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Abstract: This paper presents a stochastic approach for domain-independent
planning decomposition termed Divide-and-Evolve. The basic idea is to search
the space of state decompositions of the planning problem at hand by means
of Artificial Evolution: candidate solutions are sequences of intermediate goals
which define consecutive planning subproblems that are hopefully easier than
the global problem. We focus on simple temporal problems and our reference
planner for solving the subproblems is CPT. The constraint-based representa-
tion of CPT facilitates the implementation of an efficient routine to compress the
subplans in a global solution plan. We describe the individual representation,
the variation operators as well as the fitness and report on parameter tuning.
We have experimented our approach on several IPC benchmarks and compare
first to CPT and then to the best results found by state-of-the-art planners.
Results validate the concept and show quality improvement.
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Planification Evolutionnaire par Décomposition

Résumé : Ce rapport présente l’approche Divide-and-Evolve pour la résolution
générique des problèmes de planification temporelle par décomposition. L’idée
principale de l’approche est la recherche des solutions dans l’espace des décompositions
en états intermédiaires à l’aide d’un algorithme évolutionnaire: les solutions
candidates sont des séquences d’états intermédiaires qui définissent successivement
les plans partiels du problème initial. Nous nous sommes intéressés à la résolution
des problèmes de type ”simple temporal planning problems”. La résolution des
séquences d’états intermédiaires et la détermination d’une solution globale se
font à l’aide du planificateur CPT. Ce rapport formalise l’approche, définit
l’algorithme Divide-and-Evolve et compare les résultats obtenus à ceux trouvés
par les meilleurs planificateurs existants à notre connaissance.

Mots-clés : programmation génétique, algorithme évolutionnaire, planification
évolutionnaire, planification temporelle, Divide-and-Evolve, décomposition des
problèmes de planification
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4 D&E: Evolutionary Planning Decomposition

1 Introduction

Applying a Divide-and-Conquer strategy for solving planning problems has been
investigated in various deterministic approaches. They usually exploit proper-
ties of the domain or problem structure in order to identify independent sub-
problems. In [12] for instance, the division is based on ordered landmarks [8]
whereas in SGPlan [4], subgoal partitioning is based on mutual-exclusion con-
straints which show strong locality in most of IPC benchmarks. The objective
of these methods is to reduce time complexity, though sometimes at the cost of
a lower quality solution plan.

As stated in [12], any planning decomposition method requires (a) a decom-
position principle, (b) an algorithm to solve the subproblems individually and
(c) a procedure to recombine the subplans into a global solution plan.

This paper presents a stochastic approach for Planning Decomposition (i.e.
addressing the (a) issue above) termed Divide-and-Evolve (D&E), deepening
previous work from the same authors in an evolutionary context (not cited at
the moment for anonymity reasons). The basic idea is to search the space of
state decompositions of the planning problem at hand by means of Artificial
Evolution: candidate solutions are sequences of intermediate goals which de-
fine consecutive planning subproblems that are hopefully easier than the global
problem. The (b) issue, solving the individual subproblems, is addressed by han-
dling the subproblems over to a standard planner. Though any planner could a
priori be used, the choice of CPT [14] was motivated not only by its efficiency
as an optimal temporal planner, but also because of its internal representation,
that help solving the (c) issue, subplan recombination.

Indeed, when the nested planner succeeds in solving all subproblems, the
concatenation of subplans is already a solution to the global problem. However,
this solution is likely to be suboptimal since concurrency among actions might
be lost. A compression step of such a naive concatenation is hence needed. Un-
fortunately, compressing a set of subplans into a global plan can be a difficult
problem per se with respect to the expected level of compression. For example,
finding the optimal global plan containing exactly all the actions of the subprob-
lems without taking into account any other information from the subplans is
NP-complete. However, as the sum of subplan makespans gives an upper bound
for the global makespan, it is not PSPACE-complete, like propositional STRIPS
planning [3]. Taking into account more constraints from the subplans degrades
the quality of the global plan, but thanks to the constraint-based representation
of CPT and its Partial Order Causal Link (POCL) planning strategy [11], an ef-
ficient compression routine that exploits causal links and precedence constraints
can be implemented.

The D&E approach can be seen as an attempt to stochastically generate
ordered sets of landmarks. However, the method is not limited to finding sets of
facts that must absolutely be true within every solution to the initial problem.
In particular, it also applies to problems that have no landmark per se, for
simple symmetry reasons: there can be several equivalent candidate landmarks,
and only one of them can and must be true at some point.

