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ien
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We present a deterministi
 greedy method to learn a mixture of Gaussians whi
hruns in O(nk2) time. The key element is that we build the mixture 
omponent-wise. By allo
ating a new 
omponent 
lose to optimal in the existing (
lose tooptimal) learned mixture, we hope to be able to rea
h a solution 
lose to optimalfor the new mixture. Ea
h 
omponent of the mixture is 
hara
terized by a �xednumber of parameters. Then, instead of solving dire
tly a optimization probleminvolving the parameters of all 
omponents, we repla
e the problem by a sequen
eof optimization problems involving only the parameters of the new 
omponent. Wein
lude experimental results obtained on image segmentation and re
onstru
tiontasks as well as results of extensive tests on arti�
ially generated data sets. In theseexperiments the learning method 
ompares favorably to the standard EM withrandom initialization as well as to another existing greedy approa
h to learningGaussian mixtures.Keywords: Unsupervised learning, Finite mixture models, Gaussian mixtures,EM algorithm
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Se
tion 1 Introdu
tion 11 Introdu
tionThis paper 
on
erns the learning (�tting the parameters of) a mixture of Gaussian distributions[13℄. Mixture models form an expressive 
lass of models for density estimation. Appli
ations ina wide range of �elds have emerged in the past de
ades. They are used for density estimationin `unsupervised' problems, for 
lustering purposes, for estimating 
lass-
onditional densities insupervised learning settings, in situations where the data is partially supervised and in situationswhere some observations have `missing values'. A re
ent development in mixture modeling withGaussians is their use for lo
al linear dimension redu
tion. This appli
ation was given solidfoundation in the Mixtures of Probabilisti
 Prin
ipal Component Analyzers (MPPCA) model[18℄.The most widely used algorithm to learn mixture models is the Expe
tation-Maximization(EM) algorithm [6℄. For a given �nite data set Xn of n observations and an initial mixture f0,the algorithm provides a means to generate a sequen
e of mixture models ffig with in
reasinglog-likelihood on Xn. The EM algorithm is known to 
onverge to a lo
ally optimal solution.However, 
onvergen
e to a globally optimal solution is not guaranteed. The log-likelihood of thegiven data set under the found mixture distribution is highly dependent on the initial mixturef0. The standard method to over
ome the high dependen
e on initialization is to start the EMalgorithm for several random initializations and use the mixture yielding maximum likelihood onthe data. The result is a nondeterministi
 algorithm. The nondeterminism of the algorithm maybe unfavorable, espe
ially in the pro
ess of developing large systems that in
lude the learning ofa mixture model as a module. In order to e�e
tively evaluate performan
e of other modules itis 
onvenient to rule out a

idental aberrant behavior of the 
omplete system due to `unlu
ky'initializations of the mixture learning module.In this paper we present a deterministi
 method to learn mixtures of k Gaussians. Themethod is based on previous work [22℄. Here, we solve the main drawba
k of [22℄: the time
omplexity is redu
ed from O(k2n2) to O(k2n). Furthermore, the new method extends naturallyto learning MPPCA models. The novell approa
h peforms on average signi�
antly better thanthe approa
h in [22℄. Both algorithms use roughly the same approa
h: the mixture is build-upby starting with a one-
omponent mixture and adding new 
omponents one after the other.The new algorithm repla
es the `stati
' 
omponent insertion step of [21℄ with a pro
edure thatinserts a 
omponent that is sele
ted among a set of `
andidate' 
omponents dependent on theexisting mixture.The paper is organized as follows: In Se
tion 2 we re
apitulate the de�nition and EM-learningof Gaussian mixtures. Se
tion 3 forms the 
ore of the paper and des
ribes our new greedyapproa
h to Gaussian mixture learning. Then, in Se
tion 4, we present experimental resultson three tasks: modeling of arti�
ially generated data drawn from several types of Gaussianmixtures, image re
onstru
tion and texture segmentation. The se
ond task involves the MPPCAmodel. The experiments 
ompare the results of the new algorithm with those of the standardEM and the approa
h of [22℄. Se
tion 5 ends the paper with 
on
lusions and a dis
ussion.2 Gaussian Mixtures and the EM AlgorithmA Gaussian mixture is de�ned as a 
onvex 
ombination of Gaussian densities. A Gaussiandensity in a d-dimensional spa
e, parameterized by its mean m 2 IRd and d � d 
ovarian
ematrix C is de�ned as:�(x; �) = (2�)�d=2 det(C)�1=2 exp (�(x�m)>C�1(x�m)=2); (1)



2 J.J. Verbeek et al.where � denotes the parameters m and C. A mixture of k Gaussians is then de�ned as:fk(x) = kXi=1 �i�(x; �i); with kXj=1�j = 1 and for j 2 f1; : : : ; kg : �j � 0: (2)The �i are 
alled the mixing weights and �(x; �i) the 
omponents of the mixture.The well known EM algorithm [6℄ enables us to update the parameters of a given k-
omponentmixture with respe
t to a data set Xn = fx1; : : : ;xng with all xi 2 IRd, su
h that the likelihoodof Xn is never smaller under the new mixture. The updates for a mixture of Gaussians 
anbe a

