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Abstract: It is now well established that sparse signal models are well suited
to restoration tasks and can effectively be learned from audio, image, and video
data. Recent research has been aimed at learning discriminative sparse models
instead of purely reconstructive ones. This paper proposes a new step in that
direction, with a novel sparse representation for signals belonging to different
classes in terms of a shared dictionary and multiple class-decision functions. The
linear variant of the proposed model admits a simple probabilistic interpretation,
while its most general variant admits an interpretation in terms of kernels. An
optimization framework for learning all the components of the proposed model
is presented, along with experimental results on standard handwritten digit and
texture classification tasks.
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Apprentissage de dictionnaires supervisé

Résumé : Il est maintenant bien établi que les représentations parcimonieuses
de signaux sont bien adaptées a des taches de restauration d’image, de sons ou de
video. De recherches récentes ont eu pour but d’apprendre des représentations
discriminantes au lieu de seulement reconstructives. Ce travail propose un
nouveau cadre pour représenter des signaux appartenant a plusieurs classes
différentes, en apprenant de facon simultanée un dictionnaire partagé et de
multiples fonctions de décision. On montre que la variante linéaire de ce cadre
admet une interprétation probabilistique simple, tandis que la version plus
générale peut s’interpréter en terme de noyaux. Nous proposons une méthode
d’optimisation efficace et nous évaluons le modele sur un probleme de reconnaissance
de chiffres manuscrits et de classification de textures.

Mots-clés : parcimonie, sparsité, classification
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1 Introduction

Sparse and overcomplete image models were first introduced in [I3] for modeling
the spatial receptive fields of simple cells in the human visual system. The linear
decomposition of a signal using a few atoms of a learned dictionary, instead of
predefined ones—such as wavelets—has recently led to state-of-the-art results for
numerous low-level image processing tasks such as denoising [5], showing that
sparse models are well adapted to natural images. Unlike principal component
analysis decompositions, these models are most ofen overcomplete, with a num-
ber of basis elements greater than the dimension of the data. Recent research
has shown that sparsity helps to capture higher-order correlation in data: In
[9, 21, sparse decompositions are used with predefined dictionaries for face and
signal recognition. In [4], dictionaries are learned for a reconstruction task,
and the sparse decompositions are then used a posteriori within a classifier.
In [T2], a discriminative method is introduced for various classification tasks,
learning one dictionary per class; the classification process itself is based on the
corresponding reconstruction error, and does not exploit the actual decompo-
sition coefficients. In [I7], a generative model for document representation is
learned at the same time as the parameters of a deep network structure. The
framework we present in this paper extends these approaches by learning si-
multaneously a single shared dictionary as well as multiple decision functions
for different signal classes in a mixed generative and discriminative formulation
(see also [I8], where a different discrimination term is added to the classical
reconstructive one for supervised dictionary learning via class supervised simul-
taneous orthogonal matching pursuit).. Similar joint generative/discriminative
frameworks have started to appear in probabilistic approaches to learning, e.g.,
2, 8, [0, 15, 19, 20], but not, to the best of our knowledge, in the sparse dictio-
nary learning framework. Section [ presents the formulation and Section B its
interpretation in term of probability and kernel frameworks. The optimization
procedure is detailed in Section Bl and experimental results are presented in
Section B

2 Supervised dictionary learning

We present in this section the core of the proposed model. We start by describ-
ing how to perform sparse coding in a supervised fashion, then show how to
simultaneously learn a discriminative/reconstructive dictionary and a classifier.

2.1 Supervised Sparse Coding

In classical sparse coding tasks, one considers a signal « in R" and a fized
dictionary D = [dy,...,d;] in R™** (allowing k¥ > n, making the dictionary
overcomplete). In this setting, sparse coding with an £; regularization! amounts
to computing

R*(waD)=£i£kl|w—Da||§+>\1|lal|1- (1)

IThe £, regularization term of a vector @ for p > 0 is defined as |||} = (37, |=[]|P).
[I]lp is a norm when p > 1. When p = 0, it counts the number of non-zeros elements in the
vector.

