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Mixtures of Probabilistic Principal Component Analyzers can be used to model

data that lies on or near a low dimensional manifold in a high dimensional obser-

vation space, in effect tiling the manifold with local linear (Gaussian) patches. In

order to exploit the low dimensional structure of the data manifold, the patches

need to be localized and oriented in a low dimensional space, so that ‘local’ co-

ordinates on the patches can be mapped to ‘global’ low dimensional coordinates.

As shown by [Roweis et al., 2002], this problem can be expressed as a penalized

likelihood optimization problem. We show that a restricted form of the Mix-

tures of Probabilistic Principal Component Analyzers model allows for an efficient

EM-style algorithm. The Procrustes Rotation, a technique to match point con-

figurations, turns out to give the optimal orientation of the patches in the global

space. We also show how we can initialize the mappings from the patches to the

global coordinates by learning a non-penalized density model first. Some experi-

mental results are provided to illustrate the method.

Keywords: dimension reduction, feature extraction, principal manifold, selforga-

nization
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1 Introduction

With increasing sensor capabilities, powerful feature extraction methods are becoming increas-
ingly important. Consider a robot sensing its environment with a camera yielding a stream of
100 × 100 pixel images, i.e. a stream of 10.000 dimensional vectors if we regard the image as a
pixel intensity vector. The observations made by the robot often have a much lower intrinsic
dimensionality. If we assume a fixed environment, and a robot that can rotate around its axis
and drive through a room, the intrinsic dimensionality is only three. Linear feature extraction
techniques are able to do a fair compression of the signal by mapping it to a much lower di-
mensional space. However, only in very few special cases the manifold on which the signal is
generated is a linear subspace of the sensor space. This clearly limits the use of linear techniques
and suggests to use non-linear feature extraction techniques.

Mixtures of Factor Analyzers (MFA) [Ghahramani and Hinton, 1996] and Mixtures of Prob-
abilistic Principal Component Analyzers (MPPCA) [Tipping and Bishop, 1999] can be used to
model such non-linear data manifolds. These methods (in fact MPPCA is a special case of MFA)
provide a mapping back and forth between latent and data-space. However, these mappings only
have a local applicability and are not related, i.e the coordinate systems of neighboring facor
analyzers might be completely differently oriented. We cannot combine the different latent
spaces, the coordinates of a point in one subspace give no infotmation on the coordinates in a
neighboring subspace.

Recently, a model was proposed that integrates the local linear models into a global latent
space, allowing for mapping back and forth between the latent and the data-space. The idea is
that there is a linear map for each factor analyzer between the the data-space and the global
latent space. This penalized log-likelihood model proposed in [Roweis et al., 2002], solved by an
EM-like procedure, is discussed in the next section.

Here, we show how we can remove the iterative procedure from the M-step by simplifying
the density model. Furthermore, we show how we can use an ‘uncoordinated’ mixture model to
initialize the mappings from data to latent space, providing an alternative to using an external
(unsupervised) method to initialize the latent coordinates for all the data points.

In the next section, we describe the density model that is used. Then, in Section 3 we
show how this density model removes one of the iterative procedures in the algorithm given in
[Roweis et al., 2002]. Section 4 discusses how an ‘uncoordinated’ mixture model can be used to
initialize the mappings between latent and data-space. Some experimental results are given in
5. We end with a discussion and some conclusions in 6.

2 The density model

To model the data density in the high dimensional space we use mixtures of a restricted type
of Gaussian densities. The mixture is formed as a weighted sum of its component densities, the
weight of each component is called its ‘mixing weight’ or ‘prior’. The covariance matrices of the
Gaussians are constrained to be of the form:

C = σ2(ID + ρΛΛ>), Λ>Λ = Id, ρ > 0 (1)

where D and d are respectively the dimension of the high-dimensional/data-space and the low-
dimensional/latent space. We use Id to denote the d-dimensional identity matrix. The columns
of Λ, in factor analysis known as the loading matrix, are D-dimensional vectors spanning the
subspace. Directions within the subspace have variance σ2(1 + ρ), other directions have σ2

variance. This is as the Mixture of Probabilistic Principal Component Analyzers (MPPCA)
model, with the difference that here we do not only have isotropic noise outside the subspaces
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but also also isotropic variance inside the subspaces. We use this density model to allow for con-
venient solutions later. In Appendix A we derive a Generalized EM algorithm to find maximum
likelihood solutions for this model.