omplished by iterative appli
ation of the following equations for all 
omponents j 2f1; : : : ; kg: P (j j xi) := �j�(xi; �j)fk(xi) ; (3)�j := 1n nXi=1 P (j j xi); (4)mj := Pni=1 P (j j xi)xin�j ; (5)Cj := Pni=1 P (j j xi)(xi �mj)(xi �mj)>n�j : (6)As already mentioned in the previous se
tion, the EM algorithm is not guaranteed to lead us tothe best solution, where `best' means the solution yielding maximal likelihood on Xn among allmaxima of the likelihood.1 The good thing is that if we are 
lose to the global optimum of theparameter spa
e, then it is very likely that by using EM we obtain the globally optimal solution.3 Greedy Learning of Gaussian MixturesIn this se
tion we present our greedy method for learning mixtures of Gaussians. The basi
 ideais simple: Instead of starting with a (random) 
on�guration of all 
omponents and improve uponthis 
on�guration with EM, we build the mixture 
omponent-wise. We start with the optimalone-
ompponent mixture, whose parameters are trivially 
omputed. Then we start repeatingtwo steps until a stopping 
riterion is met: (i) insert a new 
omponent and (ii) apply EM until
onvergen
e. The stopping 
riterion 
an implement the 
hoi
e for a pre-spe
i�ed number of
omponents or it 
an be any model 
omplexity sele
tion 
riterion.3.1 MotivationOur `greedy' approa
h to learning mixtures of Gaussians 
an be based on the following assump-tion:Assumption 1 The global optimum for a k-
omponent mixture is rea
hable from the 
on�gu-ration obtained by optimally inserting a new 
omponent in the globally optimal 
on�guration ofthe (k � 1)-
omponent mixture.With �0 is `rea
hable' from � we mean that if we start EM in � then it will 
onverge to �0. Giventhat this assumption holds and that the solution for the one-
omponent mixture is trivial to
ompute, the problem of �nding a near optimal start 
on�guration (so that EM will 
onverge1We impli
itly assume throughout that the likelihood is bouded, by restri
ting the parameter spa
e, and hen
ethe maximum likelihood estimator is known to exist [12℄.



Se
tion 3 Greedy Learning of Gaussian Mixtures 3to the optimal solution) 
an be repla
ed with a sequen
e of k � 1 optimal 
omponent insertionproblems. The optimal 
omponent insertion problem involves a fa
tor k fewer parameters thanthe original problem of �nding a near optimal start 
on�guration, we therefore expe
t it to bean easier problem. We re
ently applied a similar strategy to the k-means 
lustering problem[11℄, for whi
h en
ouraging results were obtained.Two re
ent theoreti
al results provide 
omplementary motivation. Li has been proven [10℄that for an arbitrary probability density fun
tion f there exists a sequen
e ffig of �nite mixturessu
h that fk(x) = Pki=1 �i�(x; �i) a
hieves Kullba
k-Leibler (KL) divergen
e2 D(f k fk) �D(f k gP )+
=k for every gP = R �(x; �)P (d�). Hen
e, the di�eren
e in KL divergen
e a
hievableby k-
omponent mixtures and the KL divergen
e a
hievable by any (possibly non-�nite) mixturefrom the same family of 
omponents tends to zero with speed 
=k (where 
 is a 
onstant notdependent on k but only on the 
omponent family). Furthermore, it is shown that this boundis a
hievable by employing a greedy approa
h as dis
ussed above.Note that this result does not give dire
t support for our assumption but does tell us that we
an `qui
kly' approximate any density by the greedy pro
edure. Therefore, we might expe
t theresults of the greedy pro
edure as 
ompared to the standard (randomly initialized) EM approa
hto di�er more when �tting mixtures with many 
omponents.The sequen
e of mixtures generated by the greedy learning method 
an 
onveniently be usedto guide a model sele
tion pro
ess in the 
ase of an unknown number of 
omponents. Re
entlya result of `almost' 
on
avity of the log-likelihood of a data set under the maximum-likelihoodk-
omponent mixture, as fun
tion of the number of 
omponents k was presented [3℄. The resultstates that the �rst order Taylor approximation of the log-likelihood of the maximum likelihoodmodels as fun
tion of k is 
on
ave under very general 
onditions. Hen
e, if we use a penalizedlog-likelihood model sele
tion 
riterion based on a penalty term whi
h is 
on
ave or linear in kthen the penalized log-likelihood is almost 
on
ave. This implies that if the `almost' 
on
aveturns out to be 
on
ave then there is only one peak in the penalized log-likelihood and hen
ethis peak 
an be relatively easily identi�ed, e.g. with our greedy 
onstru
tion method.3.2 A General S
heme for Greedy Constru
tion of Gaussian MixturesLet L(Xn; fk) = Pni=1 log fk(xi) (we will just write Lk if no 
onfusion arises) denote the log-likelihood of the data set Xn under the k-
omponent mixture fk. The greedy learning pro
edureoutlined above 
an be summarized as follows:1. Compute the optimal (yielding maximal log-likelihood) one-
omponent mixture f1. Setk:=1.2. Perform a sear
h to �nd the optimal new 
omponent �(x; ��) and 
orresponding mixingweight ��, where f��; ��g = argmaxf�;�g nXi=1 log [(1� �)fk(xi) + ��(xi; �)℄ (7)with fk �xed.3. Set fk+1(x) := (1� ��)fk(x) + ���(x; ��) and k := k + 1;4. Update fk using EM until 
onvergen
e.5. If a stopping 
riterion is met then quit, else go to step 2.2The KL divergen
e is de�ned as: D(f k g) = R
 f(x) log (f(x)=g(x))dx where 
 is the domain of the densitiesf and g, see [4℄ for details.



