

00:00

00:10

00:20

00:30

00:40

00:50

01:00

01:10

01:20

01:30

01:40

A
ct

iv
e

V
M

s

Time (hours)

Satisfied VMs
Unsatisfied VMs

(b) EntropyFigure 14: Ativity of VMsWhen the benhmarks start, 12 VMs beome ative at the same time. En-tropy quikly remaps the VMs and obtains a viable on�guration by minute6. FFD, on the other hand, does not reah a viable on�guration until muhlater. The total number of ative VMs inreases at minute 10, thus inreasingthe number of unsatis�ed VMs. As Entropy is not in a reon�guration state atthat time, it omputes a new on�guration and migrates the VMs aordingly,to obtain a viable on�guration by minute 11. FFD, on the other hand, is inthe midst of migrating VMs at the point of the �rst peak of ativity, aordingto a previously omputed, and now outdated, reon�guration plan. FFD onlyreahes a viable on�guration in minute 18. In this situation, we onsider thatan iteration of the reon�guration proess using FFD takes too muh time asompared to the ativity of the VMs.The average response time of a reon�guration proess measures the averageduration between deteting the presene of unsatis�ed VMs and the next viableon�guration. It indiates the apaity of the reon�guration proess to salewith the ativity of VMs. For this experiment, the average response time forFFD is 248 seonds. For Entropy, the average response time is 142 seonds.Figure 14(b) shows that number of unsatis�ed VMs is always zero after1:00. This is due to the unequal duration of the benhmarks. At minute 50,the benhmark HC ends its omputation. Then the ativity of VP hanges atminutes 54 and 58 and requires a reon�guration. For the remaining time, thereis no new phase that makes unsatis�ed VMs: The end of the last phase of VPINRIA

Entropy: a Consolidation Manager for Clusters 19at 1:10 does not require a reon�guration and the ativity of the last runningbenhmark, ED, is onstant.
 10

 12

 14

 16

 18

 20

00:00

00:10

00:20

00:30

00:40

00:50

01:00

01:10

01:20

01:30

01:40

U
se

d
 n

o
d

es

Time (hours)

FFD
Entropy

Figure 15: Number of nodes used with FFD and EntropyFigure 15 shows the number of nodes used to host VMs. Reon�gurationplans omputed with FFD require more migrations and thus tend to requiremore pivot nodes. For this experiment, the reon�guration proess based onFFD requires up to 4 additional pivot nodes. This situation is partiularlyunfortunate when onsolidation is used to save energy, by powering down unusednodes, as nodes have to be turned on just to perform some migrations. Entropy,whih reates smaller plans, requires at most one additional pivot nodes, andthus provides a environment favorable to the shutting down of unused nodes.
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

ED VP HC

R
u
n
ti

m
e

in
 m

in
.

FFD
Entropy

wo. consolidation

Figure 16: Runtime ComparisonBy minimizing the duration of non-viable on�gurations, Entropy reduesthe performane loss due to onsolidation. Figure 16 shows the runtime of eahbenhmark for FFD, Entropy and for an environment without any onsolidation.In the latter situation, eah VM is de�nitively assigned to its own node to avoidperformane loss due to the sharing of proessing units. In this ontext, 35 nodesare required. The global overhead for all benhmarks ompared to a exeutionwithout onsolidation is 19.2% for FFD. Entropy redues this overhead to 11.5%.We an summarize the resoure usage of the various benhmarks in termsof the number of nodes used per hour. Without any onsolidation, running thebenhmarks onsumes 53.01 nodes per hour. Consolidation using FFD reduesthis onsumption to 24.53 nodes per hour. Consolidation using Entropy furtherredues this onsumption to 23.21 nodes per hour. However, these numbers area�eted by the duration of eah benhmark. When all benhmarks are running,the onsolidation only omes from the reon�guration engine that dynamiallymixes inative VMs with ative VMs in the di�erent phases of the appliations.When a benhmark stops, it reates zombie VMs that still require memoryRR n° 6639