The same model can be rephrased using hidden variables z, which we use to denote ‘internal’
coordinates of the subspaces. We scale the coordinates z such that:

p(z | s) = N (0, Id), (2)

where N (µ,Σ) denotes the Gaussian density, centered at µ and with covariance matrix Σ. The
internal coordinates allow us to clearly express the link to the global latent space, for which
we denote coordinates with g. All mixture components/subspaces have their own orthogonal
mapping to the global space, parameterized by a translation κ and a matrix A, i.e. p(g | z, s) =
δ(κs + Asz), where δ(·) denotes the distribution with mass 1 at the argument. We use ps

to denote the mixing weight of mixture component/subspace s and µs to denote its mean or
location. The generative model then looks like:

p(x) =
∑

s

psN (µs, σ
2
s(ID + ρsΛsΛ

>
s )) =

∑

s

ps

∫

z
dz p(x | z, s)p(z | s) (3)

p(x | z, s) = N (µs +
√
ρsσsΛsz, σ

2
sID) (4)

p(g) =
∑

s

psN (κs,AsA
>
s ) =

∑

s

psN (κs, α
2
sσ

2
sρsId). (5)

We put an extra constraint on the projection matrices:

As = αsσs
√
ρsRs, R>

s Rs = Id, αs > 0. (6)

The matrix Rs implements only rotations plus reflections due to the orthonormality constraint.
The generative model reads: first ‘nature’ picks a subspace according to the prior distribution
{ps}. A subspace generates internal coordinates z , which on the one hand give rise to hidden

global coordinates g (via the translation κs and the rotation plus scaling As) and on the other
hand to observable data x (via the translation µs and the orthogonal mapping

√
ρsσsΛs) plus

some noise with covariance σ2ID. Figure 1 illustrates the model. Note that the model assumes
that locally there is a linear correspondence between the data space and the latent space. Fur-
thermore, note that the densities p(g | x, s) and p(x | g, s) are Gaussian densities and hence
that p(g | x) and p(x | g) are mixtures of Gaussians. In the next section we discuss how this
density model differs from [Roweis et al., 2002].

3 A simplified algorithm due to simplified density model

The goal is, given observable data {xn}, to find a good density model in the data-space and

mappings {As,κs} that give rise to ‘consistent’ estimates for the hidden {gn}. With consistent
we mean that if a point x in the data-space is well modeled by two subspaces, then the corre-
sponding estimates for its latent coordinate g should be close to each other, i.e. the subspaces
should ‘agree’ on the corresponding g.

3.1 Objective Function

To measure the level of agreement, one can consider for all data points how uni-modal the
distribution p(g | x) is. This idea was also used in [Vlassis et al., 2002], there the goal was to find
orhtogonal projections for supervised data, such that the projections from high to low dimension
preserve the manifold structure. In [Roweis et al., 2002] it is shown how the double objective
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Figure 1: The generative model: x and g are independent given s, z.

of likelihood and uni-modality can be implemented as a penalized log-likelihood optimization
problem.