4 J.J. Verbeek et al.The stopping 
riterion in step 5 
an be used to for
e the algorithm to �nd a mixture of apre-spe
i�ed number of 
omponents. Of 
ourse, step 5 may also implement any kind of modelsele
tion 
riterion. Note that step 4 may also be implemented by other algorithms than EM.One may note similarity to the Vertex Dire
tion Method (VDM) [2, 12, 23℄ to learn GaussianMixtures. Indeed, VDM may be regarded as a spe
i�
 
hoi
e for the sear
h of step 2, as weexplain in the dis
ussion in Se
tion 5. In the rest of this se
tion we are 
on
erned with thesear
h in step 2.3.3 Sear
hing for New ComponentsSuppose we have obtained a k-
omponent mixture fk, the quest is to �nd the 
omponent 
har-a
terized by equation (7). It is easily shown that if we �x fk and � then Lk+1 is 
on
ave asfun
tion of � only, allowing eÆ
ient optimization. For example, in [22℄ a se
ond order Taylorapproximation was used. The 
on
avity follows trivially by noting that the se
ond derivative iseverywhere non-positive [2℄. However, Lk+1 as fun
tion of � 
an have multiple maxima. Hen
e,we have to perform a global sear
h among the new 
omponents in order to identify the optimum.In our new algorithm, the global sear
h for the optimal new 
omponent is a
hieved by startingm � 1 `partial' EM sear
hes. By a `partial' EM sear
h we mean that we �x fk and optimize over� and � only. The use of partial EM sear
hes is di
tated by the general s
heme above, for whi
hLi's results [10℄ hold. One may wonder why we would use su
h partial sear
hes, sin
e we mightas well optimize over all parameters of the resulting (k + 1)-
omponent mixture. The answeris that (i) if we would update all parameters then the number of 
omputations needed in ea
hsear
h would be O(nk) instead of O(n) if we perform partial EM updates and (ii) we would notadhere to the general s
heme anymore.Ea
h partial sear
h starts with a di�erent initial 
on�guration. After these multiple partialsear
hes we end up with m `
andidate' new 
omponents together with their mixing weights.We pi
k that 
andidate 
omponent �(x; �̂) that maximizes the likelihood when mixed into theprevious mixture by a fa
tor �̂ as in (7). Then, in step 3 of the general algorithm, insteadof inserting the global maximum 
omponent �(x; ��) with a fa
tor �� we insert �(x; �̂) with afa
tor �̂.An implementation of VDM for mixtures of univariate Gaussians has been published in [7℄.There, the sear
h for new 
omponents was implemented by uniformly gridding the data spa
e.Note that this approa
h s
ales exponentially with the dimensionality of the data spa
e. InSe
tion 3.3.1 we dis
uss the step 2 as proposed in [22℄ and its drawba
ks. Se
tion 3.3.2 presentsour proposal for an alternative sear
h pro
edure.3.3.1 Every Data Point Generates a CandidateIn [22℄ it is proposed to use n 
andidate 
omponents. Every data point is the mean of a
orresponding 
andidate. All 
andidates have the same 
ovarian
e matrix �2I, where � is takenproportional to the value that minimizes the mean integrated squared error of a non-parametri
density estimator: � = �h 4(d+ 2)ni1=(d+4); (8)where � is set to half of the largest singular value of the 
ovarian
e matrix of Xn. For ea
h
andidate 
omponent the mixing weight � is set to the mixing weight maximizing the se
ondorder Taylor approximation around 1=2 of the log-likelihood as fun
tion of � (for �xed 
omponentparameters � and a �xed mixture fk). The 
andidate yielding highest log-likelihood wheninserted in the existing mixture fk is sele
ted. The sele
ted 
omponent is then updated usingpartial EM steps before it is a
tually inserted into fk to give fk+1. Note that for every 
omponent



Se
tion 3 Greedy Learning of Gaussian Mixtures 5insertion that is performed all point-
andidates are 
onsidered. There are two main drawba
ksto the above mentioned method:1. Using n 
andidates in ea
h step results in a time 
omplexity O(n2) for the sear
h whi
his una

eptable in many appli
ations. O(n2) 
omputations are needed sin
e the likelihoodof every data point under every 
andidate 
omponent has to be evaluated.2. By using �xed small (referring to the size of the determinant of the 
ovarian
e matrix)
andidate 
omponents the method sometimes keeps inserting small 
omponents in highdensity areas while in low density areas the density is modeled poorly. We observed thisexperimentally. Larger 
omponents that give greater improvement of the mixture are notamong the 
andidates, nor are they found by the EM pro
edure following the 
omponentinsertion.Both better and faster performan
e might be a
hieved by using a smaller set of 
andidates thatare appropriate for the 
urrent mixture.We 
ondu
ted some experiments where instead of using all data points as means for the new
omponents we used a smaller set given by the 
entroids of the nodes in a kd-tree build for thedata. Originally kd-trees [1℄ were designed to speed-up the exe
ution of nearest neighbor queries,range queries and related problems. A kd-tree de�nes a re
ursive binary partitioning of a k-dimensional data set, where the root node 
ontains all data. Sproull [16℄ proposed to partitionthe data at ea
h node by 
utting with a hyper-plane perpendi
ular to the dire
tion with greatestvarian
e of the data present in that node, i.e. the dire
tion of the �rst Prin
ipal Component [9℄.One may view the resulting pro
edure as a `nested' Prin
ipal Component Analysis. If we fullyexpand the tree, the leaves of the tree are given by the individual data points. We 
an regardea
h node in the tree as a bu
ket 
ontaining a portion of the data. Every layer of the tree givesa partitioning of the data. It turns out that these partitions provide quite reasonable 
lusteringsof the data in terms of mean squared distan
e from the data to their 
losest 
luster 
enter (the
luster 
enters are given by the bu
ket means), see also [11℄. In our experiment we built the treefor just several layers and used the 
entroids of the bu
kets of the leaves of the tree as means forthe 
andidate 
omponents. This gave drasti
 speed-up while a�e
ting performan
e only slightly.However, this method introdu
es the question of how many layers of the tree to generate.Se
ond, still for every insertion the same initial 
andidates, namely all bu
ket 
entroids, are
onsidered. Third, this approa
h does not provide a way to safeguard for the aforementionedse
ond drawba
k.3.3.2 A new sear
h pro
edure using lo
al kd-treesBased on our experien
e with the methods above, we propose a new sear
h pro
edure to lookfor (globally) optimal new mixture 
omponents. Two observations motivate the new sear
hmethod:1. The size (i.e. the determinant of the 
ovarian
e matrix) of the inserted 
omponent (afterthe partial EM steps) is generally smaller than the size of the existing 
omponents of themixture.2. It seems (we do not have a proof) that the smaller (the determinant of the 
ovarian
eof) the new 
omponent gets, the larger risk we run to end up in a lo
al maximum whenapplying EM to �nd the globally optimal new 
omponent.In our sear
h strategy we a

