Supervised Dictionary Learning

Julien Mairal 1, * Francis Bach 1 Jean Ponce 1, 2 Guillermo Sapiro 3 Andrew Zisserman 1, 4
* Auteur correspondant
1 WILLOW - Models of visual object recognition and scene understanding
DI-ENS - Département d'informatique de l'École normale supérieure, ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, CNRS - Centre National de la Recherche Scientifique : UMR8548
Abstract : It is now well established that sparse signal models are well suited to restoration tasks and can effectively be learned from audio, image, and video data. Recent research has been aimed at learning discriminative sparse models instead of purely reconstructive ones. This paper proposes a new step in that direction, with a novel sparse representation for signals belonging to different classes in terms of a shared dictionary and multiple class-decision functions. The linear variant of the proposed model admits a simple probabilistic interpretation, while its most general variant admits an interpretation in terms of kernels. An optimization framework for learning all the components of the proposed model is presented, along with experimental results on standard handwritten digit and texture classification tasks.
Type de document :
Rapport
[Research Report] RR-6652, INRIA. 2008, pp.15
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00322431
Contributeur : Julien Mairal <>
Soumis le : mercredi 17 septembre 2008 - 16:20:17
Dernière modification le : mardi 17 avril 2018 - 11:29:30
Document(s) archivé(s) le : jeudi 3 juin 2010 - 21:42:23

Fichiers

RR-6652.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00322431, version 1
  • ARXIV : 0809.3083

Collections

Citation

Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro, Andrew Zisserman. Supervised Dictionary Learning. [Research Report] RR-6652, INRIA. 2008, pp.15. 〈inria-00322431〉

Partager

Métriques

Consultations de la notice

896

Téléchargements de fichiers

415