Let Q(g | xn) denote a Gaussian approximation of p(g | xn) =
∑

s p(g | xn, s)pns =
∑

s p(g, s | xn), with pns = p(s | xn). We define:

Q(g, s | xn) = Q(s | xn)Q(g | xn), (7)

where Q(g | xn) = N (gn,Σn) and Q(s | xn) = qns. As a measure of uni-modality we can use a
sum of Kullback-Leibler divergences:

∑

ns

∫

g
Q(g, s | xn) log

[

Q(g, s | xn)

p(g, s | xn)

]

dg = (8)

∑

n

DKL({qns} ‖ {pns}) +
∑

s

qnsDns, (9)

where Dns = DKL(Q(g | xn) ‖ p(g | xn, s)). The total objective function, combining log-
likelihood and the penalty term, then becomes:

Φ =
∑

n

log p(xn)−DKL({qns} ‖ {pns})−
∑

s

qnsDns (10)

=
∑

ns

∫

g
dg Q(g, s | xn)[− logQ(g, s | xn) + log p(xn,g, s)] (11)

The form of (11) shows that we can view this as a variational approach to fit the mixture model
where we consider both s and g as hidden variables. We approximate the true p(g, s | x) with the
‘simple’ Q(g, s | x). The terms involving the mixture model p, represent the expected likelihood.
The penalty term makes the distributions Q(g, s | xn) mimmic the distributions p(g, s | xn).

Our density model differs with that of [Roweis et al., 2002] in two aspects:

1. isotropic noise model outside the subspaces (as opposed to diagonal covariance matrix)

2. isotropic variance in subspace (as opposed to general Gaussian).
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As a result, orthogonal mappings from the subspaces to the latent space can be absorbed in
the matrices Λ, since for orthogonal matrices R we have ΛR>(ΛR>)> = ΛΛ>, i.e. the density
model does not change if we replace Λ with ΛR>. Also, using our density model it turns out
that to optimize Φ with respect to Σn, it should be of the form1 Σn = β−1

n Id. Therefore we
work with βn from now on.

Using our density model we can rewrite the objective function (up to some constants) as:

Φ =
∑

ns

qns

[

− d

2
log βn − log qns −

ens

2σ2
s

− vs

2

[

dβ−1
n +

g>nsgns

ρs + 1

]

(12)

−D log σs +
d

2
log

vs

ρs + 1
+ log ps

]

, (13)

where we used the following abbreviations:

gns = gn − κs, xns = xn − µs, ens =‖ xns − α−1
s ΛsR

>
s gns ‖2, vs =

ρs + 1

σ2
sρsα2

s

. (14)

3.2 Optimization

Next, we give an EM-style algorithm to optimize Φ, it is a simplified version of the algorithm
provided in [Roweis et al., 2002]. The simplifications are: (i) the iterative process to solve for
the Λs,As is no longer needed; an exact update is possible and (ii) the E-step no longer involves
matrix inversions.

The same manner of computation is used: in the E-step, we compute the uni-modal dis-
tributions Q(s,g | xn), parameterized by βn,gn and qns. Let 〈gn〉s = Ep(g|xn,s)[g] denote the
expected value of g given xn and s. We used the following identities in the E-step update
equations:

〈gn〉s = κs +RsΛ
>
s xnsαsρs/(ρs + 1), (15)

Dns =
vs

2
[dβ−1

n + ‖ gn − 〈gn〉s ‖2 ] +
d

2
[log βn − log vs]. (16)

The approximating distributions Q can be found by iterating the fixed-point equations given
below. Due to the form of the update for qns it seems to make sense to initialize the qns at pns.

βn =
∑

s

qnsvs, gn = β−1
n

∑

s

qnsvs〈gn〉s, qns =
pns exp−Dns

∑

s′ pns′ exp−Dns′
. (17)

In the M-step, we update the parameters of the mixture model: ps,µs,κs,ΛsRs, σs, ρs. Again
we use some compacting notation:

Cs =
∑

n

qns ‖ gns ‖2, Es =
∑

n

qnsens, Gs = d
∑

n

qnsβ
−1
n (18)

Then, the update equations are:

ps =

∑

n qns
∑

ns′ qns′
, κs =

∑

n qnsgn
∑

n qns
, µs =

∑

n qnsxn
∑

n qns
, (19)

αs =
Cs +Gs

∑

n qns(g>nsRsΛ>
s xns)

, ρs =
D(Cs +Gs)

d(α2
sEs +Gs)

, σ2
s =

Es + ρ−1
s α−2

s [Cs + (ρs + 1)Gs]