The first validation of the Divide-and-Evolve approach is to compare it to
CPT alone: the goal of Planning Decomposition is to reduce the complexity
of the problem. Further evidence of efficiency will be brought by experimental
comparisons with some of the best-performing planners on IPC benchmarks.

INRIA



D&E : Evolutionary Planning Decomposition 5

However, several issues have to be taken into account when comparing Divide-
and-Evolve with other planners: the most spectacular results are those where
Divide-and-Evolve improves over the best known results for a given problem
instance. But other measures of performance need to be considered, and depend
on the target application: in a design context, where one planning problem has
to be solved the best possible way, and multiple instances of the algorithm
can be run, it is important to obtain the best possible makespan, even very
rarely. On the other hand, in a production context, where different planning
problems have to be solved rapidly and repeatedly, it is important to be able
to produce good solutions reliably. Hence both the quality of the best plan
obtained over multiple trials and the robustness of the algorithm (proportion
of runs that obtain this best solution) will be considered when evaluating the
Divide-and-Evolve approach.

2 Decomposition as an Optimization Problem

Our goal is to solve temporal planning problems given in PDDL form, focusing
on simple grounded temporal problems, i.e. that extend basic STRIPS formu-
lation by attaching a duration to each action. A temporal planning problem is
a tuple P = 〈A,O, I,G〉, where A is a set of atoms representing all the possible
facts in a world situation, O is a set of actions, and I and G are two sets of
atoms that respectively denote the initial state and the problem goal. An action
is a tuple a = 〈pre(a), add(a), del(a), dur(a)〉 where pre(a), add(a) and del(a)
are sets of ground atoms that respectively denote the preconditions, add effects
and del effects of a, and dur(a) denotes the duration of a, a rational number.

2.1 Rationale

The aim of Planning Decomposition is to transform a given planning problem
into a sequence of hopefully easier subproblems. Indeed, temporal planning
introduces concurrency among actions, involving in turn resource sharing is-
sues. Among the multiple alternative plan trajectories, combinatorial explo-
sion in temporal planning results for instance from task ordering permutations,
that produce equivalent quality plans but are nevertheless searched for by most
planners. The Ferry benchmark is a canonical example that illustrates this phe-
nomenon: there is only one resource, and any task ordering is optimal. It is
obvious here that almost any decomposition will lead to simpler subproblems,
until the point where no multiple choice exist at all. At the opposite, when
multiple resources can be used concurrently (or multiple actions can be driven
concurrently), a strong decomposition might miss potential parallelism, that
then need to be recovered by the compression stage.

2.2 The search space

A general decomposition is simply a sequence of intermediate partial states
(si)i∈[0,n+1], where s0 is the initial state, and sn+1 is the goal of the problem
at hand, and, such that, for each i ∈ [0, n], the planning problem whose initial
state is si and final state is si+1 can easily be solved by some standard planner.

RT n° 0355



6 D&E: Evolutionary Planning Decomposition

Several issues need to be addressed, before deciding on the exact represen-
tation of such decomposition. First, what atoms should be selected to describe
the intermediate states? Indeed, whereas the initial state is necessarily complete
(i.e. it fully describes a world state), the goal is generally only given as a partial
description. Hence it seems reasonable to restrict intermediate states to partial
description as well, for the sake of complexity. This however raises the question
of which atoms to choose.

Another crucial issue is that of the consistency of a given set of atoms: when
exploring the space of possible intermediate states, it would be inefficient to
try some states that are obviously inconsistent (e.g. two atoms involve the
same object, and put it in different locations, in a typical logistic problem).
However, a complete consistency check would involve solving the corresponding
subproblem, so a trade-off has to be made.

Last, but not least, the only useful decompositions are those for which all
resulting subproblems are simpler to solve than the initial problem, for the plan-
ner at hand. Unfortunately, the only way to ensure that would be to actually
run the planner, as no sensible distance metric exists such that the distance
between the initial state and the goal would give an indication about the prob-
lem difficulty. The workaround used for Divide-and-Evolve is to use a purely
syntactic distance, even though it is clearly inappropriate. But the lack of a
good estimate of the difficulty of a subproblem raises another issue: it can be
the case that some subproblems from a given decomposition are as hard as the
initial problem itself. The embedded planner will take an enormous amount of
time to solve such subproblems, if it ever returns a result. It is mandatory to
avoid such endless runs of the local planner, that would undermine the whole
Divide-and-Evolve idea.

2.3 The objective function

An essential step for all optimization problems is the design of the objective
function. But two very different situations should be distinguished here. First,
when the embedded planner is able to find a solution to all subproblems, the
combination of all subplans (or its compression into a shorter plan) is a solution
of the original planning problem: its total makespan is the clear objective to be
minimized.

