N

N
N

HAL

open science

Efficient greedy learning of Gaussian mixtures
Jakob Verbeek, Nikos Vlassis, Ben Krose

» To cite this version:

Jakob Verbeek, Nikos Vlassis, Ben Krose. Efficient greedy learning of Gaussian mixtures. [Technical

Report] TAS-UVA-01-10, 2001, pp.22. inria-00321507

HAL 1d: inria-00321507
https://inria.hal.science/inria-00321507
Submitted on 16 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00321507
https://hal.archives-ouvertes.fr

Intelligent

Autonomous
Systems

IAS technical report series, nr. IAS-UVA-01-10

Efficient Greedy Learning
of Gaussian Mixtures

J.J. Verbeek, N. Vlassis and B. Krose
Computer Science Institute

Faculty of Science

University of Amsterdam

The Netherlands

We present a deterministic greedy method to learn a mixture of Gaussians which
runs in O(nk?) time. The key element is that we build the mixture component-
wise. By allocating a new component close to optimal in the existing (close to
optimal) learned mixture, we hope to be able to reach a solution close to optimal
for the new mixture. Each component of the mixture is characterized by a fixed
number of parameters. Then, instead of solving directly a optimization problem
involving the parameters of all components, we replace the problem by a sequence
of optimization problems involving only the parameters of the new component. We
include experimental results obtained on image segmentation and reconstruction
tasks as well as results of extensive tests on artificially generated data sets. In these
experiments the learning method compares favorably to the standard EM with
random initialization as well as to another existing greedy approach to learning
Gaussian mixtures.

Keywords: Unsupervised learning, Finite mixture models, Gaussian mixtures,
EM algorithm

submitted to: Journal of Machine Learning Research

Efficient Greedy Learning

of Gaussian Mixtures CONTENTS
Contents
1 Introduction 1
2 Gaussian Mixtures and the EM Algorithm 1
3 Greedy Learning of Gaussian Mixtures 2
3.1 Motivation e e e e e e e 2
3.2 A General Scheme for Greedy Construction of Gaussian Mixtures 3
3.3 Searching for New Components oo 4
3.3.1 Every Data Point Generates a Candidate 4
3.3.2 A new search procedure using local kd-trees 5
3.3.3 Speeding up the Partial EM Searches 6
3.3.4 Total Run Time e 8
4 Experimental Demonstration 8
4.1 Artificial Data Drawn from Gaussian Mixtures 9
4.2 Image reconstruction using MPPCA 11
4.3 Texture Segmentation Lo 13
5 Discussion and Conclusions 14
A Conditional entropy for cluster evaluation 18
Intelligent Autonomous Systems C di hor:
Computer Science Institute orresponding author:
Faculty of Science J.J. Verbeek
University of Amsterdam tel: +31 (20) 525 7515
Kruislaan 403, 1098 SJ Amsterdam jverbeek@science.uva.nl
The Netherlands http://carol.science.uva.nl/~jverbeek/
tel: +31 20 525 7461
fax: +31 20 525 7490
http://www.science.uva.nl/research/ias/

Section 1 Introduction 1

1 Introduction

This paper concerns the learning (fitting the parameters of) a mixture of Gaussian distributions
[13]. Mixture models form an expressive class of models for density estimation. Applications in
a wide range of fields have emerged in the past decades. They are used for density estimation
in ‘unsupervised’ problems, for clustering purposes, for estimating class-conditional densities in
supervised learning settings, in situations where the data is partially supervised and in situations
where some observations have ‘missing values’. A recent development in mixture modeling with
Gaussians is their use for local linear dimension reduction. This application was given solid
foundation in the Mixtures of Probabilistic Principal Component Analyzers (MPPCA) model
[18].

The most widely used algorithm to learn mixture models is the Expectation-Maximization
(EM) algorithm [6]. For a given finite data set X,, of n observations and an initial mixture fo,
the algorithm provides a means to generate a sequence of mixture models {f;} with increasing
log-likelihood on X,,. The EM algorithm is known to converge to a locally optimal solution.
However, convergence to a globally optimal solution is not guaranteed. The log-likelihood of the
given data set under the found mixture distribution is highly dependent on the initial mixture
fo-

The standard method to overcome the high dependence on initialization is to start the EM
algorithm for several random initializations and use the mixture yielding maximum likelihood on
the data. The result is a nondeterministic algorithm. The nondeterminism of the algorithm may
be unfavorable, especially in the process of developing large systems that include the learning of
a mixture model as a module. In order to effectively evaluate performance of other modules it
is convenient to rule out accidental aberrant behavior of the complete system due to ‘unlucky’
initializations of the mixture learning module.

In this paper we present a deterministic method to learn mixtures of k Gaussians. The
method is based on previous work [22]. Here, we solve the main drawback of [22]: the time
complexity is reduced from O(k%n?) to O(k?n). Furthermore, the new method extends naturally
to learning MPPCA models. The novell approach peforms on average significantly better than
the approach in [22]. Both algorithms use roughly the same approach: the mixture is build-up
by starting with a one-component mixture and adding new components one after the other.
The new algorithm replaces the ‘static’ component insertion step of [21] with a procedure that
inserts a component that is selected among a set of ‘candidate’ components dependent on the
existing mixture.

The paper is organized as follows: In Section 2 we recapitulate the definition and EM-learning
of Gaussian mixtures. Section 3 forms the core of the paper and describes our new greedy
approach to Gaussian mixture learning. Then, in Section 4, we present experimental results
on three tasks: modeling of artificially generated data drawn from several types of Gaussian
mixtures, image reconstruction and texture segmentation. The second task involves the MPPCA
model. The experiments compare the results of the new algorithm with those of the standard
EM and the approach of [22]. Section 5 ends the paper with conclusions and a discussion.

