O. Dahl, F. Nyberg, and A. Heyden, On Observer Error Linearization for Perspective Dynamic Systems, 2007 American Control Conference, pp.266-268, 2007.
DOI : 10.1109/ACC.2007.4282887

J. J. Gibson and L. E. Crooks, A Theoretical Field-Analysis of Automobile-Driving, The American Journal of Psychology, vol.51, issue.3, 1938.
DOI : 10.2307/1416145

M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Transactions on Signal Processing, vol.50, issue.2, pp.174-188, 2002.
DOI : 10.1109/78.978374

M. Isard and A. Blake, CONDENSATION ? conditional density propagation for visual tracking, International Journal of Computer Vision, vol.29, issue.1, pp.5-28, 1998.
DOI : 10.1023/A:1008078328650

C. Coué, T. Fraichard, P. Bessì-ere, and E. Mazer, Using Bayesian programming for multi-sensor multitarget tracking in automotive applications, International Conference on Robotics and Automation, 2003.

M. Felsberg and G. Granlund, Fusing dynamic percepts and symbols in cognitive systems, International Conference on Cognitive Systems, 2008.

G. H. Granlund, An Associative Perception-Action Structure Using a Localized Space Variant Information Representation, Proceedings of Algebraic Frames for the Perception-Action Cycle (AFPAC), 2000.
DOI : 10.1007/10722492_3

B. Johansson, T. Elfving, V. Kozlov, Y. Censor, P. E. Forssén et al., The application of an oblique-projected Landweber method to a model of supervised learning, Mathematical and Computer Modelling, vol.43, issue.7-8, pp.892-909, 2006.
DOI : 10.1016/j.mcm.2005.12.010

I. P. Howard and B. J. Rogers, Binocular Vision and Stereopsis, 1995.
DOI : 10.1093/acprof:oso/9780195084764.001.0001

R. S. Zemel, P. Dayan, and A. Pouget, Probabilistic Interpretation of Population Codes, Neural Computation, vol.76, issue.4, pp.403-430, 1998.
DOI : 10.1038/370140a0

A. Pouget, P. Dayan, and R. Zemel, Information processing with population codes, Nature Reviews Neuroscience, vol.1, issue.2, pp.125-132, 2000.
DOI : 10.1038/35039062

M. Felsberg, P. E. Forssén, and H. Scharr, Channel smoothing: efficient robust smoothing of low-level signal features, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.2, pp.209-222, 2006.
DOI : 10.1109/TPAMI.2006.29

A. A. Georgiev, Nonparamtetric system identification by kernel methods, IEEE Trans. on Automatic Control, vol.29, issue.4, 1984.
DOI : 10.1109/tac.1984.1103532

S. J. Yakowitz, Nonparametric Density Estimation, Prediction, and Regression for Markov Sequences, Journal of the American Statistical Association, vol.7, issue.389, 1985.
DOI : 10.1080/01621459.1976.10481500

B. Han, S. W. Joo, and L. S. Davis, Probabilistic fusion tracking using mixture kernelbased Bayesian filtering, IEEE Int. Conf. on Computer Vision, 2007.

B. North and A. Blake, Learning dynamical models using expectation-maximisation, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), 1998.
DOI : 10.1109/ICCV.1998.710747

H. P. Snippe and J. J. Koenderink, Discrimination thresholds for channel-coded systems, Biological Cybernetics, vol.25, issue.6, pp.543-551, 1992.
DOI : 10.1007/BF00204120

E. Pampalk, A. Rauber, and D. Merkl, Using Smoothed Data Histograms for Cluster Visualization in Self-Organizing Maps, Proceedings of the International Conference on Artifical Neural Networks (ICANN'02), pp.871-876, 2002.
DOI : 10.1007/3-540-46084-5_141

P. E. Forssén, Low and Medium Level Vision using Channel Representations, 2004.

E. Jonsson and M. Felsberg, Correspondence-free Associative Learning, 18th International Conference on Pattern Recognition (ICPR'06), 2006.
DOI : 10.1109/ICPR.2006.420

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Gordon, D. Salmond, and . Smith, Novel approach to nonlinear/non-Gaussian Bayesian state estimation. Radar and Signal Processing, IEE Proceedings F, vol.140, issue.2, pp.107-113, 1993.

B. P. Carlin, N. G. Polson, and D. S. Stoffer, A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling, Journal of the American Statistical Association, vol.74, issue.418, pp.493-500, 1992.
DOI : 10.1080/01621459.1991.10475006