However, when the embedded planner fails to solve one of the subproblems,
such objective function makes no sense any more, and simply discarding such
decompositions might result in a deadlock for the most complex problems where
even finding a suboptimal plan is difficult. In such cases, the objective function
should somehow favor those decompositions that reached an intermediate state
that is ”the closest” possible from the goal, for some metric relative to the
difficulty for the embedded planner to solve the corresponding planning problem.
As already discussed, no such distance exists, and the syntactic distance was
used. Note also that both the distance to the goal (to be minimized), or the
distance from the initial state (to be maximized) can thus be estimated.

INRIA
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3 CPT and subplan compression

CPT is a constraint-based optimal temporal planner and belongs to the POCL
family [14]. It is available from the author’s web site. This Section discusses
the reasons for choosing CPT as the planner embedded inside D&E.

3.1 An optimal planner

The first motivation for choosing CPT is that it is an optimal planner, and
a rather efficient one according to the results from the last IPCs. Although
optimality is not mandatory, as Divide-and-Evolve anyway is bound to compute
suboptimal plans, having the best possible plans joining two intermediate states
is clearly an advantage. Indeed, if global solutions of good quality could not be
obtained with an optimal planner, they would have probably been even harder
to get with a suboptimal planner.

Furthermore, when CPT is used by Divide-and-Evolve to find subplans for
each intermediate subproblem, it can provide several useful information for
Divide-and-Evolve: the partial plan in the form described below, the makespan
and number of backtracks that have been used for computing the fitness, and
the complete state resulting from the application of the subplan to the initial
state of the subproblem. Indeed, intermediate states that define a decompo-
sition are likely to be incomplete states, as discussed in Section Search Space
above. Hence they have to be completed in order to be valid initial states for
the next subproblem.

Moreover, CPT also allows the user to specify a maximum number of back-
tracks to be used to solve a given problem. This gives a lever to a priori bound
the difficulty of all subproblems CPT will be asked to solve, as discussed in
Section Search Space above. Experimental results will demonstrate that the
results of the Divide-and-Evolve approach are very sensitive to this parameter,
that will be further discuss in the Discussion Section.

Another reason for using CPT is that it provides an easy access to some
helpful data used by the EA for building individuals: possible atoms that can
be used to select candidates for decomposition, and mutual exclusion relations
between conflicting actions (mutex) in order to build mutex-free intermediate
subproblems. The mutex computed by CPT are as powerful as Graphplan’s
mutexes, although computed in a different way. They nevertheless allow to check
pairwise exclusions, avoiding many inconsistent intermediate states during the
initialization and variation steps.

3.2 Subplan compression

But the main reason motivating the choice of CPT is probably its internal rep-
resentation of partial plans, which allowed the design of an efficient compression
routine based on causal links and precedence constraints. As usual in POCL
planning, a partial plan is represented in CPT by a tuple 〈Steps,Ord,CL,Open〉
where Steps is the set of actions in the partial plan, Ord is a set of precedence
constraints on Steps of the form a1 ≺ a2, CL is a set of causal links of the
form a1[p]a2 where a1, a2 ∈ Steps and p ∈ add(a1) ∩ pre(a2), and Open is a
set of open conditions (preconditions or goals not supported yet by a causal
link of CL). Steps also contains two dummy actions Start and End with zero

RT n° 0355



8 D&E: Evolutionary Planning Decomposition

durations, the first with an empty precondition and effect the initial state of
the problem; the latter with precondition the goal of the problem and empty
effects. These actions are used to initialize the first partial plan given to the
planner, that will be refined up to a solution. A solution plan is a partial plan
with no open condition and no flaws, which can be either causal links threat-
ened by actions in the plan that must be protected by precedence relations, or
unordered effect-conflicting actions.

Let P = 〈A,O, I,G〉 be a temporal planning problem and (si)i∈[0,n+1] be a
decomposition of P , given by the EA, that admits a solution. We have then s0 =
I, sn+1 = G and the dummy actions Start and End such that add(Start) = I
and pre(End) = G. To each partial state si with i ∈ [1, n + 1], is associated a
partial plan (computed by CPT) σi = 〈Stepsi, Ordi, CLi, Openi〉 with dummy
actions Starti and Endi such that add(Starti) is the complete state obtained
by the successive application of the subplans σ1, . . . , σi−1 starting from I, and
pre(Endi) = si. As the decomposition admits a solution, all these partial plans
are solution plans of their respective subproblems and are such that Openi = ∅.
The compression routine simply consists in feeding CPT with an initial partial
plan σ = 〈Steps,Ord,CL,Open〉 such that:

• Steps =
⋃

i∈[1,n+1](Stepsi \ {Starti, Endi}) ∪ {Start, End};

• Ord =
⋃

i∈[1,n+1]{a1 ≺ a2 ∈ Ordi | a1 6= Starti ∧ a2 6= Endi};

• CL =
⋃

i∈[1,n+1]{a1[p]a2 ∈ CLi | a1 6= Starti ∧ a2 6= Endi};

• Open =
⋃

i∈[1,n+1]{p | Starti[p]a ∈ CLi} ∪G.