ount for both observations by (i) setting the size of the initial 
andi-date 
on�gurations to a value related to and in general smaller than the s
ale of the 
omponents



6 J.J. Verbeek et al.in the existing mixture and (ii) in
reasing the number of 
andidate insertion 
on�gurationslinearly in k.For ea
h insertion problem, our method 
onstru
ts one lo
al kd-tree for ea
h existing mixture
omponent, whi
h is expanded up to two layers. Both the means and the 
ovarian
e matri
esof the 
andidate 
omponents are then initialized a

ording to all six `bu
kets' of the kd-tree.Below we dis
uss the pro
edure in detail.Constru
tion of Candidate Components Based on the posterior distributions, we parti-tion the data set Xn in k disjoint subsets Ai = fx 2 Xn : P (i j x) = maxjfP (j j x)gg with1 � i � k. If one is using EM for step 4, then the posteriors P (i j x) are available dire
tly sin
ewe already 
omputed them for the EM updates of the k-
omponent mixture. For ea
h set Aiwe 
onstru
t the �rst six nodes (two residing in the �rst layer plus four residing in the se
ondlayer) of a lo
al kd-tree T (Ai) based on the data x 2 Ai only. Then, for ea
h of the 6k nodeswe initialize a new 
omponent with the mean and 
ovarian
e of the data present in that node.The initial mixing weights for 
andidates generated from Ai are set to �i=2. The reader mayhave noti
ed that using only two layers of the lo
al kd-trees is somewhat arbitrary. However,experiments indi
ated that using more layers does not improve results signi�
antly while it slowsdown the algorithm.The initial 
andidates 
an be repla
ed easily by 
andidates that yield higher likelihood whenmixed into the existing mixture. To obtain these better 
andidates we apply an EM algorithmagain, but now to update only the 
andidate 
omponents and their mixing weights as to maximizeLk+1, while keeping the existing mixture fk �xed. Ea
h iteration of these partial updates takesO(nk) 
omputations, sin
e we have to evaluate the likelihood of ea
h datum under ea
h of the6k 
andidate 
omponents. In the following se
tion we dis
uss how we 
an redu
e the amount of
omputations needed by a fa
tor k resulting in only O(n) 
omputations to perform one iterationof the partial updates.We stop the partial updates if the 
hange in log-likelihood of the resulting (k+1)-
omponentmixtures drops below some threshold or if some maximal number of iterations is rea
hed. Afterthese partial updates we set the new 
omponent �(x; �k+1) as the 
andidate that maximizes thelog-likelihood when mixed into the existing mixture.As an example we in
luded Figure 1, whi
h depi
ts the evolution of a solution for arti�
iallygenerated data as used in the experiments des
ribed in Se
tion 4.1. The 
on
epts `e

entri
ity'and `separation' are as in Se
tion 4.1. We generated 400 2-dimensional data points from a 4-
omponent mixture, with separation 
 = 1 and maximum e

entri
ity e = 15. On the left themixtures f1; : : : ; f4 are depi
ted by their mean and an ellipse whi
h has the eigenve
tors of the
ovarian
e matrix as axes and radii of twi
e the squareroot of the 
orresponding eigenvalue. Onthe right we plot the 
andidate new 
omponents after the partial EM steps.3.3.3 Speeding up the Partial EM Sear
hesIn order to a
hieve O(n) time 
omplexity for the 6k partial EM sear
hes initiated at the 6k initial
andidates, we make the simplifying assumption that the support (non-zero density points inXn) for a 
andidate 
omponent �(x; �) 
onstru
ted based on a node of a lo
al kd-tree T (Ai)(see previous se
tion) is lo
ated inside Ai. This simplifying assumption allows us to base thepartial updates for a 
andidate from Ai purely on the data in Ai, see the EM update equationsin se
tion 2.We want to maximize the (log-)likelihood Lk+1 of the data in the resulting mixtures ifwe insert the 
andidates in the existing mixture. Of 
ourse, this is equivalent to maximizingLk+1 �Lk. Using the above assumption, the 
hange in log-likelihood of Xn under the resulting
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mixtures the 6k 
andidates
k = 1
k = 2
k = 3
k = 4Figure 1: A tra
e of the 
onstru
tion of a 4-
omponent mixture distribution. Left are themixtures f1; : : : ; f4, right are the 
andidate new 
omponents in ea
h 
omponent allo
ation step.Thi
k lines indi
ate the sele
ted 
andidate.



