A variational EM algorithm for large-scale mixture modeling

Abstract : Mixture densities constitute a rich family of models that can be used in several data mining and machine learning applications, for instance, clustering. Although practical algorithms exist for learning such models from data, these algorithms typically do not scale very well with large datasets. Our approach, which builds on previous work by other authors, offers an acceleration of the EM algorithm for Gaussian mixtures by precomputing and storing sufficient statistics of the data in the nodes of a kd-tree. Contrary to other works, we obtain algorithms that strictly increase a lower bound on the data log-likelihood in every learning step. Experimental results illustrate the validity of our approach.
Type de document :
Communication dans un congrès
S. Vassiliades and L.M.J. Florack and J.W.J. Heijnsdijk and A. van der Steen. 9th Annual Conference of the Advanced School for Computing and Imaging (ASCI '03), Jun 2003, Heijen, Netherlands. pp.136--143, 2003
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/inria-00321486
Contributeur : Jakob Verbeek <>
Soumis le : mardi 8 mars 2011 - 15:08:17
Dernière modification le : lundi 25 septembre 2017 - 10:08:04
Document(s) archivé(s) le : jeudi 9 juin 2011 - 02:46:00

Fichiers

verbeek03asci2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00321486, version 2

Citation

Jakob Verbeek, Nikos Vlassis, Jan Nunnink. A variational EM algorithm for large-scale mixture modeling. S. Vassiliades and L.M.J. Florack and J.W.J. Heijnsdijk and A. van der Steen. 9th Annual Conference of the Advanced School for Computing and Imaging (ASCI '03), Jun 2003, Heijen, Netherlands. pp.136--143, 2003. 〈inria-00321486v2〉

Partager

Métriques

Consultations de la notice

317

Téléchargements de fichiers

335