The problem solved by CPT is then P ′ = 〈{f ∈ A | ∃a ∈ Steps, f ∈
pre(a) ∪ add(a) ∪ del(a)}, Steps, I,G〉, starting from the initial partial plan σ.
Furthermore, CPT is run in its ’canonical’ mode1, making the compression
problem close to a scheduling problem: all the actions of Steps already belong
to the partial plan, no new action can be used, so only a valid schedule respecting
at least the constraints of Ord and CL has to be found. Optimally solving this
problem is NP-complete, as in the worst case, all subplans only contain one
action: no precedence relation or causal link can then be used. In that case, all
possible schedules between actions have then to be considered. However, this
problem is not PSPACE-complete as the makespan of the global compressed
plan is polynomially bounded by the sum of the subplan makespans, as their
simple concatenation following the sequence of the individual computed by the
EA is a (suboptimal) solution of P ′.

In summary, the compression step considers all possible information of the
solution subplans unrelated to intermediate initial and final states, and lets
CPT look for the best possible way to connect these partial plans to each other
and to the initial and goal states of the problem at hand. With respect to the
information of the solution plans which is kept (actions, precedences, causal
links), CPT finds the optimal compressed global plan. To obtain even better
solutions, it is also possible to avoid considering some of these constraints, e.g.
precedences, or causal links, or both. However, the choice to keep all this
information was experimentally demonstrated to actually yield the best trade-
off between speed and quality.

1The first version of CPT was solving the so-called canonical planning problem: each action
in the problem can only be entered once into a partial plan.

INRIA
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4 Divide-and-Evolve

4.1 Choosing an Optimization Algorithm

As advocated in [12], the first ingredient for Planning Decomposition is a de-
composition principle. Previous works have tackled this issue by relying on First
Principles. On the opposite, Divide-and-Evolve uses an optimization algorithm
without any knowledge of what a planning problem is to search the space of
possible decompositions and optimize an objective function, as described in the
previous Section. From those descriptions, however, the possible optimization
algorithms are very few, as they must be able to search the unstructured space of
variable length lists of (possibly incomplete) problem states, on which no metric
is available, in order to optimize an objective function that is conditionally de-
fined on different subsets of this search space. Evolutionary Algorithms (EAs)
are general purpose optimization algorithms that have been demonstrated to be
flexible and robust enough to handle such challenging optimization problems.
In particular, several EA successes have been obtained in similar contexts of
unstructured spaces, e.g. parse trees in the case of Genetic Programming for
Analog Circuit Design [10].

4.2 Evolutionary Algorithms

Evolutionary Algorithms [5] are metaheuristic search methods based on a metaphor
of the Darwinian evolution of biological populations, where candidate solutions
of the optimization problem at hand are viewed as individuals. The emergence
of adapted individuals (i.e. good solutions) results from the synergy between
two phenomena: natural selection (the fittest individuals, with respect to the
environment, survive and reproduce) and blind variation (the genetic material
is randomly modified when passed on from the parents to their offspring during
reproduction). The selection stage biases the choices of the algorithm towards
candidate solutions with good values of the objective function (also termed fit-
ness), whereas blind variation operators foster exploration of the search space
by creating new individuals at random.

Among variation operators, one generally distinguishes crossover, where sev-
eral individuals are recombined to give one offspring, and mutation, where a
single individual is randomly modified to generate an offspring.

Because selection procedures are problem independent, implementing an evo-
lutionary algorithm for a new problem only requires to define the search space
(or, equivalently, the representation of candidate solutions), the fitness function,
the variation operators and a generation procedure for the initial population.