20 Fabien Hermenier , Xavier Lora , Jean-Mar Menaud , Gilles Muller , Julia Lawallresoures but should be turned o�. Thus, to estimate the onsumption thatonly results from mixing inative and ative non-zombie VMs, we onsider theonsumption until the end of the �rst benhmark to omplete, HC. In thissituation, running the three benhmarks without onsolidation onsumes 24.31nodes per hour, with FFD onsumes 15.34 nodes per hour, and with Entropyonsumes only 11.72 nodes per hour.6 Related workPower-Aware VM replaement Nathuji et al. [12℄ present power e�ientmehanisms to ontrol and oordinate the e�ets of various power managementpoliies. This inludes the paking of VMs through live migration. They laterextended their work to fous on the tradeo� between the Servie Level Agree-ments of the appliations embedded in the VMs and the neessity to satisfyhardware power onstraints [13℄. Entropy addresses the reon�guration issuesbrought by the live migration of VMs in a luster and provides a solution topak VMs in terms of their requirements for proessing units and memory, whileminimizing the duration of the reon�guration proess and its impat on per-formane.Verma et al. [17℄ propose an algorithm that paks VMs aording to theirCPU needs while minimizing the number of migrations. This algorithm is anextension of the FFD heuristi and migrates VMs loated on overloaded nodesto under-exploited nodes. Restriting migrations to only those from overloadednodes to underloaded nodes has the e�et that all seleted migrations are di-retly feasible; the sequential and yli onstraints that we have identi�ed inSetion 4 annot arise. Nevertheless, this implies that the approah may missopportunities for savings, in ases where rearranging the VMs within the under-loaded nodes would enable other, even more bene�ial migrations. In this sit-uation, this approah fails, potentially violating any Servie Level Agreements,even if there is a possible solution. Entropy exploits a larger set of possible VMmigrations by addressing sequential and yli onstraints, and thus an be usedto solve the more omplex reon�guration problems that an our in a highlyloaded environment.Performane Management through replaement Khanna et al. [11℄ pro-pose a reon�guration algorithm that assigns eah VM to a node in order tominimize the unused portion of resoures. VMs with high resoure requirementsare migrated �rst. Bobro� et al. [3℄ base their replaement engine on a fore-ast servie that predits, for the next foreast interval, the resoure demandsof VMs, aording to their history. Then the replaement algorithm, whihis based on an FFD heuristi, selets a node than an host the VM duringthis time interval. To ensure e�ieny, the foreast window takes into aountthe duration of the reon�guration proess. However, this assignment does notonsider sequential and yli onstraints, whih impat the feasibility of thereon�guration proess and its duration.VMs replaement issues Grit et al. [7℄ onsider some VMs replaementissues for resoure management poliies in the ontext of Shirako [9℄, a system foron-demand leasing of shared networked resoures in federated lusters. When aINRIA

Entropy: a Consolidation Manager for Clusters 21migration is not diretly feasible, due to sequene issues, the VM is paused usingsuspend-to-disk. One the destination node is available for migration, the VMis resumed on it. Entropy only uses live migrations in order to prevent failuresin the user environment due to suspending part of a distributed appliation.Sandpiper [18℄ is a reon�guration engine, based on an FFD heuristi, toreloate VMs from overloaded to under-utilized nodes. When a migration be-tween two nodes is not diretly feasible, the system identi�es a set of VMsto swap in order to free a su�ient amount of resoures on the destinationnode. Then the sequene of migrations is exeuted. This approah is able tosolve simple replaement issues but requires some spae for temporarily hostingVMs on either the soure or the destination node. By identifying pivot nodesand bypass migrations, Entropy an resolve yles without performing multipleswap operations that inrease the number of migrations thus the duration ofthe reon�guration proess.7 Conlusion and Future WorkPrevious work has rejeted the use of onstraints in implementing onsolidationas being too expensive. In this paper, we have shown that the overhead ofonsolidation is determined not only the time required to hoose a new on�g-uration, but also by the time required to migrate VMs to that on�guration.Our onstraint-programming based approah, whih expliitly takes into a-ount the ost of the migration plan, an indeed redue the number of nodesand the migration time signi�antly, as ompared to results obtained with thepreviously used FFD heuristi. We have implemented this approah in our on-solidation manager Entropy, and shown that it an redue the onsumption ofluster nodes per hour for a olletion of NASGrid benhmarks by over 50% asompared to stati alloation and by almost 25% as ompared to onsolidationusing FFD.The on�gurations onsidered in this paper are fairly simple, beause in thelusters available in the Grid'5000 experimental testbed, every node has only asingle proessor and all nodes have the same amount of memory. Our approah,however, is diretly appliable to lusters providing multiproessors and nodeswith non-homogeneous memory availability, beause the number of proessorsand the amount of memory available are simply parameters of the VMPP andVMRP problems. We will extend our results to suh lusters when they beomeavailable to us.In future work, we plan to onsider the problem of admission ontrol forlusters providing onsolidation. We expet that simulation results, like thosedesribed in Setion 5.1, an help to identify the number of tasks that a lusterproviding onsolidation an aept. We also plan to onsider the appliabilityof the approah to other kinds of software than sienti� omputations, suh ase-ommere.AknowledgmentsExperiments presented in this paper were arried out using the Grid'5000 exper-imental testbed [4℄, an initiative from the Frenh Ministry of Researh throughRR n° 6639

