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We present a variational Expectation-Maximization algorithm to learn proba-
bilistic mixture models. The algorithm is similar to Kohonen’s Self-Organizing
Map algorithm and can be applied on any mixture model for which we can find a
standard Expectation Maximization algorithm. We maximize the variational free-
energy which sums data log-likelihood and Kullback-Leibler divergence between
the neighborhood function and the posterior distribution on the components,
given data. We illustrate the algorithm with an application on word clustering.
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1 Introduction

Kohonen’s Self-Organizing Map (SOM) [5] is a data analysis method that combines vector
quantization with topology preservation. With each quantizer we associate a fixed location in
a ‘latent’ space. The latent space is of much lower dimension (typically just two) than the
data space. The SOM algorithm finds locations for the quantizers in the data space such that
the summed squared distance from data to closest node is small and simultaneously topology
is preserved. Topology preservation means that nearby components in latent space are also
nearby in the data space. As a consequence, data points associated with nearby components
in latent space are coming from similar locations in the data space. Hence, to check if data
points are ‘close’ in the data space, we can check whether their associated components are
close in the latent space. Topology preservation makes SOMs useful for data visualization and
dimensionality reduction.

We present a constrained or variational Expectation-Maximization (EM) learning algorithm
to learn probabilistic mixture models similar to SOM. The algorithm applies to a wide class
of mixture models, in principle to any mixture model for whcih we can find a standard EM
algorithm.

In the next section we discuss the Gaussian mixture model that will serve as the example
mixture model throughout and also briefly discuss the EM algorithm. In section 3 we present
our Self-Organizing Mixtures algorithm. We compare our algorithm to several closely related
algorithms in Section 4. A brief example application is discussed in Section 5 and we present
our conclusions in Section 6.

2 A simple generative model and EM

As generative model consider the Mixture of Gaussians (MoG), given by :

p(x) =
1

k

k
∑

s=1

p(x | s),

for D-dimensional data, where p(x|s) is an isotropic Gaussian with inverse variance β and mean
µs. Given a data x = {x1, . . . ,xN}, and an initial parameter vector θ = {β,µ1, . . . ,µk} the
EM algorithm [6] finds a local maximizer θ of the log-likelihood L(θ). Assuming data are
independent and identically distributed:

L(θ) =
∑

n

log p(xn | θ) =
∑

n

log
1

k

∑

s

p(xn | s).

Learning is facilitated by introducing a set of N hidden variables. Each hidden variable indicates
which of the k mixture components generated the corresponding data point. The EM algorithm
maximizes the negative free-energy:

F (Q,θ) = EQ log p(x, s;θ) +H(Q) (1)

= L(θ)−DKL(Q ‖ p(s | x;θ)), (2)

where we used H to denote the entropy of a distribution and DKL to denote the Kullback-Leibler
(KL) divergence between two probability distributions. Q =

∏

n qn is a distribution over the
hidden variables, qn gives a distribution on the generating mixture component s ∈ {1, . . . , k} for
data point n. Note that, due to the non-negativity of the KL-divergence, for any Q, F (Q,θ) is
a lower bound on L(θ).



2 The Generative Self-Organizing Map

The two forms in which we expanded F are associated with the M-step and the E-step of EM.
In the M-step we change θ as to maximize, or at least increase, F (Q,θ). The first decomposition
includes H(Q) which is a constant w.r.t. θ. In the E-step we maximize F w.r.t. Q, the second
decomposition includes L(θ) which is constant w.r.t. Q. What remains is a KL divergence
which is the effective objective function in the E-step of EM.

In standard applications of EM (e.g. mixture modeling) Q is unconstrained, which results
in setting qn = p(s | xn;θ) in the E-step since the non-negative KL divergence equals zero if
and only if both arguments are equal. Therefore, after each E-step F (Q,θ) = L(θ). Varia-
tional methods are used when optimization over the unconstrained Q is intractable, Q is then
restricted to a certain class Q of distributions allowing for tractable computations. Variational
EM maximizes F instead of L, the objective sums log-likelihood and a penalty which is high if
the true posterior is far from any member of Q.

3 Using free-energy for self-organization

By constraining choosing an appropriate class of distributions Q, we can also enforce a topolog-
ical ordering between the mixture components, as we explain below. The approach is much like
the one taken in [7, 8], where constraints on Q are used to align the local coordinate systems of
the components of a probabilistic mixture of factor analyzers.