However, after designing the above-mentioned components of an EA for a
given problem, many parameters remain to be tuned in order to get the best
out of the algorithm (e.g. population size, selection pressure, variation operator
probabilities, . . . ). As it is the case for all search procedures, tuning an EA
requires to solve the intensification-diversification dilemma (termed in the EA
community exploitation-exploration): at any given stage of the algorithm, one
should decide either to look around the best solutions obtained so far, hoping
that some even better solutions lie there, or to look into yet unexplored re-
gions of the search space where much better solutions might exist. Increasing
the selection pressure, for instance, favors exploitation (intensification) while

RT n° 0355



10 D&E: Evolutionary Planning Decomposition

increasing the probability (or the ”strength”) of mutation increases the explo-
ration (diversification). Unfortunately, the theory of EAs provides today no
guidance for parameter tuning. Moreover, because EAs are stochastic algo-
rithms, their performance can only be validated statistically, from the results
of multiple runs. Statistical approaches are used both to tune the algorithm
parameters (derived from standard Design Of Experiments procedures) and to
assess the results when comparing different settings (using standard statistical
tests).

To the best of our knowledge, there have been very few attempts in the past
to apply Evolutionary Algorithms to planning problems, and most works use a
direct encoding of partial plans, such as [2].

4.3 Representation

As described in previous Section, individuals are represented as variable length
lists of states. Since the Divide-and-Evolve strategy was originally designed as
a metaphor for some railway trajectory planning problem, intermediate states
are called stations. Note that states s0 and sn+1, being respectively the initial
state and the goal of the problem at hand, will not be modified by evolution,
and hence are encoded in the individuals.

In the present work, stations only contain atoms built on predicates of arity
1 or 2. Mutual exclusion can easily be checked with the help of CPT data
structure, that is grounded at the beginning of each run, and can be asked for
any pair of atoms. Atom selection for station generation, at the initialization
stage or within variation operators, is predicate oriented. A first simple choice
is to use goal predicates, as successfully demonstrated in preliminary previous
work [not cited]. However there is no reason to restrict station generation to
goal predicates. Consider for instance the zeno 13 IPC-3 benchmark in which
only the AT predicate appears in the goal description. Experimental results have
shown that an optimal solution can be obtained using either one, or two, or all
predicates to represent the stations. The two following optimal decompositions
illustrate this fact: they were obtained using different predicates, and resulted
in very different plans, though both optimal. The subsequent Table shows the
corresponding behaviors of D&E (number of backtracks (Btk.) and makespan
(Mksp.) obtained by CPT on subproblems, and makespan after compression).

4.3.1 Using predicate IN

s1 = {(IN person2 plane2)}

s2 = {(IN person8 plane3),(IN person4 plane1)}

4.3.2 Using predicate AT

s1 = {(AT plane1 city5),(AT person5 city2),(AT person4 city5)}

INRIA



D&E : Evolutionary Planning Decomposition 11

IN AT

Subproblem Btk. Mksp. Btk. Mksp.

Init → s1 0 120 0 250

s1 → s2 0 120 10 380

s2 → Goal 10 496∑
10 736 10 630

Compression 0 596 0 596

As of today, the choice of what predicates should be selected for intermediate
state generation remains an open question, and will be investigated in further
research. The size of the search space is of course related to the number of
predicates, and discarding some predicates might forbid trajectories to optimal
solutions. The usual trade-off has to be found between the size of the search
space and the expressivity of the representation.

4.4 Fitness

As discussed in Section Objective Function, the computation of the fitness starts
by running CPT on all subproblems sequentially, stopping when CPT fails to
solve one. If all subproblems have been solved, CPT is used again for the
compression of all subplans, as described in Section CPT.

The fitness (to be minimized) is finally computed using one of two different
formulas, depending on whether a failure has occurred or not:

Fitness =

 m+ n−u+1
m all subproblems solved

(n− u+ 1) failure on one subproblem
(1)

where m is the total makespan of the compressed plan, n the number of stations
of the individual, u is the number of useful stations in the individual. A station
is considered useful if the plan to reach it from previous station has a not null
makespan. The idea behind the (n−u+ 1) term in case of failure is to promote
those individuals that contain the largest number of useful stations.

Note that these formulas are used to compare two feasible individuals (first
formula) or two unfeasible individuals (second formula). However, a feasible
individual is always preferred to an unfeasible one.

4.5 Variation operators

The variation operators modify the individuals in order to explore the search
space, i.e. the space of lists of intermediate states. However, it is highly desirable
that all variation operators build as few inconsistent states as possible, and using
CPT mutex information was an easy first step in that direction. Moreover,
these operators should ensure the ergodicity of the resulting stochastic process:
any point of the search space must be reachable from any other point using a
finite number of variation operators with non-zero probability. Two types of
variation operators are recognized: mutations generate offspring from a single
parent, while crossovers use two or more parents. They will be described in
turn.