8 J.J. Verbeek et al.6k new (k + 1)�
omponent mixtures is 
onveniently 
omputed as follows:Lk+1 �Lk = Xx2Xn log fk+1(x)fk(x) = Xx2Xn log (1� �)fk(x) + ��(x; �)fk(x) = (9)Xx2Ai log (1� �)fk(x) + ��(x; �)fk(x) + Xx=2Ai log (1� �)fk(x) + ��(x; �)fk(x) (10)= Xx2Ai h log (1� �)� log (1� �)fk(x)fk(x) + ��(x; �)i+ Xx=2Ai log (1� �) (11)= n log(1� �) � Xx2Ai log(1� P (k + 1 j x)) (12)The �rst two equalities follow from the de�nitions, the third is obtained by splitting the sum fordata inside and data outside Ai. The left term of (11) is obtained from the left term of (10) by(i) multiplying both parts of the fra
tion with (1��) then (ii) separating a log (1� �) term and(iii) 
hanging the sign of the log to swap the fra
tion. The right term of (11) equals the rightterm of (10) by our assumption that �(x; �) = 0 for x =2 Ai. The last equation follows triviallynow, given that the posterior P (k + 1 j x) is de�ned as before. It is 
lear that to evaluate (12)for all 6k 
andidates 
osts only O(n) operations, sin
e every x is used only for six 
andidates.Let ri denote the fra
tion of the data present inAi, thusPki=1 ri = 1. The partial EM updatesof ea
h of the six 
andidates based on Ai only take 6rin 2 O(rin) 
omputations. Hen
e, in totalwe need O(Pki=1 rin) = O(n) 
omputations. The same analysis holds for the 
omputation ofthe 
hange in log-likelihood.Note that this speed-up is only possible be
ause we generate the new 
omponents based onthe lo
al kd-trees. Hen
e, this is another advantage of the new method over the one in [22℄. Ifwe would 
onstrain the latter also to 
onsider only 6k 
andidates, then still the 
omputational
ost of a single insertion step would be O(nk). In the last paragraph of Se
tion 4.1 we des
ribean experiment where we 
ompare the performan
e of the latter method (using n 
andidates)with that of the new method. The new method 
learly outperforms the latter. Sin
e using fewer
andidates will not in
rease performan
e we felt it is not needed to 
ompare the new methodwith the latter using only 6k 
andidates.3.3.4 Total Run TimeAs mentioned in the introdu
tion, the total run time of the algorithm is O(k2n). This is dueto the updates of the mixtures fi, whi
h 
ost O(ni) 
omputations ea
h if we use EM for theseupdates. Therefore, summing over all mixtures we get O(Pki=1 ni) = O(nk2). This is a fa
tor kslower than the standard EM pro
edure. The run times of our experiments 
on�rm this analysis,the new method performed on average about k=2 times slower than standard EM.Note that if we do not use the aforementioned speed-up, the run time would remain O(k2n)(sin
e in that 
ase every 
omponent allo
ation step would 
ost O(kn), just as the pre
edingEM updates for the 
urrent mixture). Therefore, the speed-up is not `essential' but allows inpra
ti
e for signi�
ant faster performan
e. Note that if a faster alternative is used instead ofEM to update the mixtures fi in step 4 of the general s
heme, then the bene�t of using thespeed-up be
omes greater.4 Experimental DemonstrationIn this se
tion we present results of three experiments. All experiments 
ompare the results asobtained with standard EM and the greedy approa
h presented here.
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Figure 2: Histogram of RD (left) and DGreedy as fun
tion of DEM (right) the solid line identi�esRD = 1.4.1 Arti�
ial Data Drawn from Gaussian MixturesIn this experiment we generated data sets of 400 points in a IRd spa
e with d 2 f2; 3; 4; 5g. Thedata was drawn from a Gaussian mixture of k 2 f4; 6; 8; 10g 
omponents. The separation of the
omponents was 
hosen 
 2 f1; 2; 3; 4g. A separation of 
 means:8i6=j : k �i � �j k2� 
maxfi;jgftra
e(Ci); tra
e(Cj)g: (13)For ea
h mixture 
on�guration we generated 50 data sets. We allowed a maximum e

entri
ity(i.e. largest singularvalue of the 
ovarian
e matrix over the smallest) of 15 for ea
h 
omponent.Also, for ea
h generated mixture, we generated a test set of 1000 points not presented to themixture learning algorithms.In the 
omparison below, we 
ompare the log-likelihood of the test sets under the mixturesprovided by both methods fEM and fGreedy with the log-likelihood under the generating mixturef . Let DEM = L(Xn; f) � L(Xn; fEM), and similarly for DGreedy. The di�eren
es DEM andDGreedy provide empiri
al estimates of the KL divergen
e to the generating mixture, where theintegral is repla
ed by a sum over the observed data. Let RD = DGreedy=DEM denote the'Relative Di�eren
e' in KL divergen
e.Overall Results For 637 of the 3200 (19.9%) experiments RD 2 (0:98; 1:02). For 132 of the3200 (4.13%) experiments RD 2 [1:02; 2). For 17 (0.53%) experiments RD � 2 with a maximumof 5:69. The remaining 75:44% of the experiments resulted in RD < :98 The distribution ofRD over all experiments with RD outside (0:98; 1:02) (this involves 80.1% of all experiments)is visualised in the left plot of Figure 2 by a histogram of RD. In the right plot of Figure 2 weplot DGreedy as fun
tion of DEM for all experiments with DGreedy < 1 and DEM < 2 (whi
hin
ludes 97.37% of all experiments). Observe that if we would make histograms of DGreedy forranges of DEM that they would be shaped again like the overall histogram. This indi
ates thatthe mean of DGreedy in su
h a range does not 
orrespond to the peak of the histogram. Onemay take this into a

