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Abstract

We propose an incremental method to find principal curves. Line segments are fitted and

connected to form polygonal lines. New segments are inserted until a performance criterion

is met. Experimental results illustrate the performance of the method compared to other

existing approaches.

Keywords: dimension reduction, feature extraction, polygonal line, principal curve, un-

supervised learning

1 Introduction

Principal curves are the nonlinear generalization of principal components. They give a summa-

rization of the data in terms of a 1-d space non-linearly embedded in the data space. Intuitively,

a principal curve ‘passes through the middle of the (curved) data cloud’. Applications include

dimension reduction for feature extraction, visualization and lossy data compression. What con-

cerns the first application, the curve can be used to obtain an ordering of the data by projecting

the data to the curve. An example of such a use of principal curves is the ordering of ecological

species abundance data [Deáth, 1999]. Applications of the proposed principal curve algortihm can

also be envisaged in fitting and recognizing complex shapes in images.

Several definitions of principal curves have been proposed in the literature. One of the earliest

definitions is based on ‘self-consistency’ [Hastie and Stuetzle, 1989], i.e. the curve should coincide

at each position with the expected value of the data projecting to that position. Another approach

[Kégl et al., 2000] is to define principal curves of length l as curves of length l that achieve the

minimum expected squared distance from points to their projection on the curve. The Polygonal

∗This research is supported by the Technology Foundation STW, applied science division of NWO and the

technology programme of the Ministry of Economic Affairs.
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Line Algorithm (PLA) finds principal curves in terms of the latter definition. A more probabilistic

approach [Tibshirani, 1992] defines principal curves as curves minimizing a penalized log-likelihood

measure. The data is modeled by a mixture of the form:

p(x) =

∫ l

0

p(x|t)p(t)dt (1)

where t is a latent variable distributed on an arc-length parameterized curve of length l. p(x|t) is,

for example, a spherical Gaussian modeling the noise located on point t of the curve.

In addition to the above mentioned principal curve algorithms, several other methods can be

used to tackle this and closely related problems. The Generative Topographic Mapping (GTM)

[Bishop et al., 1998], finds a nonlinear curve embedded in the data space. Along this curve a

mixture of Gaussian kernels is placed to generate a distribution on the data space. Also some

vector quantization techniques can be used to find approximations to principal curves, e.g. Self

Organizing Maps (SOM) [Kohonen, 1995] and Growing Cell Structures (GCS) [Fritzke, 1994].

These methods incorporate a topology among the prototype-vectors. The original space is then

mapped to a discrete 1-d space instead of a continuous 1-d space.

Several problems exist with the afore mentioned methods. A common feature of these is that

they consist of a combination of ‘local models’ that are related by a fixed topology. When the

data is concentrated around a highly curved or self-intersecting curve, these methods exhibit poor

performance. This is due to the fixed topology among the local models and to bad initializa-

tion. Also, often one does not know a-priori how many ‘local models’ one needs and one has

to make an (educated) guess for the number of local models. On the other hand, the definition

of [Hastie and Stuetzle, 1989] explicitly excludes self-intersecting curves as principal curves. In

general PLA and Tibshirani’s method also fail due to bad initialization in cases where the data is

concentrated around highly curved or self-intersecting curves. See Figure 1 for an illustration (for

PLA, the dashed curve passing through the data is the generating curve).

In this paper, we use a probabilistic setting to find principal curves by means of maximizing

log-likelihood, resembling the method of [Tibshirani, 1992]. We assume the data is corrupted by

some noise, therefore we do not require the curve to fit the data exactly. We use the model (1),

where p(t) is uniform along the curve and p(x|t) is a spherical Gaussian located on point t of the

curve, with constant variance over all t. The variance is a smoothing parameter, to be set by the

user. We restrict the considered curves to polygonal lines (PLs). Our method avoids many of the

poor solutions mentioned above (and shown in Figure 1) by fitting local linear models without

any topological constraints. To enable an efficient search among PLs with a varying number of

segments and to avoid local minima, we use an incremental method that considers PLs consisting

of an increasing number of segments. Hence, it starts with models that are relatively easy to fit

and gradually increases their complexity.
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Figure 1: A spiral with some noise. Results for (left to right, top to bottom): GTM, PLA, GCS

and SOM.

Overview of the method. By means of local Principal Component Analysis (PCA) we find

local linear models. The local linear models are fitted by a (two-step) iterative update scheme.

After fitting, the local linear models are combined to form a PL by means of a heuristic search.