RT n° 0355



12 D&E: Evolutionary Planning Decomposition

4.5.1 Crossover operator

The crossover operator used in this work only considers the station level, i.e.
only exchange stations. The basic 1-point crossover is used here: Assuming
the recombination of two individuals (si)1≤n and (ti)1≤m, the 1-point crossover
amounts to uniformly choosing one station in each parent, say sa and tb, and
exchanging the second parts of both lists of stations. This leads to the two
offspring (s1, ..., sa, tb+1, ..., tm) and (t1, ..., tb, sa+1, ..., sn). Of course, the length
of the offspring is likely to differ from those of the parents.

4.5.2 Mutations

A mutation operator can act here at two levels: at the individual level, consid-
ering each stations as one gene; or at the station level, modifying some atoms in
a given station. Because an individual is a variable length list of stations, and
a station is a variable length list of atoms, some mutation operators will simply
add or remove a station, or an atom in a station. More precisely, several muta-
tion operators have been designed, to address the issues raised above. They will
now be described in turn, assuming parent (s1, . . . , slast, . . . , sn), where slast is
the last station that CPT reached when computing the fitness of this individual
(with last = n+ 1 if all subproblems have been solved by CPT).

The addStation mutation uniformly chooses i ≤ min(n, last). A new sta-
tion Snew is built, containing all common atoms of si and si+1, some random
atoms belonging to either si or si+1, and random atoms created from scratch.
Every time an atom is chosen, it is added to snew only if it is not mutex with
the existing atoms. Station snew is then inserted between stations si and si+1.
The idea of this procedure is to insert a station that is close to actually being
”between” two existing stations of the parent, at least syntactically speaking.

The delStation mutation removes station si from the parent, where i is
uniformly chosen in [1,min(n, last+ 1)].

The changeAtom mutation modifies one atom in a station si where i is
uniformly chosen in [1,min(n, last + 1)]. The modification is done by first
randomly choosing one atom of station si, and looking for possible atoms using
the same predicate (and, in case of predicates of arity 2, the same first argument)
that is pairwise consistent with other atoms of station si (i.e. not mutex).

Finally, the delAtom mutation randomly removes one atom from station
si, where i is uniformly chosen in [1,min(n, last+ 1)].

4.5.3 Applying variation operators

Several parameters control the application of the variation operators. During an
evolutionary run, two parents are chosen according to the selection procedure at
hand. With probability pcross, they are recombined using the crossover operator.
Each one then undergoes mutation with probability pmut. When an individual
must undergo mutation, 4 additional user-defined relative weights (waddStation,
wdelStation, wchangeAtom, wdelAtom) are used to choose among the 4 mutation
operators defined above: each operator has a probability proportional to its
weight of being applied. At most one mutation operator is thus applied to each
individual.

INRIA
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4.6 Initialization of the population

Two approaches have been tried. The blind initialization, as its name in-
dicates, simply generates atoms from the chosen predicates. The number of
stations is first uniformly chosen within some user-defined bounds. The number
of atoms to be constructed is then uniformly chosen within some user-defined
bounds. Atoms are then sequentially added until the chosen number of atoms;
atoms that are mutex with one of the already existing atoms are rejected.

The goal-directed initialization also starts by choosing randomly the
number of stations within some user-defined bounds. But it only considers those
atoms that are present in the goal of the problem at hand. This procedure can
be seen as randomly spreading the atoms from the goal over the chosen number
of stations.

5 Experimental results

This Section presents experimental results illustrating the efficiency of D&E on
several simple-time domains that were used for the 3rd and 4th IPC.

D&E was implemented within the Evolving Objects library (http://eodev.sourceforge.net),
a template-based, ANSI-C++ compliant Evolutionary Computation Open Source
library. Experiments were done using a Intel Xeon CPU 3.60 GHz computer
with 4 Gb of RAM, running Linux.

5.1 The domains

Results on only three domains are presented here, all three from IPC bench-
marks: zeno and rover from IPC-3, and satellite from IPC-4. Only instances
large enough to be of some interest are reported. On some other benchmarks,
the results of D&E are very similar in quality to those obtained on one of the
three presented cases, but will not be presented here for space reasons: on
blocks (similar to zeno), on drivers and depots (similar to satellite).

Due to some limitations of CPT 3.0 with respect to temporal semantics, some
benchmark domains (such as depots, drivers, and satellite from IPC-3) are
not presented here, as CPT alone obtains worse results than LPG-TD. No doubt
that further versions of CPT will address this issue, and Divide-and-Evolve will
automatically benefit from those improvements.