ount when interpreting the means presented in the tables of Figure 4.We also 
ompared the results of the new algorithm to using EM for multiple random ini-tializations. We re
orded for every data set the time spend by our new algorithm and al-lowed as many restarts of EM as possible within the time spent by our algorithm. We thenkept the mixture maximizing likelihood on the data and 
ompared the resulting approximatedKL divergen
e DMult (de�ned as before) with DGreedy. Figure 3 provides similar plots asin Figure 2. In the histogram, we plotted for reasons of exposition only results for exper-iments that yield DGreedy=DMult < 2 (this only ex
ludes 1.25 % of all experiments) andDGreedy=DMult =2 (0:98; 1:02) (this ex
ludes 35.6% of all experiments). Typi
ally the number of
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Figure 3: Histogram of DGreedy=DMult (left) and DGreedy as fun
tion of DMult (right) the solidline identi�es DGreedy = DMult.d = 2 
 = 1 2 3 4k = 4 0.96 0.59 0.54 0.486 0.74 0.34 0.29 0.198 0.64 0.32 0.18 0.1410 0.56 0.27 0.21 0.29

d = 3 
 = 1 2 3 4k = 4 0.79 0.55 0.59 0.646 0.61 0.43 0.29 0.298 0.61 0.30 0.19 0.3010 0.61 0.27 0.21 0.30d = 4 
 = 1 2 3 4k = 4 0.77 0.60 0.74 0.746 0.60 0.47 0.33 0.438 0.53 0.38 0.26 0.3110 0.61 0.35 0.34 0.33
d = 5 
 = 1 2 3 4k = 4 0.87 0.69 0.82 0.576 0.59 0.46 0.48 0.468 0.51 0.42 0.40 0.3210 0.57 0.44 0.49 0.49Figure 4: Tables giving averages (over 50 experiments ea
h) of RD for di�erent experimentalsettings.runs is between one and ten, but of 
ourse this depends on the number of mixture 
omponentsused, see Se
tion 3.3.4.We 
on
lude that the new method still outperforms EM signi�
antly, even if multiple restartsare used. The median of improvement in the KL divergen
e histogram is approximately around0:25, while it was around 0.10 when using only one EM run. Also we observe that the histogramis more peeked when only one EM run is used. The per
entage of the experiments for whi
h the(approximated) KL divergen
es are 
lose (their ratio is within the (0:98; 1:02) interval) is largerwhen using multiple EM runs: 19.9 % for one run and 35.6 % for multiple runs. All three e�e
tsare as expe
ted.Results split out Below we provide tables summarizing average RD obtained for the di�erenttypes of generating mixtures. We 
on
lude that the new algorithm gives greater improvementas the separation and the number of 
omponents in the generating mixture in
rease.Comparison to using all data as 
andidates In our experiments des
ribed above, we also
ompared the performan
e of the new method to the performan
e of the method proposed in [22℄.Here, we 
onsider again DGreedy and now we 
ompare it with the approximated KL divergen
eDfixed when using the �xed 
andidate set as proposed in [22℄. For 2062 (i.e. 64.44%) experimentsthe fra
tion DGreedy=Dfixed was within [0:95; 1:05℄. Of the remaining 1138 experiments, for 1122
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Figure 5: Comparing KL divergen
es for the 'old' (Dfixed) and the 'new' (DGreedy) 
omponentinsertion methods.(98.59%) the fra
tion was smaller than 6. Figure 5 shows a histogram of the fra
tion for those1122 experiments. Observe that if the new method performs di�erently, it generally allows fora signi�
ant redu
tion of the KL divergen
e.4.2 Image re
onstru
tion using MPPCAHere, we 
ompare image re
onstru
tion results when using our greedy and standard EM methodto learn Mixtures of Probabilisti
 Prin
ipal Component Analyzers (MPPCA). The MPPCAmodel is used to obtain low dimensional des
riptions of the images from whi
h we 
an re
onstru
tthe images. 3In [18℄ MPPCA is introdu
ed as a generative probabilisti
 model. The model is a 
onstrainedGaussian mixture, the d� d 
ovarian
e matri
es are restri
ted to the form Ci = �2i I+WiW>ifor 
omponent i, where Wi is a d� q matrix. The matri
es Wi span lo
al prin
ipal subspa
es.Our greedy approa
h for mixture learning extends naturally to the MPPCA model. For the
andidates initialize W with the �rst q eigenve
tors of the 
ovarian
e matrix Cfull of the datain the node of the kd-tree and initialize �2 with the mean of the smallest d � q eigenvalues ofCfull.4On
e a MPPCA model is �tted to the data (64 � 64 pixel gray-value images in our 
ase)the data 
an be stored and re
onstru
ted using the subspa
e with maximum posterior proba-bility. This is a
hieved by en
oding the index of the used subspa
e and en
oding the q `lo
al'
oeÆ
ients identifying the proje
tion of the image onto that subspa
e. As an error measurewe use the total (summed over all pixels) absolute di�eren
e in intensity between pixels in theoriginal images and the re
onstru
ted images. In the table in Figure 6 we show results of theexperiment 
ompared to results obtained when using the MPPCA for �ve di�erent random pa-rameter initializations. The 698 images we used were obtained from the Isomap [17℄ webpage(see http://isomap.stanford.edu). Several typi
al images and some of the means of the mix-ture 
omponents are shown in Figure 7. For the re
onstru
tion experiment, we �rst redu
ed thedimensionality of the data spa
e to speed-up the experiment. It is well known that n points inIRm with m > n are embedded in an at most n � 1 linear subspa
e of IRm. Therefore, dimes-nionality redu
tion of the data from 642 = 4096 to 697 dimensions is trivial. Further lineardimensionality redu
tion from 697 to 59 dimensions was applied by meansof Prin
ipal Compo-nent Analysis keeping 95.1% of the total varian
e. In this 59 dimensional subspa
e we learnedMPPCA models 
onsisting of 15 
omponents and with q = 3.3Spatial relations among the di�erent lo
al linear models are not used here. However, this is a subje
t of
urrent resear
h in our group. See for example [20℄ where several lo
al linear models are joined to form a globallow dimensional 
oordinate system.4In fa
t, the 
olumns of W must be s
aled by p�� �2, where � is the eigenvalue 
orresponding to theeigenve
tor in a 
olumn, see [18℄ for details.
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method mean error std. dev. log-likelihoodGreedy 257.04 82.60 77.50Standard 310.93 100.20 74.33Standard 308.86 99.41 72.92Standard 353.24 135.91 74.09Standard 299.44 73.35 74.21Standard 319.86 97.02 73.55Figure 6: Average per-image re
onstru
tion errors when 
ompressing the 698 images with asingle MPPCA model.