2 Gaussian Mixtures and the EM Algorithm

A Gaussian mixture is defined as a convex combination of Gaussian densities. A Gaussian
density in a d-dimensional space, parameterized by its mean m € IRY and d x d covariance
matrix C is defined as:

$(x;0) = (2m)~%? det(C) ' exp (—(x — m) "C7' (x — m) /2), (1)

2 J.J. Verbeek et al.

where 6 denotes the parameters m and C. A mixture of & Gaussians is then defined as:

k k
fe(x) = Zm¢(x;92~), with Zﬂ'j =1 andfor je{l,...,k}:m >0. (2)
i=1 j=1

The ; are called the mixing weights and ¢(x;6;) the components of the mixture.

The well known EM algorithm [6] enables us to update the parameters of a given k-component
mixture with respect to a data set X, = {x1,...,x,} with all x; € IRY, such that the likelihood
of X,, is never smaller under the new mixture. The updates for a mixture of Gaussians can
be accomplished by iterative application of the following equations for all components j €

{1,...,k}:

Pl %) = TG g
mj = %ZZ:P(J' | Xi), (4)
S T 6
¢, 1 S Pl x5 =m0 = m,)T o

mrj

As already mentioned in the previous section, the EM algorithm is not guaranteed to lead us to
the best solution, where ‘best’ means the solution yielding maximal likelihood on X,, among all
maxima of the likelihood.! The good thing is that if we are close to the global optimum of the
parameter space, then it is very likely that by using EM we obtain the globally optimal solution.

3 Greedy Learning of Gaussian Mixtures

In this section we present our greedy method for learning mixtures of Gaussians. The basic idea
is simple: Instead of starting with a (random) configuration of all components and improve upon
this configuration with EM, we build the mixture component-wise. We start with the optimal
one-compponent mixture, whose parameters are trivially computed. Then we start repeating
two steps until a stopping criterion is met: (i) insert a new component and (ii) apply EM until
convergence. The stopping criterion can implement the choice for a pre-specified number of
components or it can be any model complexity selection criterion.

3.1 Motivation

Our ‘greedy’ approach to learning mixtures of Gaussians can be based on the following assump-
tion:

Assumption 1 The global optimum for a k-component mizture is reachable from the configu-
ration obtained by optimally inserting a new component in the globally optimal configuration of
the (k — 1)-component mizture.

With 6’ is ‘reachable’ from 6 we mean that if we start EM in 6 then it will converge to #'. Given
that this assumption holds and that the solution for the one-component mixture is trivial to
compute, the problem of finding a near optimal start configuration (so that EM will converge

We implicitly assume throughout that the likelihood is bouded, by restricting the parameter space, and hence
the maximum likelihood estimator is known to exist [12].

Section 3 Greedy Learning of Gaussian Mixtures 3

to the optimal solution) can be replaced with a sequence of & — 1 optimal component insertion
problems. The optimal component insertion problem involves a factor & fewer parameters than
the original problem of finding a near optimal start configuration, we therefore expect it to be
an easier problem. We recently applied a similar strategy to the k-means clustering problem
[11], for which encouraging results were obtained.

Two recent theoretical results provide complementary motivation. Li has been proven [10]
that for an arbitrary probability density function f there exists a sequence {f;} of finite mixtures
such that fi(x) = Y%, mi¢(x;6;) achieves Kullback-Leibler (KL) divergence? D(f || fi) <
D(f || gp)+c/k for every gp = [¢(x;0)P(df). Hence, the difference in KL divergence achievable
by k-component mixtures and the KL divergence achievable by any (possibly non-finite) mixture
from the same family of components tends to zero with speed ¢/k (where ¢ is a constant not
dependent on & but only on the component family). Furthermore, it is shown that this bound
is achievable by employing a greedy approach as discussed above.

Note that this result does not give direct support for our assumption but does tell us that we
can ‘quickly’ approximate any density by the greedy procedure. Therefore, we might expect the
results of the greedy procedure as compared to the standard (randomly initialized) EM approach
to differ more when fitting mixtures with many components.

The sequence of mixtures generated by the greedy learning method can conveniently be used
to guide a model selection process in the case of an unknown number of components. Recently
a result of ‘almost’ concavity of the log-likelihood of a data set under the maximum-likelihood
k-component mixture, as function of the number of components k& was presented [3]. The result
states that the first order Taylor approximation of the log-likelihood of the maximum likelihood
models as function of k is concave under very general conditions. Hence, if we use a penalized
log-likelihood model selection criterion based on a penalty term which is concave or linear in &
then the penalized log-likelihood is almost concave. This implies that if the ‘almost’ concave
turns out to be concave then there is only one peak in the penalized log-likelihood and hence
this peak can be relatively easily identified, e.g. with our greedy construction method.

3.2 A General Scheme for Greedy Construction of Gaussian Mixtures

Let £(X,, fr) = Yimq log fr(xi) (we will just write £y if no confusion arises) denote the log-
likelihood of the data set X,, under the k-component mixture fr. The greedy learning procedure
outlined above can be summarized as follows:

1. Compute the optimal (yielding maximal log-likelihood) one-component mixture fi. Set
k:=1.

2. Perform a search to find the optimal new component ¢(x;6*) and corresponding mixing
weight o, where

{07,a"} = arg max > log[(1 — a) fi(xi) + ag(x;;0)] (7)
=1
with fj fixed.
3. Set fry1(x):= (1 — a*)fr(x) + a*p(x;6*) and k := k + 1;
4. Update fr using EM until convergence.

5. If a stopping criterion is met then quit, else go to step 2.

2The KL divergence is defined as: D(f || g) = fn f(z)log (f(x)/g(x))dz where Q is the domain of the densities
f and g, see [4] for details.

4 J.J. Verbeek et al.

The stopping criterion in step 5 can be used to force the algorithm to find a mixture of a
pre-specified number of components. Of course, step 5 may also implement any kind of model
selection criterion. Note that step 4 may also be implemented by other algorithms than EM.