(D + d)
∑

n qns

(20)
1Once we realize that the matrices Vs in [Roweis et al., 2002] are of the form cId with our density model, it

can be seen easily by setting ∂Φ/∂Σn = 0 that Σn = β−1
Id.
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Note that the above equations require Es which in turn requires the ΛsRs via equation (14).
To find RsΛ

>
s we have to minimize:

∑

n

qnsens =
∑

n

qns ‖ xns − α−1
s ΛR>gns ‖2 or equivalently: −

∑

n

qnsg
>
ns(RsΛ

>
s )xns. (21)

This problem is known as the ‘weighted Procrustes rotation’ [Cox and Cox, 1994]. Let

C = [
√
q1sx1s · · ·

√
qnsxns][

√
q1sg1s · · ·

√
qnsgns]

>, with SVD: C = ULΓ>, (22)

where the gns have been padded with zeros to form D-dimensional vectors, then the optimal
ΛsR

>
s is given by the first d columns of UΓ>.

4 Initialization from a data-space mixture

To initialize the optimization procedure described in the previous section, we can go two ways.
The two ways correspond to starting with an E-step or with an M-step. In [Roweis et al., 2002]
it is proposed to start with an M-step, requiring initial estimates for the global coordinates
gn. The initial global coordinates are typically provided by an ‘external’ unsupervised pro-
cedures, examples are LLE and Isomap. However, such methods might suffer from bad time
complexity scaling with increasing sample-size2. In this section we introduce an alternative ini-
tialization, that starts the update procedure with an E-step. This requires we find a data-space
mixture model first, we can use the GEM algorithm described in Appendix A. Note that the
greedy initialization method described in [Verbeek et al., 2001a], that builds the mixture model
component-wise in order to avoid problems due to ‘unlucky’ random initialization of the mixture,
can be directly used for the mixtue model described here.

4.1 Fixing the data-space mixture

Next, we consider how we can simplify the objective (13), if we fix the data-space mixture model.
In this case the problem reduces to find appropriate mappings {κs,As}. Since the data-space
mixture is fixed the log-likelihood term is constant and the objective reduces to the penalty term
(9). If the density model is fixed, we can reduce the number of free parameters in (9) by setting
qns = pns. This simplifies (9) to:

∑

ns

pnsDns. (23)

Furthermore, we replace the Gaussian Q(g | xn) with a delta-peak distribution on its center gn,
this removes the free parameters Σn. This amounts to simplifying (23) further to a weighted
sum of log-likelihoods:

∑

n,s

pns log p(gn | xn, s) (24)

The posterior distribution p(z | x, s) on internal coordinates z given a data point x is a Gaussian
and hence also the posterior p(g | x, s) is a Gaussian. The covariance of the posterior p(z | x, s)
is Id/(ρs + 1) and to get the covariance for g we only have to multiply this with the square of
the scaling factor of As which yields: Idα

2
sσ

2
sρs/(ρs + 1) = Idv

−1
s

2Both LLE and Isomap scale in principle at least quadratic, due to the neighborhood graph construction.
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4.2 Optimization and Initialization

Global maximization of (24) over all parameters is hard. Therefore, we maximize by alternating
maximization over the global coordinate point estimates {gn}, and then over the patch loca-
tions and rotations {κs,Rs}. This leads to a local maximum of the objective. Skipping some
constants, we rewrite (24) as:

−1

2

∑

n,s

pns[2d logα+ vs ‖ 〈gn〉s − gn ‖2 ]. (25)

In Appendix B we show how to find locally optimal parameters. Note that if the mixture in the
data-space is kept fixed, then all computations involve d dimensional vectors and matrices, as
expected.

