Locally linear generative topographic mapping

Abstract : We propose a method for non-linear data pro- jection that combines Generative Topographic Mapping and Coordinated PCA. We extend the Generative Topographic Mapping by using more complex nodes in the network: each node provides a linear map between the data space and the latent space. The location of a node in the data space is given by a smooth non-linear function of its location in the latent space. Our model provides a piece-wise linear mapping between data and latent space, as opposed to the point-wise coupling of the Generative Topographic Mapping. We provide experimental results comparing this model with GTM.
Type de document :
Communication dans un congrès
Benelearn: Annual Machine Learning Conference of Belgium and the Netherlands, Dec 2002, Utrecht, Netherlands. pp.79--86, 2002
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/inria-00321501
Contributeur : Jakob Verbeek <>
Soumis le : mercredi 16 février 2011 - 17:11:34
Dernière modification le : lundi 25 septembre 2017 - 10:08:04
Document(s) archivé(s) le : mardi 17 mai 2011 - 02:33:22

Fichiers

verbeek02bnl.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00321501, version 1

Citation

Jakob Verbeek, Nikos Vlassis, Ben Krose. Locally linear generative topographic mapping. Benelearn: Annual Machine Learning Conference of Belgium and the Netherlands, Dec 2002, Utrecht, Netherlands. pp.79--86, 2002. 〈inria-00321501〉

Partager

Métriques

Consultations de la notice

201

Téléchargements de fichiers

490