One may note similarity to the Vertex Direction Method (VDM) [2, 12, 23] to learn Gaussian
Mixtures. Indeed, VDM may be regarded as a specific choice for the search of step 2, as we
explain in the discussion in Section 5. In the rest of this section we are concerned with the
search in step 2.

3.3 Searching for New Components

Suppose we have obtained a k-component mixture fi, the quest is to find the component char-
acterized by equation (7). Tt is easily shown that if we fix fr and ¢ then Lj | is concave as
function of « only, allowing efficient optimization. For example, in [22] a second order Taylor
approximation was used. The concavity follows trivially by noting that the second derivative is
everywhere non-positive [2]. However, Ly as function of f can have multiple maxima. Hence,
we have to perform a global search among the new components in order to identify the optimum.

In our new algorithm, the global search for the optimal new component is achieved by starting
m > 1 ‘partial’ EM searches. By a ‘partial’ EM search we mean that we fix f; and optimize over
and « only. The use of partial EM searches is dictated by the general scheme above, for which
Li’s results [10] hold. One may wonder why we would use such partial searches, since we might
as well optimize over all parameters of the resulting (k + 1)-component mixture. The answer
is that (i) if we would update all parameters then the number of computations needed in each
search would be O(nk) instead of O(n) if we perform partial EM updates and (ii) we would not
adhere to the general scheme anymore.

Each partial search starts with a different initial configuration. After these multiple partial
searches we end up with m ‘candidate’ new components together with their mixing weights.
We pick that candidate component ¢(x; é) that maximizes the likelihood when mixed into the
previous mixture by a factor & as in (7). Then, in step 3 of the general algorithm, instead
of inserting the global maximum component ¢(x;60*) with a factor o we insert ¢(x; é) with a
factor &.

An implementation of VDM for mixtures of univariate Gaussians has been published in [7].
There, the search for new components was implemented by uniformly gridding the data space.
Note that this approach scales exponentially with the dimensionality of the data space. In
Section 3.3.1 we discuss the step 2 as proposed in [22] and its drawbacks. Section 3.3.2 presents
our proposal for an alternative search procedure.

3.3.1 Every Data Point Generates a Candidate

In [22] it is proposed to use m candidate components. Every data point is the mean of a

corresponding candidate. All candidates have the same covariance matrix oI, where o is taken

proportional to the value that minimizes the mean integrated squared error of a non-parametric

density estimator:

4 1/(d+4)
|, (8)

(d+2)n

where f is set to half of the largest singular value of the covariance matrix of X,,. For each
candidate component the mixing weight « is set to the mixing weight maximizing the second
order Taylor approximation around 1/2 of the log-likelihood as function of « (for fixed component
parameters f and a fixed mixture fr). The candidate yielding highest log-likelihood when
inserted in the existing mixture fj is selected. The selected component is then updated using
partial EM steps before it is actually inserted into fx to give fr11. Note that for every component

o =4

Section 3 Greedy Learning of Gaussian Mixtures 5

insertion that is performed all point-candidates are considered. There are two main drawbacks
to the above mentioned method:

1. Using n candidates in each step results in a time complexity O(n?) for the search which
is unacceptable in many applications. O(n?) computations are needed since the likelihood
of every data point under every candidate component has to be evaluated.

2. By using fixed small (referring to the size of the determinant of the covariance matrix)
candidate components the method sometimes keeps inserting small components in high
density areas while in low density areas the density is modeled poorly. We observed this
experimentally. Larger components that give greater improvement of the mixture are not
among the candidates, nor are they found by the EM procedure following the component
insertion.

Both better and faster performance might be achieved by using a smaller set of candidates that
are appropriate for the current mixture.

We conducted some experiments where instead of using all data points as means for the new
components we used a smaller set given by the centroids of the nodes in a kd-tree build for the
data. Originally kd-trees [1] were designed to speed-up the execution of nearest neighbor queries,
range queries and related problems. A kd-tree defines a recursive binary partitioning of a k-
dimensional data set, where the root node contains all data. Sproull [16] proposed to partition
the data at each node by cutting with a hyper-plane perpendicular to the direction with greatest
variance of the data present in that node, i.e. the direction of the first Principal Component [9].
One may view the resulting procedure as a ‘nested’ Principal Component Analysis. If we fully
expand the tree, the leaves of the tree are given by the individual data points. We can regard
each node in the tree as a bucket containing a portion of the data. Every layer of the tree gives
a partitioning of the data. It turns out that these partitions provide quite reasonable clusterings
of the data in terms of mean squared distance from the data to their closest cluster center (the
cluster centers are given by the bucket means), see also [11]. In our experiment we built the tree
for just several layers and used the centroids of the buckets of the leaves of the tree as means for
the candidate components. This gave drastic speed-up while affecting performance only slightly.

However, this method introduces the question of how many layers of the tree to generate.
Second, still for every insertion the same initial candidates, namely all bucket centroids, are
considered. Third, this approach does not provide a way to safeguard for the aforementioned
second drawback.

3.3.2 A new search procedure using local kd-trees

Based on our experience with the methods above, we propose a new search procedure to look
for (globally) optimal new mixture components. Two observations motivate the new search
method:

1. The size (i.e. the determinant of the covariance matrix) of the inserted component (after
the partial EM steps) is generally smaller than the size of the existing components of the
mixture.

2. It seems (we do not have a proof) that the smaller (the determinant of the covariance
of) the new component gets, the larger risk we run to end up in a local maximum when
applying EM to find the globally optimal new component.

In our search strategy we account for both observations by (i) setting the size of the initial candi-
date configurations to a value related to and in general smaller than the scale of the components

6 J.J. Verbeek et al.

in the existing mixture and (ii) increasing the number of candidate insertion configurations
linearly in k.

For each insertion problem, our method constructs one local kd-tree for each existing mixture
component, which is expanded up to two layers. Both the means and the covariance matrices
of the candidate components are then initialized according to all six ‘buckets’ of the kd-tree.
Below we discuss the procedure in detail.