Finally, to initialize the mappings we take component-wise approach, using the already
initialized components to initialize the next. Note that due to the invariance w.r.t. global
translations and rotations of the objective (24), we can simply initialize the first component
with R = Id, α = 1,κ = 0. To initialize a new component s, we compute Rs, αs,κs which
maximize:

∑

n

[ ∑

i∈F

pni

]

pns log p(gn | xn, s), (26)

where F is the set of components for which we already fixed the mapping, i.e. the weights pns

are rescaled according to the already initialized components. Again, the solution is found in
Appendix B. Note that these weights emphasize the data ‘on the border’ between the subspace
s and the already initialized subspaces. In order to select the next subspace to initialize, we
could for example pick

s = argmax
s

∑

n

pns

∑

i∈F

pni/ps. (27)

This method somewhat resembles the method described in [Verbeek et al., 2001b]. There, also
a similar density model is learned and then fixed to compute how the different local models can
be combined into a global structure. The method presented here is more robust and applicable
to any latent dimensionality.

5 Experimental results

In this section we discuss three experiments to illustrate the method. The first concerns arti-
ficially generated data. The other two experiments deal with mapping sets of images to low
dimensional coordinates.

5.1 Artificial data-set

As a first experiment we used an artificially generated data-set, depicted in Figure 2. We learned
a mixture model with 20 components and initialized the mappings to the latent space from the
data-space mixture. For all data points we also have the coordinates on the surface, so we can
inspect correlation coefficients with the discovered latent coordinates. The correlation coefficient
between the first latent dimension and the surface coordinates are: 0.0494 and 0.9997. For the
second latent dimension these are: 0.9961 and -0.0030.

5.2 Images of faces

For this experiment we captured gray valued images of a face with a webcam. Each image of
40× 40 pixels is treated as a 1600-dimensional vector, with each coordinate describing the gray
value of a specific pixel.
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Figure 2: An artificially generated data set, 1000 points in 3d on a 2d surface.

Figure 3: Images selected at equally space intervals in the discovered latent space.

Looking from left to rigth In the first experiment we used a set of 100 images of a face
where there was only one degree of freedom in the data: the face was rotated from left to right
when capturing the images. First we mapped the data to a 5 dimensional sub-space with PCA,
capturing over 68% of the total variance in the data. Then we learned a coordinated mixture
of principal component analyzers, the latent dimensionality was set to one and we used eight
mixture components. To initialize, we used the method described in Section 4. The data-space
mixture was learned with the greedy method of [Verbeek et al., 2001a], this method builds the
mixture component per component to avoid bad initialization of the parameters. In figure 3 we
show some of the used images, they are ordered according to the 1-d latent representation found
by our method.

Two degrees of freedom Next, we consider a data set similar to the previous, except that
the face now has a second degree of freedom, namely looking up and down. First we learned
a coordinated mixture model with 1000 randomly selected images from a set of 2000 images of
40× 40 pixels each. Again, we used a PCA projection, in this case to 22 dimensions, preserving
over 70% of the variance in the data set. We used a latent dimensionality of two and 20 mixture
components.

Here we initialized the coordinated mixture model by clamping the latent coordinates gn at
coordinates found by Isomap and clamping the βn at small values for 50 iterations. The qns

were initialized at random values, and updated from the start. After the first 50 iterations, we
also updated the βn and gn. The obtained coordinated mixture model was used to map the
remaining 1000 images, the ‘test-set’ into the latent space. For each image xn we can compute
p(g | xn), as described in Section 3 this distribution can be approximated with a single Gaussian
Qn = argminQ DKL(Q ‖ p(g | xn)) with a certain mean and variance. We used the mean of Qn

as the latent coordinate for an image.

In Figure 4 we show the latent coordinates for the test-set. We observe that a sensible 2-
dimensional parametrization is found in the training data set, that generalizes to the test set. To
illustrate the discovered parametrization further, two examples of linear traversal of the latent
space are given in Figure 5.
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Figure 4: The latent coordinates for the test set. Each circle represents a latent coordinate (its
center) and the uncertainty β on it (the radius of the circle is β−1/2). For some coordinates we
displayed the corresponding image at the coordinate.

Figure 5: Examples of linear traversal of the latent space. The followed trajectories correspond
to the arrows in Figure 4.
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Figure 6: An example of a panoramic image as used by the robot.