We associate with each mixture component s a latent coordinate gs. It is convenient to
take the components as located on a regular grid in the latent space. We set Q to be class of
discretized isotropic Gaussians in the latent space, centered on either one of the k component
locations gs and with a particular fixed variance. The distributions qn play a similar role as the
neighborhood function in Kohonen’s SOM [5]. The qn are thus restricted to be contained in the
finite set of distributions Q = {p1, . . . , pk}, where:

pr(s) =
exp (−λ ‖ gs − gr ‖

2)
∑

t exp (−λ ‖ gt − gr ‖2)
.

A small λ corresponds to a broad distribution (high entropy), and for large λ the distribution
pr becomes more peaked (low entropy). By performing EM steps, we can never decrease the
objective. The M-step is as usual and in the E-step we select for each data point xn the
distribution qn ∈ Q that increases the objective the most. Note that in the E-step we can
always stick to the qn of the previous EM round without changing (and hence definately not
decreasing) the objective funciton.

Since the objective function might have local optima and EM is only guaranteed to give
locally optimal solutions, good initialization of the parameters of the mixture model is essential
to finding a good solution. Analogous to the method of shrinking the extent of the neighborhood
function with the SOM, we can start with a small λ (broad neighborhood function) and increase it
iteratively until a desired value is reached. In implementations we started with λ such that the pr
are close to uniform over the components, then we run the EM algorithm until convergence. Note
that if the pr are almost uniform the initialization of θ becomes irrelevant. After convergence
we set λnew ← ηλold with η > 1 (typically η is close to unity). In order to initialize the EM
procedure with λnew, we initialize θ with the value found in running EM with λold.

Using qns = qn(s), for our MoG case F can be rewritten as:

F (Q,θ) =
1

2
ND log β −

∑

ns

qns

[

β ‖ xn − µs ‖
2 /2 + log qns

]

.

For fixed λ an EM algorithm can be derived by differentiation:
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• E: Determine (by means of exhaustive or sparse search in Q, see below) for each xn the
distribution pr∗ ∈ Q that maximizes F , set qn = pr∗ .

• M: Set: µs =
∑

n qnsxn/
∑

n qns and β = ND/
∑

ns qns ‖ xn − µs ‖
2.

The component r∗ on which pr∗ is centered for data point n, is referred to as the ‘winner’
for xn. The computational cost of the E-step is O(Nk2), a factor k slower than Kohonen’s SOM
and possibly prohibitively slow in large-scale applications. However, by restricting the search
for a winner in the E-step to a limited number of candidate winners we can obtain an O(Nk)
algorithm. A straightforward choice is to use the l components with the largest joint likelihood
p(x, s) as candidates, corresponding for our MoG to smallest Euclidean distance to the data
point. If none of the candidates yields a higher value of F (Q,θ) we keep the winner of the
previous step, in this way we are guaranteed never to decrease the objective in every step. We
found l = 1 to work well and fast in practice, in this case we only check whether the winner
from the previous round should be replaced with the closest node.

Let us consider why our algorithm yields topology preservation. The qn are by construction
localized in the latent space. This implies that although the winner gets the most mass from
qn, the neighbors of the winner also get some mass and far-away components get practically no
mass. As a consequence nearby components in latent space are forced to model similar data.

Also, consider a topology preserving configuration of the mixture model. We can destroy the
topology preservation if we permute the mixture components in the data space but keeping their
locations in the latent space fixed. Note that L(θ) is the same for both configurations. Clearly,
for the topology preserving configuration the mass of the posterior distribution is more or less
localized in the latent space, where this will not be the case for the permuted model. Therefore,
the KL divergence is expected to much smaller for the topology preserving configuration.

4 Discussion

Discussion. Our algorithm is very similar to Kohonen’s SOM when applied on the example
MoG. If we use only l = 1 candidate winner in the E-step the difference with Kohonen’s winner
selection is that we we only accept the closest node as a winner when it increases the energy
and keep the previous winner otherwise. Our M-step coincides exactly with the update rule of
the batch SOM: it puts component s at the weighted sum of the data, each data item weighted
proportionally to the value of the neighborhood function (centered on the winner of the data
point) at s. For an increasingly peaked neighborhood function both SOM and our algorithm
aplied to the simple MoG reduce to the k-means vector quantization algorithm.

In [3, 4] another SOM-like algorithm is proposed with objective function:

−
∑

ns

qns[β
∑

r

hsr ‖ xn − µr ‖ /2 + log qns].