RR n° 6652



4 Mairal, Bach, Ponce, Sapiro & Zisserman

It is well known in the statistics, optimization, and compressed sensing commu-
nities that the ¢1 penalty yields a sparse solution, very few non-zero coefficients
in a, [Bl, although there is no explicit analytic link between the value of A\;
and the effective sparsity that this model yields. Other sparsity penalties using
the ¢y (or more generally ¢,) regularization can be used as well. Since it uses
a proper norm, the ¢; formulation of sparse coding is a convex problem, which
makes the optimization tractable with algorithms such as those introduced in
HL [, and has proven in our proposed framework to be more stable than its
£y counterpart, in the sense that the resulting decompositions are less sensi-
tive to small perturbations of the input signal . Note that sparse coding with
an fy penalty is an NP-hard problem and is often approximated using greedy
algorithms.

In this paper, we consider a different setting, where the signal may belong to
any of p different classes. We model the signal « using a single shared dictionary
D and a set of p decision functions g;(x,,0) (i = 1,...,p) acting on & and
its sparse code a over D. The function g; should be positive for any signal in
class ¢ and negative otherwise. The vector 8 parametrizes the model and will be
jointly learned with D. In the following, we will consider two kinds of decision
functions:

(i) linear in a: gi(z,,0) = wla + b;, where 8§ = {w; € R¥.b; € R}Y_,,
and the vectors w; (i = 1,...,p) can be thought of as p linear models for the
coefficients a, with the scalars b; acting as biases;

(ii) bilinear in = and a: g;(z,a,0) = ' W, + b;, where § = {W, €
R™** b, € R}?_,. Note that the number of parameters in (ii) is greater than in
(i), which allows for richer models. One can interpret W, as a filter encoding
the input signal @ into a model for the coefficients a, which has a role similar
to the encoder in [T6] but for a discriminative task.

Let us define softmaz discriminative cost functions as

P
Cilwr, o) = log(3 emi™1)
j=1
for i = 1,...,p. These are multiclass versions of the logistic function, enjoying

properties similar to that of the hinge loss from the SVM literature, while being
differentiable. Given some input signal & and fixed (for now) dictionary D and
parameters @, the supervised sparse coding problem for the class p can be defined
as computing

S (x,D,0) = n(l)iénSi(a, z,D,0), (2)

where
Si(e, ,D,0) = Ci({gj(x, o, 0)}_,) + Xol|lz — Dall5 + M|l (3)

Note the explicit incorporation of the classification and discriminative compo-
nent into sparse coding, in addition to the classical reconstructive term (see [I8]
for a different classificaiton component). In turn, any solution to this problem

provides a straightforward classification procedure, namely:
i*(x,D,0) = argmin §; (z, D, 0). (4)

1=1,...,p

Compared with earlier work using one dictionary per class [12], this model
has the advantage of letting multiple classes share some features, and uses the

INRIA



Supervised Dictionary Learning 5

coefficients a of the sparse representations as part of the classification procedure,
thereby following the works from [9, [[4], 21], but with learned representations
optimized for the classification task similar to [ [I8]. As shown in Section
3, this formulation has a straightforward probabilistic interpretation, but let us
first see how to learn the dictionary D and the parameters 8 from training data.

2.2 SDL: Supervised Dictionary Learning

Let us assume that we are given p sets of training data T;, i = 1,...,p, such
that all samples in T; belong to class ¢. The most direct method for learning D
and 6 is to minimize with respect to these variables the mean value of S, with
an fs regularization term to prevent overfitting:

p
mig(ZZs;(mj,D,e))+A2||0||§, st. Vi=1,....k |[di2<1 (5)
D

Y ti=t e
Since the reconstruction errors || — Da||3 are invariant to scaling simultane-
ously D by a scalar and « by its inverse, constraining the £ norm of columns
of D prevents any transfer of energy between these two variables, which would
have the effect of overcoming the sparsity penalty. Such a constraint is classical
in sparse coding [5]. We will refer later to this model as SDL-G (supervised
dictionary learning, generative).