5.3 Robot navigation

Here we consider images obtained from a omni-directional camera3 mounted on a mobile robot.
These images are warped to gray-scale panoramic images of 256× 64 pixels, an example of such
an image is given in Figure 6. The robot was placed at many locations in an office, while the
orientation of the robot was kept fixed. At each location the position of the robot was recorded
together with an image taken at that position.

First we consider data obtained from a rectangular area of an office, approximately 8 × 1 1
2

meters wide. The robot recorded images on a 10×10 centimeter grid, in the corridor we obtained
970 images. A uniformly random selected subset of 500 of those images were used to train the
coordinated mixture model, with latent dimension two and 20 mixture components. Since we
have ’supervised’ data here, we can set and keep fixed the gn here at the recorded positions of
the robot. In case of significant errors in the recorded positions we might only use them for
initialization. Prior to training the model, we projected the images to a 15 dimensional space
capturing over 70% of the variance in the total 16.384 dimensions.

We mapped the test set to the latent space as described in the previous section. The
covariance of the error between the true location and the found latent coordinates is almost
diagonal with standard deviations of 13 and 17 centimeters in respectively the horizontal and
vertical direction. The ellipse in Figure 7 illustrates the covariance structure, the axes of the
ellipse are parallel to the eigenvectors of the covariance matrix, and their lengths equal to square
root of the corresponding eigenvalues.

The same experiment was repeated with a data from a larger region, see the right pannel in
Figure 7. Here the images were projected on a 50-dimensional space and 50 mixture components
were used. From the total 2435 images 1700 were used for training and 735 for testing. In this
experiment, the standard deviation of the error along the eigenvectors of the covariance matrix
was 15 and 17 centimeters.

Although these results are good, considering that only linear models are used, we found
it very hard to get good environment representation when not using the supervised position
information.

6 Discussion and conclusions

Discussion In the previous section we showed examples of application of the model to visual
data. Both supervised and unsupervised data sets were used. The mains reason for applying
this model to supervised data instead of other regression methods are the compact decription of
the mapping between the high and low dimensional space, the probabilistic framework in which
it is stated and the simplicity in terms of computational effort of the mapping.

One might consider applying this method to partially supervised data sets (only a limited
number of measurements is provided together with a ‘supervised’ latent coordinate). This
possibility forms a line of further research.

Another future line of research is the use of the decribed density model to get an idea of the

3In fact, a normal camera looks in vertical direction onto a parabolic mirror mounted above the camera.
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Figure 7: Positions in the robot navigation task. The training locations are shown left, the found
locations for the test set are shown in the middle with the original locations right. The ellipse
(top right) shows the covariance structure in the error. The right pannel shows the locations
and error covariance for the second experiment.

(local) latent dimensionality. If we treat the latent dimensionality a unknown, we could try to
estimate it by checking at the M step in an EM procedure for every component which latent
dimensionality maximizes log-likelihood. As opposed to th MPPCA anf MFA density models,
with our density model the covariance matrices do not form a nested family. With MPPCA
and MFA the covariance matrices Cd for latent dimensionality d are included in the covariance
matrices for latent dimensionality d′ > d: Cd ⊂ Cd′ . Hence with MPPCA and MFA, increasing
the latent dimensionality can only increase the likelihood.

An important issue, not addressed here, is that is many cases where we collect data from a
systems with only few degrees of freedom we actually collect one or more sequences of data. If
we assume that the system can vary its state only in continuous manner, these sequences should
correspond to paths on the manifold of observable data. This fact might be exploited to find
low dimensional embeddings of the manifold.

Conclusions We showed how a special case of the density model used in [Roweis et al., 2002]
leads to a more efficient algorithm to coordinate probabilistic local linear descriptions of a data
manifold. The M-step can be computed at once, the iterative procedure to find solutions for a
Riccati equation is no longer needed. Furthermore, the update equations do not involve matrix
inversions anymore. However, still d singular values of a D ×D matrix have to be found.