22 Fabien Hermenier , Xavier Lora , Jean-Mar Menaud , Gilles Muller , Julia Lawallthe ACI GRID inentive ation, INRIA, CNRS and RENATER and other on-tributing partners.AvailabilityThe prototype Entropy is available on our webpage:http://www.emn.fr/x-info/entropy/Referenes[1℄ P. Barham, B. Dragovi, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-bauer, I. Pratt, and A. War�eld. Xen and the art of virtualization. InProeedings of the 19th ACM Symposium on Operating Systems Priniples,pages 164�177, Bolton Landing, NY, USA, Ot. 2003. ACM Press.[2℄ F. Benhamou, N. Jussien, and B. O'Sullivan, editors. Trends in ConstraintProgramming. ISTE, London, UK, May 2007.[3℄ N. Bobro�, A. Kohut, and K. Beaty. Dynami plaement of virtual ma-hines for managing SLA violations. Integrated Network Management,2007. IM '07. 10th IFIP/IEEE International Symposium on, pages 119�128, May 2007.[4℄ R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot, Y. Jé-gou, S. Lantéri, J. Ledu, N. Melab, G. Mornet, R. Namyst, P. Primet,B. Quetier, O. Rihard, E.-G. Talbi, and T. Iréa. Grid'5000: a large saleand highly reon�gurable experimental grid testbed. International Journalof High Performane Computing Appliations, 20(4):481�494, Nov. 2006.[5℄ C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpah, I. Pratt,and A. War�eld. Live migration of virtual mahines. In Proeedings of the2nd ACM/USENIX Symposium on Networked Systems Design and Imple-mentation (NSDI '05), pages 273�286, Boston, MA, USA, May 2005.[6℄ M. Frumkin and R. F. V. der Wijngaart. NAS grid benhmarks: A toolfor grid spae exploration. Cluster Computing, 5(3):247�255, 2002.[7℄ L. Grit, D. Irwin, A. Yumerefendi, and J. Chase. Virtual mahine hostingfor networked lusters: Building the foundations for "autonomi" orhestra-tion. In Virtualization Tehnology in Distributed Computing, 2006. VTDC2006. First International Workshop on, pages 1�8, Nov. 2006.[8℄ R. Haralik and G. Elliott. Inreasing tree searh e�ieny for onstraintsatisfation problems. Arti�ial Intelligene, 14(3):263�313, Otober 1980.[9℄ D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Beker, and K. G. Youm.Sharing networked resoures with brokered leases. In ATEC '06: Proeed-ings of the annual onferene on USENIX '06 Annual Tehnial Conferene,pages 18�18, Berkeley, CA, USA, 2006. USENIX Assoiation. INRIA

Entropy: a Consolidation Manager for Clusters 23[10℄ N. Jussien, G. Rohart, and X. Lora. The CHOCO onstraint program-ming solver. In CPAIOR'08 workshop on Open-Soure Software for Integerand Contraint Programming (OSSICP'08), Paris, Frane, June 2008.[11℄ G. Khanna, K. Beaty, G. Kar, and A. Kohut. Appliation performanemanagement in virtualized server environments. Network Operations andManagement Symposium, 2006. NOMS 2006. 10th IEEE/IFIP, pages 373�381, 2006.[12℄ R. Nathuji and K. Shwan. VirtualPower: Coordinated power managementin virtualizaed entreprise systems. In 21st Symposium on Operating SystemsPriniples (SOSP), Ot. 2007.[13℄ R. Nathuji and K. Shwan. VPM tokens: virtual mahine-aware powerbudgeting in dataenters. In HPDC '08: Proeedings of the 17th interna-tional symposium on High performane distributed omputing, pages 119�128, New York, NY, USA, 2008. ACM.[14℄ F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming(Foundations of Arti�ial Intelligene). Elsevier Siene In., New York,NY, USA, 2006.[15℄ P. Shaw. A onstraint for bin paking. In Priniples and Pratie of Con-straint Programming (CP'04), volume 3258 of Leture Notes in ComputerSiene, pages 648�662. Springer, 2004.[16℄ M. Trik. A dynami programming approah for onsisteny and propa-gation for knapsak onstraints. In Proeedings of the Third InternationalWorkshop on Integration of AI and OR Tehniques in Constraint Program-ming for Combinatorial Optimization Problems (CPAIOR-01), pages 113�124, 2001.[17℄ A. Verma, P. Ahuja, and A. Neogi. Power-aware dynami plaement ofHPC appliations. In P. Zhou, editor, ICS, pages 175�184. ACM, 2008.[18℄ T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif. Blak-boxand gray-box strategies for virtual mahine migration. In NSDI, 2007.

RR n° 6639

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université- ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau- Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

	Introduction
	System Architecture
	The Virtual Machine Packing Problem
	Constraints on the assignment of VMs to nodes
	Expressing the VMPP as a constraint satisfaction problem
	Optimizations

	The Virtual Machine Replacement Problem
	Constructing a reconfiguration plan
	Estimating the cost of a reconfiguration plan
	Implementing and optimizing the VMRP

	Evaluations
	Evaluation of the VMPP and VMRP
	Experiments on a cluster

	Related work
	Conclusion and Future Work