Figure 7: The means of some mixture 
omponents (upper row) and several images (bottom row).
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Figure 8: Several Brodatz textures, the white squares indi
ate the pat
h size.k 2 3 4 5 6Greedy 0.25 0.46 0.67 0.78 0.88Standard 0.47 0.77 1.04 1.28 1.34Uniform 1 1.59 2 2.32 2.58Figure 9: Average 
onditional entropy for di�erent values of k for the standard EM and theproposed greedy method to learn Gaussian mixtures 
ompared with the 
onditional entropy for
lusters distributing uniform over textures.4.3 Texture SegmentationIn this experiment the task is to 
luster 16 � 16 gray-valued images. The images are pat
hesof 512 � 512 images of 37 Brodatz textures. A small sele
tion of these textures is provided inFigure 8. The idea is that pat
hes from the same texture display strong similarity while pat
hesfrom di�erent textures are assumed to be dissimilar. The 
lustering is obtained using a mixtureof Gaussians �tted on the pat
hes. The experiment des
ribed below 
ompares results obtainedwhen learning the mixture using our new method and the standard EM method.The number of textures involved in ea
h experiment is denoted by k 2 f2; 3; 4; 5; 6g. For ea
hvalue of k we 
onstru
ted 100 data sets by randomly extra
ting 500 pat
hes from k randomlysele
ted textures. The pat
hes are represented as 256 dimensional ve
tors, whi
h we proje
tedlinearly to a lower dimensional subspa
e by means of PCA as to retain 80% of the total vari-an
e. In this lower dimensional spa
e (typi
ally somewhere between 10 and 70 dimensions wereretained) we learn a k 
omponent Gaussian mixture. The 
lustering is now obtained by as-signing ea
h pat
h to the maximum posterior mixture 
omponent. Our experiment is based onthe experiments des
ribed in [15℄, there the MPPCA model is used to learn restri
ted Gaussianmixtures.To evaluate a given 
lustering we used the 
onditional entropy H(BjC) that measures theentropy of the texture labels 
onditioned on the 
luster labels. In Appendix A we dis
uss thismeasure in more detail. In Figure 9 we provide a table with the averages of H(B j C) over 100experiments for ea
h value of k. Figure 10 illustrates the di�eren
e between the greedy and thestandard EM method in more detail for k = 3. The left plot shows 3 modes:1. Close to zero: Good segmentation, every 
omponent 
aptures a texture. The 
onditionalentropy is 
lose to zero sin
e there is almost no un
ertainty about the texture 
lass if weknow the maximum posteriori mixture 
omponent.2. Close to 2=3 bit: One texture is separated and the two others are 
onfused. In 1/3 of the
ases we have very low entropy (the separated texture) and in 2=3 of the 
ases we haveentropy 
lose to 1 bit (the two 
onfused textures). Sin
e two textures are 
onfused weneed on average approximately one bit to indi
ate whi
h one is used. Taking the averageover all 
ases we arrive at approximately 2=3 bit.
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Figure 10: Histograms of H(B j C) for k = 3 
omparing the standard EM (left) and new greedymethod (right) to learn the Gaussian mixture.3. Close to 3=2 bits: Very poor segmentation, all textures are 
onfused. Note that H(B jC) � 1:59 bits for 
lusters that distribute uniformly over the textures.In the right plot, showing performan
e of the greedy method, we see that the third mode hasalmost disappeared illustrating the superior performan
e of the mixture learned with the greedymethod.5 Dis
ussion and Con
lusionsDis
ussion Both VDM [2, 12, 23℄ and the proposed method are instantiations of the moregeneral greedy s
heme given in se
tion 3.2 (although VDM skips step 4 of the s
heme). VDMmakes use of the dire
tional derivative Dfk(�) of the log-likelihood for the 
urrent mixturefk, where Dfk(�) = lim�!0[L(Xn; (1 � �)fk + ��) � L(Xn; fk)℄=�. VDM pro
eeds by pi
kingthe �� that maximizes Dfk(�) and inserting this in the mixture with a fa
tor �� su
h that�� = argmax�fL(Xn; (1��)fk +���g. Using the dire
tional derivative at the 
urrent mixture
an be seen as an instantiation of step 2 of the general s
heme. The optimization over both �and � is repla
ed by (i) an optimization over Dfk(�) (typi
ally implemented by gridding theparameter spa
e) and then (ii) an optimization over �. Note that by `moving in the dire
tion ofmaximum Dfk(�)' does not guarantee that we move in the dire
tion of maximum improvementof log-likelihood if we optimize over � subsequently. See [13℄ for an overview of VDM and othermixture learning methods.The approximation result of Li [10℄, whi
h applies to the more general s
heme provided inSe
tion 3.2, is en
ouraging for the use of greedy methods to learn �nite mixtures. However, theresult does not guarantee that ea
h element fk of the sequen
e of mixtures ffig produ
ed bythe greedy algorithm is 
lose to the k-
omponent maximum likelihood mixture.Re
ently, several other new methods to learn mixtures (of Gaussians) were proposed amongwhi
h we mention [5, 8, 19℄. The �rst tries to over
ome the diÆ
ulties of learning mixtures ofGaussians in high dimensional spa
es. By proje
ting the data to a lower dimensional subspa
e(whi
h is 
hosen uniformly randomly!), �nding the means in that spa
e and then proje
tingthem ba
k, the problems of high dimensionality are redu
ed. The last two methods try toover
ome the dependen
e of EM on the initial 
on�guration as does our method. In [19℄ splitand merge operations are applied to lo
al optima solutions found by applying EM. The splitand merge operations 
onstitute jumps in the parameter spa
e that allow the algorithm to jumpfrom a lo
al optimum to a better region in the parameter spa
e. By then reapplying EM abetter (hopefully global) optimum is found. An important bene�t of our new method over[19℄ is that the new algorithm produ
es a sequen
e of mixtures that 
an be used to performmodel 
omplexity sele
tion as the mixtures are learned. For example a kurtosis-based sele
tion
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riterion, like the one in [21℄, 
an be used here. In [8℄ it is proposed to start with a largenumber kmax of mixture 
omponents and to su