We prosposed an alternative initialization scheme for the mapping from high to low dimen-
sion, that exploits the structure of a mixture model in the data space. We showed experimental
results of this method discovering succesfully the structure in a data set of images of a face that
rotates over its length axis. We showed how we can use the coordinated mixture model to map
supervised data (robot navigation) and data for which we have uncertain latent coordinates (the
2 degrees of freedom facial images).
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A GEM for constrained MPPCA

The constrained MPPCA model, characterized by equation (1), is parameterized by {ps, θs},
the mixing weights ps and θs = {µs, σs, ρs,Λs}. Let pns denote the expectation that component
s generated xn. The expected complete log-likelihood (expectation taken over the unobserved
labels that indicate which component generated which data point) is then given by:

〈L〉 =
∑

ns

p(s | xn) ln{πsp̃(xn; θi)}, (28)

where we used p̃ to denote the density model with the new parameters. Optimization of the
parameters is easy by using a Generalized EM (GEM) algorithm described below. First, we
maximize (28) w.r.t. {p̃s} and {µ̃s}, while keeping the other parameters fixed. If we write
p(s | xn) = pns this gives:

µ̃s =

∑

n pnsxn
∑

n pns
, p̃s =

∑

n pns
∑

ns′ pns′
(29)

Next, we consider maximizing (28) w.r.t. the other parameters while keeping {p̃s} and {µ̃s}
fixed. This gives us parameter values that yield even higher values for (28) and hence we are
guaranteed to obtain increased log-likelihood by the GEM algorithm. Before we turn to the
derivation of the GEM algorithm we note that the likelihood under component s reads:

p(xn | s) = σ−D
s (2π[ρs + 1])−d/2 exp

−1
2σ2

s

[ ‖ xns ‖2 −
ρs

ρs + 1
‖ Λ>xns ‖2 ] (30)
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A.1 Updating the loading matrices

The weighted covariance matrix for component s is defined as:

Ss =

∑

n pnsxnsx
>
ns

∑

n pns
, (31)

where we use xns = xn − µ̃s. Let λsj ,usj denote the eigenvalues respectively eigenvectors of Ss

sorted from large to small eigenvalues. We show that for σs, ρs > 0 setting Λ̃s = [us1 · · ·usd]
maximizes the expected log-likelihood. To maximize (28) with respect to Λ̃s for given µ̃s,
consider the terms for Λ̃s in (28):

∑

n

pns ln p̃(xn; θs) = −
1

2

∑

n

pns[ln det(2πC̃s) + x>nsC̃
−1
s xns]. (32)

Note that
C̃ = σ̃2(ID + ρ̃Λ̃Λ̃>) = σ̃2T(ID + ρ̃I∗)T>, (33)

where T = [VQ] is a D × D matrix with pairwise orthonormal columns and Q an arbitrary
D× (D− d) matrix that fits the orthonormality constraints. The matrix I∗ denotes the matrix
which is all zero except for the first d diagonal elements. From this is easy to see that the
determinant of C̃ is invariant for Λ̃:

det(C̃) = det(T) det(σ̃2(ID + ρ̃I∗)) det(T>) (34)

= det(σ̃2(ID + ρ̃I∗)) = (σ̃2)D(1 + ρ̃)d (35)

So maximizing (32) is equivalent to minimizing:

∑

n

pnsx
>
nsC̃

−1
s xns = σ̃−2

s

∑

n

pns(T
>xns)

>(ID + ρ̃I∗)−1T>xns (36)

= σ̃−2
s

[ ∑

n

pnsx
>
nsxns −

ρ̃s

ρ̃s + 1

∑

n

pnsx
>
nsT

>I∗Txns

]

(37)

For σ̃s, ρ̃s > 0, this is equivalent to maximizing:

∑

n

pns(T
>xns)

>I∗(T>xns), (38)

i.e. maximizing the weighted variance in the subspace spanned by the first d columns of T>.
This is solved by the first d eigenvectors of the weighted covariance matrix. Note that this
solution for Λ̃s is independent of the actual σ̃s and ρ̃s. So after computing {µ̃s} and the {p̃s},
we use the first d eigenvectors of the weighted covariance matrix as Λ̃s.