Nevertheless, since the classification procedure from Eq. () will compare the
different residuals S of a given signal for ¢ = 1,...,p, a more discriminative
approach is to not only make the S small for signals with label 4, as in (@), but
also make the value of S} greater than S for j different than ¢, which is the
purpose of the softmax function C;. This leads to:

p
min (337 C({S (@5, D, 0)J7)) + M0 st Vi=1 k. fldiflo <1,
’ =1 j€T; ( )
6

As detailed below, this problem is more difficult to solve than Eq. @), and
therefore we adopt instead a mixed formulation between the minimization of
the generative Eq. (@) and its discriminative version (), [I5]—that is,

p
min (D7 3 nCi(1S] (25, D.ON) + (1= )8} (25,D,0)) + 011
) i=1jET;

s.t. Vi, [|di]]2 <1, (7)

where p controls the trade-off between reconstruction from Eq. () and discrim-
ination from Eq. [@). This is the proposed generative/discriminative model for
sparse signal representation and classification from learned dictionary D and
model 6. We will refer to this mixed model as SDL-D, (supervised dictionary
learning, discriminative).

Before presenting the proposed optimization procedure, we provide below
two interpretations of the linear and bilinear versions of our formulation in
terms of a probabilistic graphical model and a kernel.

RR n° 6652



6 Mairal, Bach, Ponce, Sapiro & Zisserman

ji=1,...,

Figure 1: Graphical model for the proposed generative/discriminative learning
framework.

3 Interpreting the model

3.1 A probabilistic interpretation of the linear model

Let us first construct a graphical model which gives a probabilistic interpretation
to the training and classification criteria given above when using a linear model
with zero bias (no constant term) on the coefficients—that is, g;(x,a,0) =
wla.. This model consists of the following components (Figure [):

e The matrices D and W are parameters of the problem, with a Gaussian prior
on W, p(W) x e_’\QHW‘@, and on the columns of D, p(D) Hle e_"“”dl”g,
where the v;’s are the Gaussian parameters. All the d;’s are considered inde-
pendent of each other.

o The coefficients a; are latent variables with a Laplace prior, p(a;) o e

e The signals x; are generated according to a Gaussian probability distribution
—Xol|T; —Doy;||3

—AllaGlh

conditioned on D and o, p(z;|a;, D) x e
sidered independent from each other.

e The labels y; are generated according to a probability distribution conditioned
on W and «;, and given by p(y; = ilaj, W) = e_WiTO‘J'/X:f:1 e~Wi%  Given
D and W, all the triplets (o, z;,y;) are independent.

What is commonly called “generative training” in the literature (e.g., [I0,
[[3]), amounts to finding the maximum likelihood for D and W according to
the joint distribution p({z;,y;}7.,, D, W), where the x;’s and the y;’s are re-
spectively the training signals and their labels. It can easily be shown (details
omitted due to space limitations) that there is an equivalence between this gen-
erative training and our formulation in Eq. @) under MAP approximations.?
Although joint generative modeling of & and y through a shared representa-
tion, e.g., [2], has shown great promise, we show in this paper that a more
discriminative approach is desirable. “Discriminative training” is slightly dif-
ferent and amounts to maximizing p({y;}7,, D, W[{z;}]2,) with respect to
D and W: Given some input data, one finds the best parameters that will
predict the labels of the data. The same kind of MAP approximation relates
this discriminative training formulation to the discriminative model of Eq. (@)

All the x;’s are con-

2We are also investigating how to properly estimate D by marginalizing over ¢ instead of
maximizing with respect to that parameter.