However, on the pipesworld benchmarks, the current Divide-and-Evolve
approach failed to give any interesting result: this still needs to be investigated
in depth. And finally, the recent benchmarks from IPC-5 were not yet tested,
by lack of time.

5.2 The Reference Planners

The results of D&E have been compared to two well-known temporal planners.
SGPlan 5 is based on subgoal partitioning, and seemed a good competitor

for D&E. However, the source code was not made available by the authors, and
the only available results are those from the cited paper. They are hence now
rather old, and should probably be updated to reflect the state-of-the-art of
SGPlan: they were constantly outperformed by both D&E and LPG-TD and
will not be reported here.

RT n° 0355



14 D&E: Evolutionary Planning Decomposition

LPG-TD is based on a stochastic local search in the space of temporal action
graphs [6]. It was downloaded from the authors’web site, and all reported results
have been run locally, using local search, no best-first search, and a maximum
number of desired solutions of 100. Those runs were done on the same computers
than D&E, allowing a one month time limit.

5.3 Divide-and-Evolve settings

Only the predicates that are present in the goal of the problem at hand were
used to represent stations.

A difficult (and often underestimated) part of evolutionary successes is the
setting of the numerous parameters of the algorithm. Indeed, there exists no
theoretical guidelines even to tune the standard probabilities of crossover and
mutation (pcross and pmut). Users generally rely on their previous experiences in
Evolutionary Computation, or use standard statistical methods, e.g. Design Of
Experiments (DOE) and ANalysis Of VAriance (ANOVA). In any case, setting
the parameters of an EA applied to a brand new domain such as Evolutionary
Planning Decomposition is a tedious task.

Because there are too many parameters to tune here, some of them were
set once and forall after the preliminary experiments reported in the authors’
previous work [not cited]. The evolution engine has been chosen to be a (10+70)-
ES: 10 parents generate 70 offspring (no selection at this point), and the best
of those 80 individuals become the parents of the next generation.

Also, the number of stations in an individual during initialization is uni-
formly chosen between 1 and the number of atoms in the goal of the problem;
the number of atoms per station is chosen in [1, 4]; and the initialization is goal-
directed. Last but not least, the number of backtracks that CPT is allowed to
use for solving each subproblem is arbitrarily set to 4000 after intensive tests
on the small zeno instances (≤ 13).

The remaining parameters regard the variation operators: the probabili-
ties of individual-level application of crossover and mutation (pcross and pmut)
and the relative weights of the 4 mutation operators (waddStation, wdelStation,
wchangeAtom, wdelAtom). A two-stage DOE was used: first, the relative weights
were set to (4, 1, 4, 1) (from preliminary experiments), and an incomplete facto-
rial DOE was done on the parameters (pcross, pmut) using zeno 10-12 problems
with 11 runs per parameter set. The differences in mean were then validated
using both Kolmogorov and Wilcoxon non-parametric tests at 95% confidence
level. Three pairs for pcross and pmut were found significantly better than the
others, and another DOE on the 4 weights and those pairs yielded the final set-
ting: (0.25,0.75) for (pcross, pmut), and (35, 3, 35, 7) for the relative mutation
weights.

5.4 Results

Table 1 displays a summary of the results on the three cited domains for CPT
alone, D&E and LPG.
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5.4.1 Validating the Divide-and-Evolve approach

The first clear conclusion that can be drawn from those tables is that indeed,
D&E is able to solve large instances that CPT cannot solve, even when given
one month CPU time. This is true for all large instances of all 3 domains, even
if sometimes with very small success rate. For some instances, ”≤ value” for
CPT indicates that, given this bound, CPT was able to find a solution, but it
was not able to prove its optimality. Such bounds were obtained either from
LPG-TD or from D&E.

Note that on some zeno small instances, that CPT alone can solve, D&E
solutions were decompositions using all atoms of the goal in 1 or 2 stations,
such solutions being found in initial population, thanks to the goal-based ini-
tialization. However, the Divide-and-Evolve approach is clearly doing what it
was designed for: finding decompositions into simpler subproblems – simpler
here at least for CPT.

5.4.2 D&E versus LPG

Two different situations can be seen on the Table: on zeno domain, LPG clearly
outperforms D&E on large instances, in term of solution quality – though some-
times at a very high computational cost (e.g. 11 and 13 days vs. approximately
2 days on instances 16 and 19).