Construction of Candidate Components Based on the posterior distributions, we parti-
tion the data set X,, in k disjoint subsets A; = {x € X, : P(i | x) = max;{P(j | x)}} with
1 <i < k. If one is using EM for step 4, then the posteriors P(i | x) are available directly since
we already computed them for the EM updates of the k-component mixture. For each set A;
we construct the first six nodes (two residing in the first layer plus four residing in the second
layer) of a local kd-tree T'(A;) based on the data x € A; only. Then, for each of the 6k nodes
we initialize a new component with the mean and covariance of the data present in that node.
The initial mixing weights for candidates generated from A; are set to m;/2. The reader may
have noticed that using only two layers of the local kd-trees is somewhat arbitrary. However,
experiments indicated that using more layers does not improve results significantly while it slows
down the algorithm.

The initial candidates can be replaced easily by candidates that yield higher likelihood when
mixed into the existing mixture. To obtain these better candidates we apply an EM algorithm
again, but now to update only the candidate components and their mixing weights as to maximize
L1, while keeping the existing mixture fj fixed. Each iteration of these partial updates takes
O(nk) computations, since we have to evaluate the likelihood of each datum under each of the
6% candidate components. In the following section we discuss how we can reduce the amount of
computations needed by a factor k resulting in only O(n) computations to perform one iteration
of the partial updates.

We stop the partial updates if the change in log-likelihood of the resulting (k + 1)-component
mixtures drops below some threshold or if some maximal number of iterations is reached. After
these partial updates we set the new component ¢(x;611) as the candidate that maximizes the
log-likelihood when mixed into the existing mixture.

As an example we included Figure 1, which depicts the evolution of a solution for artificially
generated data as used in the experiments described in Section 4.1. The concepts ‘eccentricity’
and ‘separation’ are as in Section 4.1. We generated 400 2-dimensional data points from a 4-
component mixture, with separation ¢ = 1 and maximum eccentricity e = 15. On the left the
mixtures fi,..., f4 are depicted by their mean and an ellipse which has the eigenvectors of the
covariance matrix as axes and radii of twice the squareroot of the corresponding eigenvalue. On
the right we plot the candidate new components after the partial EM steps.

3.3.3 Speeding up the Partial EM Searches

In order to achieve O(n) time complexity for the 6k partial EM searches initiated at the 6k initial
candidates, we make the simplifying assumption that the support (non-zero density points in
X,) for a candidate component ¢(x,6) constructed based on a node of a local kd-tree T'(A;)
(see previous section) is located inside A;. This simplifying assumption allows us to base the
partial updates for a candidate from A; purely on the data in A;, see the EM update equations
in section 2.

We want to maximize the (log-)likelihood Lf; of the data in the resulting mixtures if
we insert the candidates in the existing mixture. Of course, this is equivalent to maximizing
L1 — L. Using the above assumption, the change in log-likelihood of X, under the resulting

Section 3 Greedy Learning of Gaussian Mixtures 7

mixtures the 6k candidates

k=4

Figure 1: A trace of the construction of a 4-component mixture distribution. Left are the
mixtures fq, ..., f4, right are the candidate new components in each component allocation step.
Thick lines indicate the selected candidate.

8 J.J. Verbeek et al.

6k new (k + 1)—component mixtures is conveniently computed as follows:

fk+1 —a)fi(x) + ag(x;0) _
Liy1 — XEZX log Tl XEZX log (%) = (9)
— @) fi(x) + ag(x; 0 (1 —) fi(x) + ad(x; 0)
P o (= *% log ey (10
B) Lo LT fE(x) oo (l—a
_xgi [log (1 - a) -1 gfk(x)+a¢(x;9)] + %1 g(l—a) (11)
=nlog(l — a) — Zlogl— (k+1]|x)) (12)
XEA;

The first two equalities follow from the definitions, the third is obtained by splitting the sum for
data inside and data outside A;. The left term of (11) is obtained from the left term of (10) by
(i) multiplying both parts of the fraction with (1 — «) then (ii) separating a log (1 — a) term and
(iii) changing the sign of the log to swap the fraction. The right term of (11) equals the right
term of (10) by our assumption that ¢(x;6) = 0 for x ¢ A;. The last equation follows trivially
now, given that the posterior P(k + 1 | x) is defined as before. It is clear that to evaluate (12)
for all 6k candidates costs only O(n) operations, since every x is used only for six candidates.

Let r; denote the fraction of the data present in A;, thus Zle r; = 1. The partial EM updates
of each of the six candidates based on A; only take 6r;n € O(r;n) computations. Hence, in total
we need O(YX%_, r;n) = O(n) computations. The same analysis holds for the computation of
the change in log-likelihood.

Note that this speed-up is only possible because we generate the new components based on
the local kd-trees. Hence, this is another advantage of the new method over the one in [22]. If
we would constrain the latter also to consider only 6k candidates, then still the computational
cost of a single insertion step would be O(nk). In the last paragraph of Section 4.1 we describe
an experiment where we compare the performance of the latter method (using n candidates)
with that of the new method. The new method clearly outperforms the latter. Since using fewer
candidates will not increase performance we felt it is not needed to compare the new method
with the latter using only 6% candidates.

3.3.4 Total Run Time

As mentioned in the introduction, the total run time of the algorithm is O(k?n). This is due
to the updates of the mixtures f;, which cost O(ni) computations each if we use EM for these
updates. Therefore, summing over all mixtures we get O(Y.¥_, ni) = O(nk?). This is a factor k
slower than the standard EM procedure. The run times of our experiments confirm this analysis,
the new method performed on average about k/2 times slower than standard EM.

Note that if we do not use the aforementioned speed-up, the run time would remain O(k%n)
(since in that case every component allocation step would cost O(kn), just as the preceding
EM updates for the current mixture). Therefore, the speed-up is not ‘essential’ but allows in
practice for significant faster performance. Note that if a faster alternative is used instead of
EM to update the mixtures f; in step 4 of the general scheme, then the benefit of using the
speed-up becomes greater.