INRIA
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(again, details omitted due to space limitations). The mixed approach from Eq.
([@ is a classical trade-off between generative and discriminative (e.g., [10, [H]),
where generative components are often added to discriminative frameworks to
add robustness, e.g., to noise and occlusions (see examples of this for the model

in [I§]).

3.2 A kernel interpretation of the bilinear model

Our bilinear model with g;(x, o, 0) = "W, + b; does not admit a straight-
forward probabilistic interpretation. On the other hand, it can easily be inter-
preted in terms of kernels: Given two signals &1 and @, with coefficients a¢; and
i, using the kernel K (1, x2) = alTagalemg in a logistic regression classifier
amounts to finding a decision function of the same form as (ii). It is a product of
two linear kernels, one on the a’s and one on the input signals . Interestingly,
Raina et al. [I4] learn a dictionary adapted to reconstruction on a training set,
then train an SVM a posteriori on the decomposition coefficients . They derive
and use a Fisher kernel, which can be written as K'(z1,2) = al asr?ry in this
setting, where the r’s are the residuals of the decompositions. Experimentally,
we have observed that the kernel K, where the signals @ replace the residuals
r, generally yields a level of performance similar to K’, and often actually does
better when the number of training samples is small or the data are noisy.

4 Optimization procedure

Classical dictionary learning techniques (e.g., [Il [[3, [T4]), address the problem
of learning a reconstructive dictionary D in R™** well adapted to a training set
T as

i > [lz; — Dey |3 + o, (8)

JeT

which is not jointly convex in (D, ), but convex with respect to each unknown
when the other one is fixed. This is why block coordinate descent on D and
« performs reasonably well [II, [[3], [[4], although not necessarily providing the
global optimum. Training when p = 0 (generative case), i.e., from Eq. (@),
enjoys similar properties and can be addressed with the same optimization pro-
cedure. Equation (f) can be rewritten as:

P
. 2 - .
DHBI;(E 1: EET: si(mj,aj,D,e))+A2||e||2, st Vi=1,....k ||}z <1. (9)
Y =1 5€1;

Block coordinate descent consists therefore of iterating between supervised sparse
coding, where D and 6 are fixed and one optimizes with respect to the a’s and
supervised dictionary update, where the coefficients o;’s are fixed, but D and 6
are updated. Details on how to solve these two problems are given in Section
4.1 and 4.2.

The discriminative version of SDL from Eq. (@) is more problematic. The
minimization of the term C;({S;(ay, z;,D,0)})_;) with respect to D and 6
when the aj;’s are fixed, is not convex in general, and does not necessarily
decrease the first term of Eq. @), i.e., C;({S}(x;,D,0)})_;). To reach a lo-
cal minimum for this difficult problem, we have chosen a continuation method,

RR n° 6652



8 Mairal, Bach, Ponce, Sapiro & Zisserman

Input: p (number of classes); n (signal dimensions); {T;}?_, (training sig-
nals); k (size of the dictionary); Ao, A1, A2 (parameters); 0 < g < g < ... <
m < 1 (increasing sequence);
Output: D € R™** (dictionary); 8 (parameters).
Initialization: Set D to a random Gaussian matrix. Set 0 to zero.
Loop: For p= py, ..., b,

Loop: Repeat until convergence (or a fixed number of iterations),

e Supervised sparse coding: Compute, for alli=1,...,p, all j in T;, and
alll =1,...,p,
af, = argmin S (e, x;, D, 6). (10)
OeRF

e Dictionary update: Solve, under the constraint ||d;|| < 1 for all | =

1 k

ey

p
min (D7 3 nCi({Si(eri, s, D O+ (1-w)Si(exsi, w5, D, 6) ) +2a] 6]

i=1 jEeT;
(11)

Figure 2: SDL: Supervised dictionary learning algorithm.

starting from the generative case and ending with the discriminative one as in
[T2]. The algorithm is presented on Figure B and details on the hyperparame-
ters’ settings are given in Section 5.