A.2 Variance inside and outside the subspace

In order to maximize (28) w.r.t. σ̃s and ρ̃s, for fixed µ̃s, p̃s, Λ̃s, we first consider the terms in
(28) for ρ̃s:

∑

n

pns ln p̃(xn; θs) = −
1

2

∑

n

pns[ln det(C̃s) + x>nsC̃
−1
s xns] (39)

= −d
2

[ ∑

n

pns

]

ln (ρ̃s + 1)− 1

2σ̃2
s

∑

n

pnsx
>
ns(ID + ρ̃sΛ̃sΛ̃

>
s )

−1xns (40)

= −d
2

[ ∑

n

pns

]

ln (ρ̃s + 1)− 1

2σ̃2
s

(ρ̃s + 1)−1
∑

n

pnsx
>
nsΛ̃sΛ̃

>
s xns, (41)
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where the last equality follows from (33) and we ignored some additive constants in the equalities.
Setting the derivative of (41) w.r.t. ρ̃s equal to zero, and doing the same for σ̃s we obtain:

ρ̃s + 1 =

∑

n pnsx
>
nsΛ̃sΛ̃

>
s xns

dσ̃2
s

∑

n pns
, σ̃2

s(D + dρ̃s) =

∑

n pnsx
>
nsxns

∑

n pns
. (42)

Combining these we obtain:

σ̃2
s =

1

D − d

D∑

i=d+1

λsi, ρ̃s + 1 =
1

dσ̃2
s

d∑

i=1

λsi, (43)

where the λsi’s are as before. Note that σ̃2
s is intuitively interpreted as the mean variance outside

the subspace. Similarly, (ρ̃s + 1) equals the mean variance inside the subspace divided over σ̃2
s .

B A variation on weighted Procrustes analysis

The quadratic form we need minimize with respect to {gn}, {κs}, {Rs}, {αs} is:

∑

ns

pns[2d logαs + csα
−2
s ‖ κs + αsRszns − gn ‖2 ], (44)

for constants cs, {zns}, {pns}. Solving for the gn by differentiation of (44) gives:

gn =

∑

s pnscsα
−2
s (κs + αsRszns)

∑

s pnscsα
−2
s

. (45)

Then, keeping {gn} fixed we solve for the other parameters. For κs, this gives:

κs =

∑

n pnsgn
∑

n pns
−

∑

n pnsαsRszn
∑

n pns
= ḡs − αsRsz̄s, (46)

i.e. the translation makes the weighted means equal, note that αs is as given by (49). To find
the rotation R and scaling α, we assume that the weighted means are already equal, it is easy to
show that this gives the same R and α. To realize this we set g̃ns = gn − ḡs and z̃ns = zns − z̄s

and use these to find the scaling and rotation. Then, for Rs we need to maximize:

∑

n

pnsg̃
>
nsRsz̃ns, (47)

which is solved by the Procrustes rotation [Cox and Cox, 1994]. Let

C = [
√
p1sg̃1s · · ·

√
pnsg̃ns][

√
p1sz̃1s · · ·

√
pnsz̃ns]

> with SVD C = ULΓ> (48)

then the solution is Rs = ΓU>. For α > 0, setting the derivative to zero gives:

α2
s

d
∑

n pns

cs
︸ ︷︷ ︸

a

+αs

∑

n

pnsg̃
>
nsRsz̃ns

︸ ︷︷ ︸

b

−
∑

n

pnsg̃
>
nsg̃ns

︸ ︷︷ ︸

c

= 0, ↔ α =
−b+

√
b2 − 4ac

2a
> 0. (49)

In order to prevent degenerate solutions which collapse all data into a single point, we need to
put a constraint on the scale of the latent space. Either we fix {αs} or we could re-scale after
each step such that

∑

n ‖ gn ‖2= 1.
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