4 Experimental Demonstration

In this section we present results of three experiments. All experiments compare the results as
obtained with standard EM and the greedy approach presented here.

Section 4 Experimental Demonstration 9

0 0.5 1 15 2
RD

Figure 2: Histogram of RD (left) and Dgyrecdy as function of Dy (right) the solid line identifies
RD = 1.

4.1 Artificial Data Drawn from Gaussian Mixtures

In this experiment we generated data sets of 400 points in a IRY space with d € {2,3,4,5}. The
data was drawn from a Gaussian mixture of k € {4,6,8,10} components. The separation of the
components was chosen ¢ € {1,2,3,4}. A separation of ¢ means:

Vigit N i —py 7> Cfg;a?{trace(ci),trace(cj)}- (13)
For each mixture configuration we generated 50 data sets. We allowed a maximum eccentricity
(i.e. largest singularvalue of the covariance matrix over the smallest) of 15 for each component.
Also, for each generated mixture, we generated a test set of 1000 points not presented to the
mixture learning algorithms.

In the comparison below, we compare the log-likelihood of the test sets under the mixtures
provided by both methods fgar and fgreedy With the log-likelihood under the generating mixture
f. Let Dy = L(Xy, f) — L(X,, fEm), and similarly for Dgreeqy. The differences Dgys and
D¢reedy provide empirical estimates of the KL divergence to the generating mixture, where the
integral is replaced by a sum over the observed data. Let RD = DGreedy/DEM denote the
'Relative Difference’ in KL divergence.

Overall Results For 637 of the 3200 (19.9%) experiments RD € (0.98,1.02). For 132 of the
3200 (4.13%) experiments RD € [1.02,2). For 17 (0.53%) experiments RD > 2 with a maximum
of 5.69. The remaining 75.44% of the experiments resulted in RD < .98 The distribution of
RD over all experiments with RD outside (0.98,1.02) (this involves 80.1% of all experiments)
is visualised in the left plot of Figure 2 by a histogram of RD. In the right plot of Figure 2 we
plot Dgyreedy as function of Dgjy for all experiments with Dgreedy < 1 and Dgyr < 2 (which
includes 97.37% of all experiments). Observe that if we would make histograms of Dgyeeqy for
ranges of Dgjs that they would be shaped again like the overall histogram. This indicates that
the mean of Dgreeqy in such a range does not correspond to the peak of the histogram. One
may take this into account when interpreting the means presented in the tables of Figure 4.
We also compared the results of the new algorithm to using EM for multiple random ini-
tializations. We recorded for every data set the time spend by our new algorithm and al-
lowed as many restarts of EM as possible within the time spent by our algorithm. We then
kept the mixture maximizing likelihood on the data and compared the resulting approximated
KL divergence Djy; (defined as before) with Dgreeqy. Figure 3 provides similar plots as
in Figure 2. In the histogram, we plotted for reasons of exposition only results for exper-
iments that yield Dgreedy/Darue < 2 (this only excludes 1.25 % of all experiments) and
Dareedy/Darui ¢ (0.98,1.02) (this excludes 35.6% of all experiments). Typically the number of

10 J.J. Verbeek et al.

150 ‘ ‘ ‘ 1

0.8y
1007

d
esdy
[e))

Count

Gre:tle'dy/DMuIt]"5 2 0 05 DMult 1 15 2

05 D

Figure 3: Histogram of D¢yeedy/Daruir (left) and Dgpeedy as function of Dyzyyy (right) the solid
line identifies Dgreedy = Daruit-

d=2]c=1 2 3 4 d=3 |c=1 2 3 4
k=41 096 059 054 048 k=41] 079 055 059 0.64
0.74 034 0.29 0.19 6 0.61 0.43 0.29 0.29
0.64 0.32 0.18 0.14 8 0.61 0.30 0.19 0.30
10 0.56 0.27 0.21 0.29 10 0.61 0.27 0.21 0.30
d=4]c=1 2 3 4 d=5|c=1 2 3 4
k=4| 077 060 0.74 0.74 k=4 087 0.69 082 0.57
0.60 0.47 0.33 0.43 6 0.59 0.46 048 0.46
0.53 0.38 0.26 0.31 8 0.51 0.42 0.40 0.32
10 0.61 035 0.34 0.33 10 0.57 0.44 049 049

Figure 4: Tables giving averages (over 50 experiments each) of RD for different experimental
settings.

runs is between one and ten, but of course this depends on the number of mixture components
used, see Section 3.3.4.

We conclude that the new method still outperforms EM significantly, even if multiple restarts
are used. The median of improvement in the KL divergence histogram is approximately around
0.25, while it was around 0.10 when using only one EM run. Also we observe that the histogram
is more peeked when only one EM run is used. The percentage of the experiments for which the
(approximated) KL divergences are close (their ratio is within the (0.98,1.02) interval) is larger
when using multiple EM runs: 19.9 % for one run and 35.6 % for multiple runs. All three effects
are as expected.

Results split out Below we provide tables summarizing average RD obtained for the different
types of generating mixtures. We conclude that the new algorithm gives greater improvement
as the separation and the number of components in the generating mixture increase.

Comparison to using all data as candidates In our experiments described above, we also
compared the performance of the new method to the performance of the method proposed in [22].
Here, we consider again Dgyeedy and now we compare it with the approximated KL divergence
D fizeq when using the fixed candidate set as proposed in [22]. For 2062 (i.e. 64.44%) experiments
the fraction Dgyeedy/ D fizeqa Was within [0.95,1.05]. Of the remaining 1138 experiments, for 1122

Section 4 Experimental Demonstration 11

200

1 2 DGrgedv/Dfixed 4 5 6
Figure 5: Comparing KL divergences for the ’old’ (Dyjzeq) and the 'new’ (Dgreedy) component
insertion methods.

(98.59%) the fraction was smaller than 6. Figure 5 shows a histogram of the fraction for those
1122 experiments. Observe that if the new method performs differently, it generally allows for
a significant reduction of the KL divergence.