The situation is very different on satellite domain, where D&E clearly
outperforms LPG in term of solution quality for all large instances (except
satellite 24). Comparing the computational costs of D&E and LPG, a clear
pattern appears if also looking at the performance of CPT alone: for small
instances (≤ 19), that CPT alone can solve, D&E requires very little time, even
though it cannot find the obvious solutions (spreading the atoms of the goal
across a few stations) due to the limitation in the number of backtracks. But
on larger instances (≥ 20), LPG stops after minutes while D&E requires days,
but finds better solutions.

The situation is somewhat intermediate on the rover domain, where both
algorithms find exactly the same best solution for almost all instances (D&E is
slightly better for instance 6 and slightly worse for the two largest instances), but
LPG requires again much less computational effort (seconds against minutes),
except for instance 6, even though CPT alone cannot solve it.

6 Discussion

6.0.3 Complexity

Performance analysis in terms of number of backtracks can be a good indicator,
but subject to discussion due to the highly erratic behavior of CPT in this
respect. However this large variability in performance is not specific to CPT
and [7] have observed similar runtime distributions of backtrack procedures,
and shown how random restarts can dramatically improve the performance.
For instance, on zeno 13, CPT needs only 3 backtracks to find a solution at
bound 596 (whereas D&E needs 10 backtracks), but uses 36674 backtracks to
prove there is no solution at bound 595. On rover 5 on the other hand, CPT
used 16873 backtracks at the optimal bound, whereas D&E found a solution
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16 D&E: Evolutionary Planning Decomposition

with 3 stations which consumed 9 backtracks only, including compression. In
general however, because the search for each subproblem is artificially limited in
terms of number of backtracks, D&E needed much less backtracks to solve the
optimal decomposition, compared to the amount needed by CPT alone. In this
sense, the number of backtracks can be seen as a good a posteriori indicator of
complexity.

6.0.4 Embedding Other Planners

It has been already argued that, though any planner could be used in lieu of
CPT to solve the subproblems of each decomposition, the critical issue is the
compression step, easily done at the moment by CPT. Choosing another planner
(e.g. LPG-TD) would require to rewrite a compression module.

Hence, a possible suboptimal planner could be eCPT [13], a suboptimal
version of CPT that attempts to solve temporal planning problems with the
same framework (constraint-based, POCL planning) in a backtrack-free way.
Indeed, very preliminary trials on zeno 11-14 demonstrated that D&E using
suboptimal CPT could solve the global problem to optimality using CPU time
one order of magnitude less than when using the optimal version of CPT. Further
work will investigate this line of research.

However, one limitation of graphplan oriented planners is space consump-
tion. Factored Planning, applying a Divide-and-Conquer strategy at the domain
level [1, 9], offers another promising research direction.

6.0.5 Parameter tuning

It is well-known that parameter tuning is one of the weaknesses of EAs in
general. D&E is not an exception, and though the parameters used in all ex-
periments presented here seem to be rather robust, new domains will probably
require new settings. Statistical techniques known as Racing seem to be a good
approach to limit the number of experiments in the DOE for EAs [15]. On-going
experiments already demonstrated that one of the most influential parameter is
the limit on the number of backtracks set on CPT when solving the subprob-
lems. Our hope is to be able to learn from extensive experimental data some
empirical formula giving an estimation of the best value for this parameter from
descriptive features of the instance at hand.

7 Conclusion

This paper has presented Divide-and-Evolve, an original approach to Planning
Decomposition, based on an Evolutionary Algorithm searching the space of
sequences of partial states. The optimal planner CPT is used to solve the
different subproblems (reaching all intermediate states one after the other),
but also to compress the concatenation of subplans so obtained, in order to
take advantage of the possible concurrency. The results demonstrated that
indeed D&E is able to solve problems that CPT cannot solve in months, and
moreover can obtain on some problem instances better solutions than LPG-TD,
another well-known suboptimal planner. A further benefit of Divide-and-Evolve
approach, demonstrated in previous work [uncited here], is that it opens up the
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D&E : Evolutionary Planning Decomposition 17

road to multi-objective planning, by simply replacing the evolutionary engine
used here by any standard Multi-Objective EA.

Many issues remain open, though, from the sound choice of the predicates to
be used to represent the intermediate states to the automatic tuning of the many
parameters D&E has at the moment. The choice of other embedded planner is
another possible way to go, though the chosen planner must be able to address
compression issue. More generally, deep theoretical investigations are needed to
understand which domains are amenable to Divide-and-Evolve.

But the main drawback of D&E is its high computational cost and sometimes
low reliability. However, because coarse-grain parallelization of EAs is straight-
forward, we believe that the original D&E approach to planning decomposition
will help pushing further the limits of many existing temporal planners, offer-
ing them an efficient way to fully benefit from the modern multi-core computer
architectures.
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