Non-linear CCA and PCA by alignment of local models

Abstract : We propose a non-linear Canonical Correlation Analysis (CCA) method which works by coordinating or aligning mixtures of linear models. In the same way that CCA extends the idea of PCA, our work extends recent methods for non-linear dimensionality reduction to the case where multiple embeddings of the same underlying low dimensional coordinates are observed, each lying on a different high dimensional manifold. We also show that a special case of our method, when applied to only a single manifold, reduces to the Laplacian Eigenmaps algorithm. As with previous alignment schemes, once the mixture models have been estimated, all of the parameters of our model can be estimated in closed form without local optima in the learning. Experimental results illustrate the viability of the approach as a non-linear extension of CCA.
Type de document :
Communication dans un congrès
Seventeenth Annual Conference on Neural Information Processing Systems (NIPS '03), Dec 2003, Vancouver, Canada. pp.297--304, 2004
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/inria-00321485
Contributeur : Jakob Verbeek <>
Soumis le : mardi 5 avril 2011 - 14:54:32
Dernière modification le : mercredi 10 octobre 2018 - 21:28:02
Document(s) archivé(s) le : mercredi 6 juillet 2011 - 02:57:12

Fichiers

verbeek04nips.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00321485, version 2

Citation

Jakob Verbeek, Sam Roweis, Nikos Vlassis. Non-linear CCA and PCA by alignment of local models. Seventeenth Annual Conference on Neural Information Processing Systems (NIPS '03), Dec 2003, Vancouver, Canada. pp.297--304, 2004. 〈inria-00321485v2〉

Partager

Métriques

Consultations de la notice

276

Téléchargements de fichiers

256