4.2 Image reconstruction using MPPCA

Here, we compare image reconstruction results when using our greedy and standard EM method
to learn Mixtures of Probabilistic Principal Component Analyzers (MPPCA). The MPPCA
model is used to obtain low dimensional descriptions of the images from which we can reconstruct
the images. >

In [18] MPPCA is introduced as a generative probabilistic model. The model is a constrained
Gaussian mixture, the d x d covariance matrices are restricted to the form C; = 0?1 + W, W
for component i, where W; is a d X ¢ matrix. The matrices W, span local principal subspaces.
Our greedy approach for mixture learning extends naturally to the MPPCA model. For the
candidates initialize W with the first ¢ eigenvectors of the covariance matrix Cy, of the data
in the node of the kd-tree and initialize 0? with the mean of the smallest d — g eigenvalues of
Cru.*

Once a MPPCA model is fitted to the data (64 x 64 pixel gray-value images in our case)
the data can be stored and reconstructed using the subspace with maximum posterior proba-
bility. This is achieved by encoding the index of the used subspace and encoding the ¢ ‘local’
coefficients identifying the projection of the image onto that subspace. As an error measure
we use the total (summed over all pixels) absolute difference in intensity between pixels in the
original images and the reconstructed images. In the table in Figure 6 we show results of the
experiment compared to results obtained when using the MPPCA for five different random pa-
rameter initializations. The 698 images we used were obtained from the Isomap [17] webpage
(see http://isomap.stanford.edu) . Several typical images and some of the means of the mix-
ture components are shown in Figure 7. For the reconstruction experiment, we first reduced the
dimensionality of the data space to speed-up the experiment. It is well known that n points in
IR™ with m > n are embedded in an at most n — 1 linear subspace of IR™. Therefore, dimes-
nionality reduction of the data from 64> = 4096 to 697 dimensions is trivial. Further linear
dimensionality reduction from 697 to 59 dimensions was applied by meansof Principal Compo-
nent Analysis keeping 95.1% of the total variance. In this 59 dimensional subspace we learned
MPPCA models consisting of 15 components and with ¢ = 3.

*Spatial relations among the different local linear models are not used here. However, this is a subject of
current research in our group. See for example [20] where several local linear models are joined to form a global
low dimensional coordinate system.

“In fact, the columns of W must be scaled by /A — 62, where X is the eigenvalue corresponding to the
eigenvector in a column, see [18] for details.

12 J.J. Verbeek et al.

method mean error | std. dev. | log-likelihood

Greedy 257.04 82.60 77.50
Standard 310.93 100.20 74.33
Standard 308.86 99.41 72.92
Standard 353.24 135.91 74.09
Standard 299.44 73.35 74.21
Standard 319.86 97.02 73.55

Figure 6: Average per-image reconstruction errors when compressing the 698 images with a
single MPPCA model.

AL S
¥ e e

Figure 7: The means of some mixture components (upper row) and several images (bottom row).

Section 4 Experimental Demonstration 13

Figure 8: Several Brodatz textures, the white squares indicate the patch size.

k | 23 a5 |6
Greedy | 0.25 | 0.46 | 0.67 [0.78 | 0.88
Standard || 0.47 [0.77 [1.04 [1.28 | 1.34
Uniform || 1 | 159] 2 |2.32 258

Figure 9: Average conditional entropy for different values of k for the standard EM and the
proposed greedy method to learn Gaussian mixtures compared with the conditional entropy for
clusters distributing uniform over textures.

4.3 Texture Segmentation

In this experiment the task is to cluster 16 x 16 gray-valued images. The images are patches
of 512 x 512 images of 37 Brodatz textures. A small selection of these textures is provided in
Figure 8. The idea is that patches from the same texture display strong similarity while patches
from different textures are assumed to be dissimilar. The clustering is obtained using a mixture
of Gaussians fitted on the patches. The experiment described below compares results obtained
when learning the mixture using our new method and the standard EM method.

The number of textures involved in each experiment is denoted by k € {2,3,4,5,6}. For each
value of k& we constructed 100 data sets by randomly extracting 500 patches from k& randomly
selected textures. The patches are represented as 256 dimensional vectors, which we projected
linearly to a lower dimensional subspace by means of PCA as to retain 80% of the total vari-
ance. In this lower dimensional space (typically somewhere between 10 and 70 dimensions were
retained) we learn a k component Gaussian mixture. The clustering is now obtained by as-
signing each patch to the maximum posterior mixture component. Our experiment is based on
the experiments described in [15], there the MPPCA model is used to learn restricted Gaussian
mixtures.

To evaluate a given clustering we used the conditional entropy H(B|C) that measures the
entropy of the texture labels conditioned on the cluster labels. In Appendix A we discuss this
measure in more detail. In Figure 9 we provide a table with the averages of H(B | C') over 100
experiments for each value of k. Figure 10 illustrates the difference between the greedy and the
standard EM method in more detail for £ = 3. The left plot shows 3 modes:

1. Close to zero: Good segmentation, every component captures a texture. The conditional
entropy is close to zero since there is almost no uncertainty about the texture class if we
know the maximum posteriori mixture component.

2. Close to 2/3 bit: One texture is separated and the two others are confused. In 1/3 of the
cases we have very low entropy (the separated texture) and in 2/3 of the cases we have
entropy close to 1 bit (the two confused textures). Since two textures are confused we
need on average approximately one bit to indicate which one is used. Taking the average
over all cases we arrive at approximately 2/3 bit.

14 J.J. Verbeek et al.

35

30
25
‘%‘ 20 § 20
O 15 O 15
10
5
0
0 0.5 1 15 2 0.5 2

H(BIC) H(BIC)

Figure 10: Histograms of H(B | C) for k = 3 comparing the standard EM (left) and new greedy
method (right) to learn the Gaussian mixture.