Next, if appropriate, a new local linear model is added. The location of the new local linear

model is found by means of a global search over the data set. Among all PLs encountered by the

algorithm, the PL that maximizes an approximation of the log-likelihood of the data is selected.

Overview of the paper. In the next sections we discuss the algorithm in detail. Section 2 is

concerned with how we fit the local linear models. In Section 3 we describe the method to find

‘good’ PLs given a set of line segments. In Section 4 the objective function is considered. We end

the paper with a discussion.

2 A k-segments algorithm

In order to find a ‘good’ PL for the data, we first search for a set of k ‘good’ line segments. In the

first subsection we discuss how we extend the k-means algorithm [Gersho and Gray, 1992] to an

algorithm for finding k lines. In Section 2.2 we adapt the k-lines algorithm to find line segments

that can be used for PL construction. In the last subsection we describe a method to insert a new

segment given k segments and a data set.
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2.1 Extending k-means to k-lines.

The Generalized Lloyd Algorithm or ‘k-means’ is a well-known vector quantization method. To

extend this method to k-lines, we start with some definitions. A line s is defined as: s = {s(t)|t ∈

IR}, where s(t) = c + ut. The distance from a point x to a line s is defined as:

d(x, s) = inf
t∈IR
‖s(t)− x‖. (2)

Let Xn be a set of n samples from IRd. Define the Voronoi Regions (VRs) [Gersho and Gray, 1992]

V1, . . . , Vk as:

Vi = {x ∈ Xn| i = argmin
j

d(x, sj)}. (3)

Hence, Vi contains all data points for which the ith line is the closest, see Figure 2 for an illustration.

Analogue to k-means, the goal is to find k lines s1, . . . , sk that minimize the total squared distance

of all points to their closest line:
k

∑

i=1

∑

x∈Vi

d(x, si)
2. (4)

To find lines that are local optima of (4) we modify the k-means algorithm slightly: Start with

random orientations and locations of the k lines. Next, alternate between the following two steps

until convergence:

1. determine the VRs.

2. replace the lines by the first Principal Component (PC) of their VR.1

To prove that this algorithm converges, we make two observations:

• The objective function (4) decreases both in step 1 and step 2. For step 1 this follows from

the definition of the VRs. For step 2 this follows from the reconstruction error minimization

property of the first PC [Ripley, 1996].

• Due to the finite cardinality of Xn, there are only a finite number of distinct (Voronoi)

partitions of Xn.

From these two observations it follows trivially that the algorithm achieves a local optimum for

(4) in a finite number of steps.

2.2 From k-lines to k-segments.

Since we want to construct a polygonal line we actually do not search for lines but for line

segments instead. We therefore replace step 2 of the algorithm. Instead of using the first PC, we

1More precisely: we first translate the data in the VR to obtain zero mean and then take the line along the first

PC of the translated data.
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Figure 2: An example where the data (open dots) is partitioned in three Voronoi Regions for two

normal segments (V1 and V2) and one (V0) ‘zero-length’ segment (black dot).

use a segment of it. For example, we could use the shortest segment of the first PC such that all

orthogonal projections to the first PC of the points in the VR are included in the segment. We

adjust the definition of the VR straightforwardly by using the distances to the segments, i.e. t is

restricted to a bounded interval in (2). Using these segments the value of the objective function

is not altered. However, two observations suggested another approach:

• The objective function (4) is an easy to compute substitute for the log likelihood of the data

given the segments, see Section 4. The length of the segments is not reflected in (4). As a

result relatively long segments are found which result in sub-optimal PLs.

• In applications of the algorithm we sometimes observed poor performance. This was due to

local optima of (4) which could be avoided by removing the restriction that the segments

have to include all projections of the points in the VR to the first PC.

To include explicit optimization of the segment length would be computationally very costly.

Therefore, we settled for a heuristic that works well in practice. Experimentally, we found that

in general good performance is obtained if we use segments of the first PC that are cut off at

3σ/2 from the centroid of the VR, where σ2 is the variance along the first PC. To maintain the

convergence property, we check whether (4) is actually decreased by the new segment. If (4) is not

decreased, we use the segment that includes all projections to the first PC to obtain guaranteed

decrease of (4).

2.3 Incremental k-segments.

In most applications we do not know in advance how many segments are ‘optimal’ to model the

data. Therefore, it makes sense to try (many) different numbers of segments and use some criterion

to select the best number. Since running the algorithm for many different numbers of segments
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is time consuming, we propose to use an incremental strategy. We start with k = 1 segment and

use the search method described in the previous subsections to find optimal segments. Next, we

insert a new segment and optimize the k + 1 segments again. The scheme is repeated until some

criterion is met (i.e. a predefined maximum of lines is reached or some performance criterion is

met).