There, the neighborhood function, implemented by the hsr, is fixed, but the winner assignment
is soft. Instead of selecting one ‘winner’ an unconstrained distribution over the components is
used: the qns. The β is used for annealing: for very small β the entropy term, with only one
global optimum, becomes dominant, whereas for large β the quantization error, with many local
optima, becomes dominant. By gradually increasing β more and more structure is added to the
objective function.

Our work differs in several ways. We use one localized distribution in the latent space
to constrain qn, as opposed to a mixture of localized distributions in the latent space. As a
consequence the easy speed-up of our algorithm does not apply to the algorithms in [3, 4]. We
use the neighborhood function width (controlled by λ) for annealing as opposed to using β. Note
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that although both λ and β can be used for annealing, only β can be optimized efficiently as a free
parameter. Both our objective function and the one of [3, 4] can be interpreted as a log-likelihood
plus a penalty term for non-topology preserving configurations. The interpretation provided in
this work is simpler and applies trivially to any mixture model where for the interpretation of
[3, 4] it is not clear whether it applies to any mixture model.

Another similar model is presented in [1]. There, in the E-step we set:

qn = argmax
r

∑

s

pr(s)p(xn|s).

The M-step finds a new parameter vector that maximizes:

∑

n

log
∑

s

qn(s)p(xn|s).

This algorithm does not optimize a single likelihood function, even if we keep the neighborhood
function width fixed, since the mixing weights vary for each data item and change throughout
the iterations of the algorithm. The algorithm has run-time O(nk2), but can benefit from the
same speed-up used here.

Another model, often presented as the probabilistic version of the self-organizing map, is
the Generative Topographic Map (GTM) [2]. However, the manner in which GTM achieves
the topographic organization is quite different from those used in the SOM models. In GTM
mixture components are parameterized by a linear combination of nonlinear functions of the
locations of the components in the latent space. The parameters of the linear map are learned
from data. The number of nonlinear basis functions and their smoothness are to be found by
model complexity selection procedures.

5 Illustration

We illustrate our algortihm with an example where the mixture does not contain Gaussians
as components but products of Bernoulli distributions, to underline that we are not limited to
using Gaussian mixtures.

Figure 1 shows results of modeling word occurrence data on a part of the 20 newsgroup data
set, word xn is shown at location gn =

∑

s p(s|xn)gs. Each of the 100 words is a data item with
16242 binary features indicating its occurrence in each of 16242 documents.

We learned a k = 25 component mixture model with our algorithm, where each mixture
component is a product of Bernoulli distributions:

p(xn|s) =
16242
∏

i=1

p(x(i)
n |s) =

16242
∏

i=1

ps,i
x
(i)
n (1− ps,i)

(1−x
(i)
n ),

where x
(i)
n denotes the i-th element of the vector xn.

Due to the huge dimensionality of this data, the posteriors are rather peaked (low entropy),
resulting in gn almost equal to one of the gs. The result is that the words locations gn are
almost equal to one of the component locations gs. Smoothing the posteriors changes the plot
from one in which the gn form 25 heaps of points on the gs, into one where the gn are drawn
toward other similar heaps and the points are more spread. To ‘smoothen’ the representation
we used p′(s|xn) ∝ p(s|xn)

α for α < 1 such that the entropies of the p′(s|xn) were close to two
bits.1

1It is not difficult to show that p′ ∝ pα is the best approximation in Kullback-Leibler sense to p such that
H(p′) = c where α depends on c.
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The different occurance patterns of the words through the documents can be identified in
the latent space. For example, the lower right corner is devoted to words that occur in computer
related documents.

6 Conclusions

We presented a penalized log-likelihood probabilistic mixture modeling method, similar to Ko-
honen’s SOM. The probabilistic formulation offers several benefits: (i) The method is directly
applicable to any mixture model for i.i.d. data for which we can find a regular EM algorithm.
(ii) The generative model allows seamless embedding in larger probabilistic systems. It is for
example straightforward to learn mixtures of Self-Organizing maps. (iii) There is a direct and
clear link to the mixture model data log-likelihood.

In current research we are investigating a similar method and in a sense opposite method.
In the work presented here, we started with fixed locations in the latent space and fitted a
mixture by maximizing the free energy. The opposite approach uses a fixed mixture and finds a
corresponding latent representation that maximizes a similar free energy. The latter free-energy
has single unique maximum as a function of the latent space representation which can be found
by finding few eigenvectors of a matrix with edge size k.
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Figure 1: Self-organizing Bernoulli models, k = 25. Lower plot zooms dense area in upper plot.
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