3. Close to 3/2 bits: Very poor segmentation, all textures are confused. Note that H (B |
C) =~ 1.59 bits for clusters that distribute uniformly over the textures.

In the right plot, showing performance of the greedy method, we see that the third mode has
almost disappeared illustrating the superior performance of the mixture learned with the greedy
method.

5 Discussion and Conclusions

Discussion Both VDM [2, 12, 23] and the proposed method are instantiations of the more
general greedy scheme given in section 3.2 (although VDM skips step 4 of the scheme). VDM
makes use of the directional derivative Dy, (¢) of the log-likelihood for the current mixture
fr, where Dy, (¢) = lima—0[L(Xp, (1 — @) fr + a¢) — L(X,,, fi)]/a. VDM proceeds by picking
the ¢* that maximizes Dy, (¢) and inserting this in the mixture with a factor a* such that
o = argmax,{L(X,, (1 — a)fr + a¢*}. Using the directional derivative at the current mixture
can be seen as an instantiation of step 2 of the general scheme. The optimization over both ¢
and « is replaced by (i) an optimization over Dy, (¢) (typically implemented by gridding the
parameter space) and then (ii) an optimization over a. Note that by ‘moving in the direction of
maximum Dy, (¢)" does not guarantee that we move in the direction of maximum improvement
of log-likelihood if we optimize over a subsequently. See [13] for an overview of VDM and other
mixture learning methods.

The approximation result of Li [10], which applies to the more general scheme provided in
Section 3.2, is encouraging for the use of greedy methods to learn finite mixtures. However, the
result does not guarantee that each element fj of the sequence of mixtures {f;} produced by
the greedy algorithm is close to the k-component maximum likelihood mixture.

Recently, several other new methods to learn mixtures (of Gaussians) were proposed among
which we mention [5, 8, 19]. The first tries to overcome the difficulties of learning mixtures of
Gaussians in high dimensional spaces. By projecting the data to a lower dimensional subspace
(which is chosen uniformly randomly!), finding the means in that space and then projecting
them back, the problems of high dimensionality are reduced. The last two methods try to
overcome the dependence of EM on the initial configuration as does our method. In [19] split
and merge operations are applied to local optima solutions found by applying EM. The split
and merge operations constitute jumps in the parameter space that allow the algorithm to jump
from a local optimum to a better region in the parameter space. By then reapplying EM a
better (hopefully global) optimum is found. An important benefit of our new method over
[19] is that the new algorithm produces a sequence of mixtures that can be used to perform
model complexity selection as the mixtures are learned. For example a kurtosis-based selection

Section 5 Discussion and Conclusions 15

criterion, like the one in [21], can be used here. In [8] it is proposed to start with a large
number k., of mixture components and to successively annihilate components with small
mixing weights. This approach can be characterized as ‘pruning’ a given mixture, where our
approach can be characterized as ‘growing’ a mixture. There, also a sequence of mixtures of
different number of components is generated and it is exploited by integrating the process of
model selection and fitting of the mixtures. Note however that

1. In general we may not know how to set k4, if we do not know what the ‘correct’ number
k of components is.

2. Suppose that the ‘correct’ number of components can be identified (it may be simply known
or inferred using model selection techniques). For the pruning approach, the considered
mixtures f; consist of k < i < ka0, components, so the EM updates cost at least O(kn)
since k < 4. For our growing approach all considered mixtures consist of at most k
components such that the EM updates of those mixtures cost at most O(kn).

Also, Bayesian methods are used to learn Gaussian mixtures. For example in [14], a reversible
jump Markov Chain Monte Carlo (MCMC) method is proposed. There, the MCMC is allowed to
jump between parameter spaces of different dimensionality (i.e. parameter spaces for mixtures
consisting of differing number of components). However, the experimental results reported in
[14] indicate that such sampling methods are rather slow as compared to constructive maximum
likelihood algorithms. It is reported that about 160 ‘sweeps’ per second are performed on a SUN
Sparc 4 workstation. The experiments involve 200.000 sweeps, resulting in about 20 minutes
run time. Although it is remarked that the 200.000 sweeps are not needed for reliable results,
it contrasts sharply with the 2.8 seconds and 5.7 seconds run time (allowing respectively about
480 and 960 sweeps) of the standard EM and our greedy EM in a similar experimental setting
executed also on a SUN Sparc 4 workstation.

Conclusions We proposed a greedy method to learn mixtures of Gaussians that has run time
O(nk?). As compared to the standard EM algorithm we observe:

1. The proposed algorithm is deterministic.

2. Experiments on three different problems (density estimation, image reconstruction and
texture segmentation) show superior performance of the new method while run time is
increased only by a factor linear in k.

As compared to the method proposed in [22] we note:
1. The O(n?k?) time complexity has been reduced by a factor n.

2. The somewhat arbitrary choice for spherical candidate components with fixed variance
and their bandwith has been replaced by a search for candidate components that depends
on the current mixture.

3. Experiments suggest that if the methods yield different performance, then the new method
generally outperforms the old one.

4. The new component insertion method extends naturally to the MPPCA model.

Software implementing our new algorithm in MATLAB is available by email from the first author
(jverbeek@science.uva.nl).

16 REFERENCES

References

[1] J. L. Bentley. Multidimensional binary search trees used for associative searching. Commun.
ACM, 18(9):509-517, 1975.

[2] D.Bohning. A review of reliable maximum likelihood algorithms for semiparametric mixture
models. J. Statist. Plann. Inference, 47:5-28, 1995.

8] I. V. Cadez and P. Smyth. On model selection and concavity for finite mix-
ture models. In Proc. of Int. Symp. on Information Theory (ISIT), available at
http://www.ics.uci.edu/ icadez/publications.html, 2000.

[4] T. Cover and J. Thomas. Elements of Information Theory. Wiley, 1991.

[5] S. Dasgupta. Learning mixtures of Gaussians. In Proc. IEEE Symp. on Foundations of
Computer Science, New York, October 1999.