4.1 Supervised sparse coding

The supervised sparse coding problem from Eq. () (D and € are fixed in
this step), amounts to minimizing a convex function under an ¢; penalty. The
fized-point continuation method (FPC) from [7] achieves state-of-the-art results
in terms of convergence speed for this class of problems. It has proven in our
experiments to be simple, efficient, and well adapted to our supervised sparse
coding problem. Algorithmic details are given in [7]. For our specific problem,
denoting by f the convex function to minimize, this method only requires V f
and a bound on the spectral norm of its Hessian H . Since the we have chosen
decision functions g; in Eq. () which are linear in «, there exists, for each
signal & to be sparsely represented, a matrix A in R¥*P and a vector b in R?
such that

fla) = Ci(A"a +b) + Xo||lz — Dall3,
Vfi(a)= AVC(ATa+b)—2)D”(x — Da),
and it can be shown that, if ||U||2 denotes the spectral norm of a matrix

U (which is the magnitude of its largest eigenvalue), then |[Hf|lz < (1 —
1—1))||ATA||§+2)\0||DTD||2. In the case where p = 2 (only two classes), we can ob-

tain a tighter bound, ||H(at)||z < e=C1(AT ) =C2(AT )| |y _a, |242),|[DTD||s,
where a; and as are the first and second columns of A.

INRIA
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4.2 Dictionary update

The problem of updating D and 6 in Eq. ([ is not convex in general (except
when p is close to 0), but a local minimum can be obtained using projected
gradient descent (as in the general literature on dictionary learning, this local
minimum has experimentally been found to be good enough for our formulation).
Denoting E(D, 0) the function we want to minimize in Eq. ([[Il), we just need
the partial derivatives of E with respect to D and the parameters 6. Details
when using the linear model for the a’s, g;(z, a, 0) = wl ac+b;, and = {W €
R¥*P b € RP}, are

OF : -
== 4&(222%1( - Daj)ej]),
= - Z ijlaglvcl (Whe aj, +b), (12)

OF P P
o= SO waVa(Wraj, +b),

i=1jeT; I=1

where

Wit = HVC({S (@l ;. D, 0)Y2 )1+ (1 — )L, (13)

Partial derivatives when using our model with the bilinear decision functions
gi(z,a,0) = "W, + b; are not given in this paper because of space limita-
tions.

5 Experimental validation

We compare in this section a reconstructive approach, dubbed REC, which con-
sists of learning a reconstructive dictionary D as in [[4] and then learning the
parameters 6 a posteriori; SDL with generative training (dubbed SDL-G); and
SDL with discriminative learning (dubbed SDL-D). We also compare the per-
formance of the linear (L) and bilinear (BL) decision functions.

Before presenting experimental results, let us briefly discuss the choice of the
five model parameters \g, A1, A2, p and k (size of the dictionary). Tuning all of
them using cross-validation is cumbersome and unnecessary since some simple
choices can be made, some of which can be done sequentially. We define first
the sparsity parameter x = i—;, which dictates how sparse the decompositions
are. When the input data points have unit ¢ norm, choosing x = 0.15 was
empirically found to be a good choice. The number of parameters to learn is
linear in k, the number of elements in the dictionary D. For reconstructive tasks,
k = 256 is a typical value often used in the literature (e.g., [1]). Nevertheless,
for discriminative tasks, increasing the number of parameters is likely to allow
overfitting, and smaller values like k = 64 or k = 32 are preferred. The scalar Ay
is a regularization parameter for preventing the model to overfit the input data.
As in logistic regression or support vector machines, this parameter is crucial
when the number of training samples is small. Performing cross validation with
the fast method REC quickly provides a reasonable value for this parameter,
which can be used afterward for SDL-G or SDL-D.