essively annihilate 
omponents with smallmixing weights. This approa
h 
an be 
hara
terized as `pruning' a given mixture, where ourapproa
h 
an be 
hara
terized as `growing' a mixture. There, also a sequen
e of mixtures ofdi�erent number of 
omponents is generated and it is exploited by integrating the pro
ess ofmodel sele
tion and �tting of the mixtures. Note however that1. In general we may not know how to set kmax if we do not know what the `
orre
t' numberk of 
omponents is.2. Suppose that the `
orre
t' number of 
omponents 
an be identi�ed (it may be simply knownor inferred using model sele
tion te
hniques). For the pruning approa
h, the 
onsideredmixtures fi 
onsist of k � i � kmax 
omponents, so the EM updates 
ost at least O(kn)sin
e k � i. For our growing approa
h all 
onsidered mixtures 
onsist of at most k
omponents su
h that the EM updates of those mixtures 
ost at most O(kn).Also, Bayesian methods are used to learn Gaussian mixtures. For example in [14℄, a reversiblejump Markov Chain Monte Carlo (MCMC) method is proposed. There, the MCMC is allowed tojump between parameter spa
es of di�erent dimensionality (i.e. parameter spa
es for mixtures
onsisting of di�ering number of 
omponents). However, the experimental results reported in[14℄ indi
ate that su
h sampling methods are rather slow as 
ompared to 
onstru
tive maximumlikelihood algorithms. It is reported that about 160 `sweeps' per se
ond are performed on a SUNSpar
 4 workstation. The experiments involve 200.000 sweeps, resulting in about 20 minutesrun time. Although it is remarked that the 200.000 sweeps are not needed for reliable results,it 
ontrasts sharply with the 2.8 se
onds and 5.7 se
onds run time (allowing respe
tively about480 and 960 sweeps) of the standard EM and our greedy EM in a similar experimental settingexe
uted also on a SUN Spar
 4 workstation.Con
lusions We proposed a greedy method to learn mixtures of Gaussians that has run timeO(nk2). As 
ompared to the standard EM algorithm we observe:1. The proposed algorithm is deterministi
.2. Experiments on three di�erent problems (density estimation, image re
onstru
tion andtexture segmentation) show superior performan
e of the new method while run time isin
reased only by a fa
tor linear in k.As 
ompared to the method proposed in [22℄ we note:1. The O(n2k2) time 
omplexity has been redu
ed by a fa
tor n.2. The somewhat arbitrary 
hoi
e for spheri
al 
andidate 
omponents with �xed varian
eand their bandwith has been repla
ed by a sear
h for 
andidate 
omponents that dependson the 
urrent mixture.3. Experiments suggest that if the methods yield di�erent performan
e, then the new methodgenerally outperforms the old one.4. The new 
omponent insertion method extends naturally to the MPPCA model.Software implementing our new algorithm in Matlab is available by email from the �rst author(jverbeek�s
ien
e.uva.nl).
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18 J.J. Verbeek et al.A Conditional entropy for 
luster evaluationTo evaluate a given 
lustering we 
onsider the k � k 
onfusion matrix A, where Aij denoteshow many pat
hes of texture j are assigned to 
luster i. Let B be a random variable whi
hranges over the k textures and C a random variable ranging over the k 
lusters. As a measure ofhow informative a given 
lustering is we 
ompute the 
onditional entropy H(B j C). Note thatthis quantity is dire
tly related to the mutual information between the two variables I(B;C) =H(B)�H(B j C). Hen
e the lower H(B j C) the higher the mutual information is and thus thebetter the 
lustering is. Re
all that the entropy of a dis
rete random variable X is a measureof un
ertainty in X and is de�ned asH(X) =Xx p(X = x) log p(X = x); (14)and the 
onditional entropy is de�ned asH(X j Y ) = EYH(X j Y = y) =Xx;y p(Y = y;X = x) log p(X = x j Y = y): (15)If we set the logartihm to base 2, the (
onditional) entropy measures how many bits are neededon average per out
ome to en
ode a string of out
omes of the variable if we use an optimal 
odes
heme. See [4℄ for an ex
ellent dis
ussion of these 
on
epts.The 500k images in ea
h experiment provide 500k joint realizations of the variables B andC resulting in the matrix A. The matrix A gives empiri
al estimates ofp(B = b j C = 
) � A
b=Xb0 A
b0 (16)and p(C = 
) �Xb0 A
b0=Xb0
0 A
0b0 : (17)We 
ompute H(B j C) as follows:H(B j C) = �X
 p(C = 
)Xb p(B = b j C = 
) log2 p(B = b j C = 
) (18)
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