[6] A.P.Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. J. Roy. Statist. Soc. B, 39:1-38, 1977.

[7] R. DerSimonian. Maximum likelihood estimation of a mixing distribution. J. Roy. Statist.
Soc. C, 35:302-309, 1986.

8] M.A.T. Figueiredo and A.K. Jain. Unsupervised learning of finite mixture models. to
appear in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001.

[9] I.T. Jolliffe. Principal Component Analysis. Springer-Verlag, 1986.

[10] J. Q. Li and A. R. Barron. Mixture density estimation. In Advances in Neural Information
Processing Systems 12. The MIT Press, 2000.

[11] A. Likas, N. Vlassis, and J.J. Verbeek. The global k-means clustering algorithm. Technical
report, Computer Science Institute, University of Amsterdam, The Netherlands, February
2001. TAS-UVA-01-02.

[12] B. G. Lindsay. The geometry of mixture likelihoods: a general theory. Ann. Statist.,
11(1):86-94, 1983.

[13] G. J. McLachlan and D. Peel. Finite Mixture Models. Wiley, New York, 2000.

[14] S. Richardson and P. J. Green. On Bayesian analysis of mixtures with an unknown number
of components. J. Roy. Statist. Soc. B, 59(4):731-792, 1997.

[15] D. de Ridder, J. Kittler, and R.P.W. Duin. Probabilistic pca and ica subspace mixture
models for image segmentation. In M. Mirmehdi and B. Thomas, editors, British Machine
Vision Conference, pages 112-121, 2000.

[16] R. F. Sproull. Refinements to nearest-neighbor searching in k-dimensional trees. Algorith-
mica, 6:579-589, 1991.

[17] J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500):2319-2323, December 2000.

[18] M. E. Tipping and C. M. Bishop. Mixtures of probabilistic principal component analysers.

Neural Computation, 11(2):443-482, 1999.

REFERENCES 17

[19] N. Ueda, R. Nakano, Z. Ghahramani, and G. E. Hinton. SMEM algorithm for mixture
models. Neural Computation, 12:2109-2128, 2000.

[20] J. J. Verbeek, N. Vlassis, and B. Krose. A soft k-segments algorithm for principal curves.
In Proc. Int. Conf. on Artificial Neural Networks, pages 450-456, Vienna, Austria, August
2001.

[21] N. Vlassis and A. Likas. A kurtosis-based dynamic approach to Gaussian mixture modeling.
IEEE Trans. Systems, Man, and Cybernetics, Part A, 29:393-399, 1999.

[22] N. Vlassis and A. Likas. A greedy EM algorithm for Gaussian mixture learning. Technical
report, Computer Science Institute, University of Amsterdam, The Netherlands, September
2000. TAS-UVA-00-08, to appear in Neural Processing Letters.

[23] C.F. Wu. Some algorithmic aspects of the theory of optimal designs. Annals of Statistics,
6:1286-1301, 1978.

18 J.J. Verbeek et al.

A Conditional entropy for cluster evaluation

To evaluate a given clustering we consider the £ x k confusion matrix A, where A;; denotes
how many patches of texture j are assigned to cluster i. Let B be a random variable which
ranges over the k textures and C' a random variable ranging over the k clusters. As a measure of
how informative a given clustering is we compute the conditional entropy H(B | C). Note that
this quantity is directly related to the mutual information between the two variables I(B;C) =
H(B)— H(B | C). Hence the lower H(B | C) the higher the mutual information is and thus the
better the clustering is. Recall that the entropy of a discrete random variable X is a measure
of uncertainty in X and is defined as

Zp z)logp(X = z), (14)

and the conditional entropy is defined as

HX|Y)=EyH(X |Y =y) = Zp =y, X =z)logp(X =z |Y =y). (15)

If we set the logartihm to base 2, the (conditional) entropy measures how many bits are needed
on average per outcome to encode a string of outcomes of the variable if we use an optimal code
scheme. See [4] for an excellent discussion of these concepts.

The 500k images in each experiment provide 500k joint realizations of the variables B and
C resulting in the matrix A. The matrix A gives empirical estimates of

pP(B=b|C=c)xAa/) Ay (16)

and

~ ZACb’/ZAC’b" (].7)
b’ b'c!

We compute H(B | C) as follows:

H(B|C)= Zp)Y p(B=0b|C=c)logyp(B="b|C=¢) (18)
b

Copyright 1AS, 2000

Acknowledgements

We would like to thank Aris Likas for usefull discussions and for helping to clarify the exposi-
tion.This research is supported by the Technology Foundation STW, applied science division of
NWO and the technology programme of the Ministry of Economic Affairs.

Intelligent
Autonomous
Systems

IAS reports

This report is in the series of TAS technical reports. The series editor is Stephan ten Hagen
(stephanh@science.uva.nl). Within this series the following titles appeared:

[1]

N. Vlassis, A. Likas, and B. Krése. Multivariate
Gaussian mixture modeling with unknown num-
ber of components. Technical Report TAS-UVA-
00-04, Intelligent Autonomous Systems Group,
University of Amsterdam, April 2000.

N. Vlassis and A. Likas. An EM-VDM al-
gorithm for Gaussian mixtures with unknown
number of components. Technical Report TAS-
UVA-00-05, Intelligent Autonomous Systems
Group, University of Amsterdam, May 2000.

[3]

N. Vlassis . A greedy-EM algorithm for Gaus-
sian mixture learning. Technical Report TAS-
UVA-00-08, Intelligent Autonomous Systems
Group, University of Amsterdam, September
2000.

J.J. Verbeek, N. Vlassis and B.J.A Krose. A k-
segments algorithm for finding principal curves.
Technical Report TAS-UVA-00-10, Intelligent
Autonomous Systems Group, University of Am-
sterdam, December 2000.

You may order copies of the TAS technical reports from the corresponding author or the series
editor. Most of the reports can also be found on the web pages of the TAS group (see the inside
front page).

Intelligent
Autonomous
Systems