RR n° 6652



10 Mairal, Bach, Ponce, Sapiro & Zisserman

Once k, k and A\ are chosen, let us see how to find A\g. In logistic regression,
a projection matrix maps input data onto a softmax function, and its shape and
scale are adapted so that it becomes discriminative according to an underlying
probabilistic model. In the model we are proposing, the functions S are also
mapped onto a softmax function, and the parameters D and 6 are adapted
(learned) in such a way that S becomes discriminative. However, for a fixed &,
the second and third terms of S, namely A\o||z — De|[3 and \x||e||1, are not
freely scalable when adapting D and 6, since their magnitudes are bounded.
Ao plays the important role of controlling the trade-off between reconstruction
and discrimination in Eq. @). First, we perform cross-validation for a few
iterations with u = 0 to find a good value for SDL-G. Then, a scale factor
making the S;’s discriminative for ;1 > 0 can be chosen during the optimization
process: Given a set of S}’s, one can compute a scale factor v such that v =
argmin, 7, > jer, Ci({7S; (zj, D, W)}). We therefore propose the following
strategy, which has proven to be efficient during our experiments: Starting from
small values for \g and a fixed x, we apply the algorithm in Figure B, and after
a supervised sparse coding step, we compute the best scale factor v, and replace
Ao and A1 by yA\g and yA;. Typically, applying this procedure during the first
10 iterations has proven to lead to reasonable values for this parameter.

Since we are following a continuation path starting from g = 0 to p = 1,
the optimal value of p is found along the path by measuring the classification
performance of the model on a validation set during the optimization.

5.1 Digits recognition

In this section, we present experiments on the popular MNIST [I1] and USPS
handwritten digit datasets. MNIST is composed of 70000 images of 28 x 28
pixels, 60000 for training, 10000 for testing, each of them containing a hand-
written digit. USPS is composed of 7291 training images and 2007 test images.
As it is often done in classification, we have chosen to learn pairwise binary
classifiers, one for each pair of digits. Although we have presented a multi-
class framework, pairwise binary classifiers have proven to offer a slightly better
performance in practice. Five-fold cross validation has been performed to find
the best pair (k, ). The tested values for k are {24,32,48,64,96}, and for x,
{0.13,0.14,0.15,0.16,0.17}. Then, we have kept the three best pairs of param-
eters and used them to train three sets of pairwise classifiers. For a given patch
x, the test procedure consists of selecting the class which receives the most votes
from the pairwise classifiers. All the other parameters are obtained using the
procedure explained above. Classification results are presented on Table [l when
using the linear model. We see that for the linear model L, SDL-D L performs
the best. REC BL offers a larger feature space and performs better than REC
L. Nevertheless, we have observed no gain by using SDL-G BL or SDL-D BL
instead of REC BL. Since the linear model is already performing very well, one
side effect of using BL instead of L is to increase the number of free parame-
ters and thus to cause overfitting. Note that the best error rates published on
these datasets (without any modification of the training set) are 0.60% [16] for
MNIST and 2.4% [6] for USPS, using methods tailored to these tasks, whereas
ours is generic and has not been tuned to the handwritten digit classification
domain.

INRIA



Supervised Dictionary Learning 11

REC L SDL-G L SDL-D L REC BL k-NN, £ SVM-Gauss
MNIST 4.33 3.56 1.05 3.41 5.0 1.4
USPS 6.83 6.67 3.54 4.38 5.2 4.2

Table 1: Error rates on MNIST and USPS datasets in percents from the REC,
SDL-G L and SDL-D L approaches, compared with k-nearest neighbor and SVM
with a Gaussian kernel [I1].

The purpose of our second experiment is not to measure the raw performance
of our algorithm, but to answer the question “are the obtained dictionaries D
discriminative per se or is the pair (D,0) discriminative?”. To do so, we have
trained on the USPS dataset 10 binary classifiers, one per digit in a one vs all
fashion on the training set. For a given value of u, we obtain 10 dictionaries D
and 10 sets of parameters 6, learned by the SDL-D L model.