To determine where to insert the new segment, we first compute for each xi in our data set

the decrease of (4) if we would place a zero-length segment on xi. Below we explain why we use

this criterion. With a zero-length segment we just mean a point c, hence the distance function

(2) reduces in this case to d(x, s) =‖ x − c ‖. The VRs of the zero-length segments are defined

as before, by (3), see also Figure 2. To avoid obtaining segments representing too few points, we

only consider those zero-length segments for which the cardinality of the corresponding VR is at

least three. Let Vk+1 be the VR of the zero-length segment maximizing the decrease in (4). Then

we insert a segment along the first PC of the data in Vk+1 which is cut off at 3σ/2 on each side

of its mean, where σ2 is the variance of the data in Vk+1 when projected orthogonally to the first

principal component of the data in Vk+1. After the insertion of the new segment, again we are

ready to do step-wise optimization of the segments. Note that the zero-length segments are not

inserted themselves, but only used to select a good position to insert the new segment.

The decrease in (4) due to a insertion of a zero-length segment provides a lower bound on the

decrease due to the segment insertion that is actually performed. To see this, let Vk+1 denote the

VR corresponding to the zero-length segment at xi. It is a well known fact [Gersho and Gray, 1992]

that for a given finite set of points S ⊂ IRd the mean m of those points minimizes the squared

distance function: m = argminµ∈IRd

∑

x∈S ‖x− µ‖2, hence:
∑

x∈S ‖x−m‖2 ≤
∑

x∈S ‖x− xi‖
2.

Since the new segment s includes m, the total square distance to the segment is at most the total

square distance to m i.e.
∑

x∈S d(x, s)
2 ≤

∑

x∈S ‖x−m‖2. Hence, we have the lower bound. Note

that the search for the minimizing xi can be implemented efficiently as described in Appendix A.

3 Combining segments into a polygonal line

Until now we have introduced an incremental method to find a set of line segments. The outset,

however, was to find a PL maximizing the log-likelihood of the data. In this section we discuss

how to link the segments together to form a PL Since there are in general many ways to link the

segments together, we settle for a greedy strategy. First we generate an initial PL and next we

make step-wise improvements on the initial PL.

To achieve a fast algorithm to find the PL we do not consider the data in the construction of

the PL. We define a fully connected graph G = (V,E), where the set of vertices V consists of the

2k end-points of the k segments. Also, define a set of edges A ⊂ E which contains all edges that
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Figure 3: Connecting two sub-paths: the angle penalty of (vi, vj) is the sum of the angles between

an edge and the adjacent edges, i.e. α+ β.

correspond to the segments. A sequence of edges {(v0, v1), (v1, v2), . . . , (vm−2, vm−1), (vm−1, vm)}

in which all edges are distinct is called a ‘path’ [Wilson, 1972]. A path is ‘open’ if v0 6= vm. An

open path that passes through every vertex in the graph exactly once is called a ‘Hamiltonian path’

(HP). Note that we can consider a HP as a set P ⊂ E. We want to find the HP P minimizing

the total cost of the path, under the constraint: A ⊂ P ⊂ E.2 The cost of a path P is defined

as l(P ) + λa(P ), with 0 ≤ λ ∈ IR is a parameter to be set by the user. The term l(P ) denotes

the length of the path, defined as the sum of the lengths of the edges in P . The length of an

edge e = (vi, vj) is taken as the Euclidean distance between its vertices: l(e) = ‖vi − vj‖. The

second term, a(P ), is a penalty term equal to the sum of the angles between adjacent edges. The

parameter λ controls the trade-off between preferring short paths and paths that do not contain

sharp turns. We introduced the λa(P ) term to implement a preference for ‘smooth’ (not having

sharp turns) curves. The smaller λ, the smaller the preference for smooth curves. Especially in

cases where the generating curve is self-crossing (c.f. Figure 5) setting λ > 0 is important to find

the right PL.

To construct an initial PL we use the greedy strategy outlined below. We call a HP on a subset

of V a sub-HP. We start with the original k segments as k sub-HPs. At each step we connect two

sub-HPs with an edge e. Note that the total cost of a (sub-) HP consisting of two sub-HPs Pi

and Pj linked together by an edge e is the sum of the costs of each sub-HP plus l(e) plus an angle

penalty a(e). Figure 3 illustrates the angle penalty a(e) = α+ β incurred by an edge e = (vi, vj)

that connects two sub-HPs Pi and Pj . We assign to each edge e ∈ (E−A) cost c(e) = l(e)+λa(e).

