Accelerated greedy mixture learning

Abstract : Mixture probability densities are popular models that are used in several data mining and machine learning applications, e.g., clustering. A standard algorithm for learning such models from data is the Expectation-Maximization (EM) algorithm. However, EM can be slow with large datasets, and therefore approximation techniques are needed. In this paper we propose a variational approximation to the greedy EM algorithm which oers speedups that are at least linear in the number of data points. Moreover, by strictly increasing a lower bound on the data log-likelihood in every learning step, our algorithm guarantees convergence. We demonstrate the proposed algorithm on a synthetic experiment where satisfactory results are obtained.
Type de document :
Communication dans un congrès
Benelearn: Annual Machine Learning Conference of Belgium and the Netherlands, Jan 2004, Brussels, Belgium. 2004
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/inria-00321482
Contributeur : Jakob Verbeek <>
Soumis le : mardi 5 avril 2011 - 14:55:51
Dernière modification le : lundi 25 septembre 2017 - 10:08:04
Document(s) archivé(s) le : mercredi 6 juillet 2011 - 02:57:28

Fichiers

verbeek04bnl.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00321482, version 2

Citation

Jan Nunnink, Jakob Verbeek, Nikos Vlassis. Accelerated greedy mixture learning. Benelearn: Annual Machine Learning Conference of Belgium and the Netherlands, Jan 2004, Brussels, Belgium. 2004. 〈inria-00321482v2〉

Partager

Métriques

Consultations de la notice

154

Téléchargements de fichiers

220