To evaluate the discriminative power of the dictionaries D, we discard the
learned parameters 6 and use the dictionaries as if they had been learned in
a reconstructive REC model: For each dictionary, we decompose each image
from the training set by solving the simple sparse reconstruction problem from
Eq. (@) instead of using supervised sparse coding. This provides us with some
coefficients a, which we use as features in a linear SVM. Repeating the sparse
decomposition procedure on the test set permits us to evaluate the performance
of these learned linear SVM. We plot the average error rate of these classifiers
on Figure Bl for each value of . We see that using the dictionaries obtained
with discrimative learning (4 > 0, SDL-D L) dramatically improves the perfor-
mance of the basic linear classifier learned a posteriori on the a’s, showing that
our learned dictionaries are discriminative per se. Figure l] shows a dictionary
adapted to the reconstruction of the MNIST dataset and a discriminative one,
adapted to “9 vs all”.

2.5

2.0

1.5

1.0

0.5

0

0 0. 0.4 0.6 . 1.0
Figure 3: Average error rate in percents obtaineg 8by our dictionaries learned

in a discriminative framework (SDL-D L) for various values of p, when used in
used at test time in a reconstructive framework (REC-L). See text for details.

5.2 Texture classification

In the digit recognition task, our BL bilinear framework did not perform better
than L and we believe that one of the main reasons is due to the simplicity of the

RR n° 6652



12 Mairal, Bach, Ponce, Sapiro & Zisserman

(a) REC, MNIST (b) SDL-D, MNIST

Figure 4: On the left, a reconstructive dictionary, on the right a discriminative
one for the task “9 vs all”.

M RECL | SDL-GL | SDL-D L REC BL | SDL-G BL | SDL-D BL | Gain
300 48.84 47.34 44.84 26.34 26.34 26.34 0%
1500 46.8 46.3 42 22.7 22.3 22.3 2%
3000 45.17 45.1 40.6 21.99 21.22 21.22 4%
6000 45.71 43.68 39.77 19.77 18.75 18.61 6%
15000 47.54 46.15 38.99 18.2 17.26 15.48 15%
30000 47.28 45.1 38.3 18.99 16.84 14.26 25%

Table 2: Error rates for the texture classification task using various frameworks
and sizes M of training set. The last column indicates the gain between the
error rate of REC BL and SDL-D BL.

task, where a linear model is rich enough. The purpose of our next experiment
is to answer the question “When is BL worth using?”. We have chosen to
consider two texture images from the Brodatz dataset, presented in Figure B
and to build two classes, composed of 12 x 12 patches taken from these two
textures. We have compared the classification performance of all our methods,
including BL, for a dictionary of size k = 64 and x = 0.15. The training set
was composed of patches from the left half of each texture and the test sets
of patches from the right half, so that there is no overlap between them in the
training and test set. Error rates are reported for varying sizes of the training
set. This experiment shows that in some cases, the linear model completely
fails and BL is necessary. Discrimination helps especially when the size of the
training set is particularly valuable for large training sets. Note that we did
not perform any cross-validation to optimize the parameters k and x for this
experiment. Dictionaries obtained with REC and SDL-D BL are presented in
Figure @l Note that though they are visually quite similar, they lead to very
different performance.

INRIA
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(c) REC (d) SDL-D BL

Figure 5: Top: Test textures. Bottom left: reconstructive dictionary. Bottom
right: discriminative dictionary.
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6 Conclusion

We have introduced in this paper a discriminative approach to supervised dictio-
nary learning that effectively exploits the corresponding sparse signal decompo-
sitions in image classification tasks, and affords an effective method for learning
a shared dictionary and multiple (linear or bilinear) decision functions. Future
work will be devoted to adapting the proposed framework to shift-invariant
models that are standard in image processing tasks, but not readily generalized
to the sparse dictionary learning setting. We are also investigating extensions to
unsupervised and semi-supervised learning and applications into natural image
classification.
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