The construction algorithm inserts at each step the edge that minimizes c(e) over all edges that

connect two sub-paths. Summarizing, the procedure is as follows:

1. Start with k sub-HPs defined by A.

2. While there are at least two sub-HPs

3. Join those two sub-HPs Pi and Pj (i 6= j) by edge e ∈ (E − A) such that e minimizes c(e)

over all edges connecting two distinct sub-HPs.

2There always exists a HP for G that contains A since G is fully connected and A connects only pairs of vertices.
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Due to the greedy nature of the construction discussed above, it might well happen that we

can obtain a HP with lower cost by some simple modifications of the initial HP. To find such

improvements we use a simple result from graph theory [Lawler et al., 1985]: finding the optimal

(in terms of cost) HP for k vertices, can be expressed as finding the optimal solution for a k+1 cities

traveling salesman problem (TSP). We use the 2-opt TSP optimization scheme [Lawler et al., 1985]

to improve our initial HP.

4 Objective function

Using the incremental method described above, we obtain a sequence of PLs with an increasing

number of segments. As stated in the introduction, we search for the PL that maximizes the

log-likelihood of the data.

Consider a PL of length l as a continuous arc-length parameterized 1-d latent variable t embed-

ded in IRd, where the embedding is given by f : [0, l]→ IRd. For simplicity, we assume a uniform

distribution p(t) = 1/l on t here for t ∈ [0, l]. Furthermore, let p(x|t) be a spherical Gaussian

distribution with mean point t on the PL and covariance matrix σ2I, where I is the d× d identity

matrix. It turns out that, for a latent variable distributing uniformly over a line segment s of

length lÀ σ, the negative log-likelihood for a point x can be roughly approximated by

log l + d(s, x)2/(2σ2) + c, (5)

where c is some constant dependent on σ. This can be seen as follows:

− log p(x) = − log

∫

t∈[0,l]

p(x | t)p(t)dt = log(l) + c1 − log

∫

t∈[0,l]

exp(
‖ x− f(t) ‖2

2σ2
)dt. (6)

We may write ‖ x− f(t) ‖2 as the sum d⊥(f(t),x)
2+d‖(f(t),x)

2, see Figure 4. Since d⊥(f(t),x) =

d⊥(s,x) is constant for different t, we can write the last term in (6) as:

d⊥(s,x)
2/(2σ2)− log

∫

t∈[0,l]

exp(−d‖(f(t),x)
2)dt. (7)

Let d‖(s,x) = inft∈[0,l]{d‖(f(t),x)}, then the last integral can be approximated roughly by

c2exp(−d‖(s,x)
2/(2σ2)). Note that d(s,x)2 = d‖(s,x)

2 + d⊥(s,x)
2, this leads to equation (5).

We neglect the effect of higher density occurring at one side of the PL at places where different

non-parallel segments are connected. Hence, we approximate the total log-likelihood of the data

as:

n log l +

k
∑

i=1

∑

x∈Vi

d(si,x)
2/(2σ2), (8)

where l is the total length of the PL.

In practice, if we take the objective function as a function of k, the number of segments, the

global minimum often is the first local minimum of the objective function. So, a simple stopping

8



f(t)

x

d(s,x) d⊥(s,x)

s
d‖(f(t),x)

d‖(s,x)

d(f(t),x)

Figure 4: Illustration of the distances between a point x a segment s and a point f(t) on s.
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Figure 5: Results on a synthetic data set for our method (left) and GTM (right).

strategy could be to keep inserting segments until the objective function (8) reaches its first

minimum. It is also possible to keep inserting segments until some limit kmax on k is reached. A

variety of other stopping criteria is possible.

5 Discussion

To test the algorithm presented above, we conducted experiments on several artificial data sets.

We used 2-d and 3-d data spaces, crossing curves, non-crossing curves along which we generated

data, different amounts of noise and different numbers of training examples. The results are

promising, see Figure 5 and 6 for an illustration (the thick segments in the plots are the fitted

segments, the thin segments are inserted by the PL construction). Due to limited space we cannot

present exhaustive experimental results but just some illustrations here. The good performance is

due to (i) the flexibility of the method: the segments are fitted without being connected, and (ii)

its incremental nature: segments are added one by one to avoid local optima and (iii) the ‘optimal’

number of segments is determined automatically. In Figure 6 we illustrate, on the same data as

in Figure 1, several stages of the principal curve fitting.

A difference between our method and other principal curve algorithms is the absence of a

curvature penalty in our objective function (8). Although a curvature penalty is used in the con-

9



struction of the curves, the algorithm is not too sensitive to changes in its setting and it may even

be omitted when modeling non-crossing curves. Regularization of the model complexity is instead

introduced in (8) by (i) modeling the distribution of the latent variable by a uniform distribution

and (ii) assuming a given level of noise all along the curve. This results in a regularization param-

eter σ with a clear physical interpretation. The essence is that we avoid (i) distributions on the

latent variable that have only finite support3 and (ii) arbitrarily small noise levels. Experimentally

we found that the applicability of the method is not limited to cases where the naive assumption

of a uniform distributed latent variable holds. Furthermore, it can be readily replaced by less rigid

assumptions on the distribution of the latent variable, for example by a segment-wise uniform

distribution on the latent variable.

Note that when one wants to fit other structures than curves, for example closed paths or

branching structures, one only needs to replace the search procedure described in Section 3. In

the case of closed paths the modifications needed are trivial since the same construction and

optimization methods can be used.

Our algorithm has a running time O(kn2) that is dominated by the insertion procedure, see

Appendix A. For each of the k insertions the allocation takes O(n2) operations and hence takes

O(kn2) in total. Constructing and optimizing all the PLs takes in total O(k3) (taking the maximal

number of iterations of 2-opt fixed). Computing the VRs in the optimization procedure after each

segment allocation takes O(nk2) operations in total. The total number of operations needed by the

determination of the principal components is O(kn) (taking the dimensionality of the data space

fixed). Since in general k ¿ n we arrive at a running time of O(kn2). In applications involving

large amounts of data the quadratic scaling with the amount of data may be problematic. In

such cases more sophisticated and faster insertion methods may be used to allow for a O(k2n) run

time. For example only a small amount of candidate insertion locations may be considered using

a method analogue to the one used in [Verbeek et al., 2001].

Some extensions on the presented method suggest themselves:

Smooth curves In some situations there may be a preference for smooth curves over PLs. In

such cases one can use the found PL to assign a latent variable value to each datum (implying an

ordering on the data). Subsequently, one may use some regression method to find a ‘good’ smooth

curve. The found PL may also serve as an initialization of one of the other methods mentioned

that find smooth curves.

Obviate variance estimation The use of an objective function that does not need to be tuned

by the user would increase usefulness of the method. We plan to use the Minimum Description

3The distribution on the latent variable maximizing likelihood is a distribution with support only at the points

on the curve where data projects [Tibshirani, 1992].
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Figure 6: Some of the PLs encountered (using 4, 6 and 12 segments respectively) by the algorithm

when fitting data distributed along a spiral.

Length principle to find a parameter-free model selection criterion.

Soft version Currently we are investigating a ‘soft’ version of the presented method in which

the ‘hard’ Voronoi partitions are replaced by a probabilistic weighting scheme. This way we hope

to obtain better performance on very noisy data.

Software implementing the k-segments algorithm in Matlab can be obtained from the home-

page of the first author: http://www.science.uva.nl/ ∼jverbeek.

A Efficient search for allocation of new segment

At the start of the algorithm we compute the pairwise squared distances between all points in the

data set, denote the resulting symmetric n×n matrix by D. In the optimization of the segments,

we determine their VRs at each step. To do so we compute distances between all points and

all segments, we store for each point xi the squared distance dV Ri to the closest segment. Let

DV R = (dV R1 , dV R2 , . . . , dV Rn )> and VD = [DV R . . .DV R] be a square n× n matrix.

If A is a matrix and a ∈ IR, then let M = max(A, a) denote the matrix M where Mi,j =

max(Ai,j , a). Let G = max(VD −D, 0). Then Gi,j equals the decrease in squared distance for

xi to its closest segment if we insert the zero-length segment at xj . Let 1 denote the 1×n matrix

[1 1 . . . 1]. Then, argmax{1G} gives us the index of the datum maximizing the lower bound.
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[Deáth, 1999] G. Deáth. Principal curves: a new technique for indirect and direct gradient anal-

ysis. Ecology, 80(7):2237–2253, 1999.

[Fritzke, 1994] B. Fritzke. Growing cell structures - a self-organizing network for unsupervised

and supervised learning. Neural Networks, 7(9):1441–1460, 1994.

[Gersho and Gray, 1992] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression.

Kluwer Academic Publishers, Boston, 1992.

[Hastie and Stuetzle, 1989] T. Hastie and W. Stuetzle. Principal curves. Journal of the American

Statistical Association, 84(406):502–516, 1989.
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