Conditional stability for ill-posed elliptic Cauchy problems : the case of Lipschitz domains (part II)

Laurent Bourgeois 1 Jérémi Dardé 1
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : This paper is devoted to a conditional stability estimate related to the ill-posed Cauchy problems for the Laplace's equation in domains with Lipschitz boundary. It completes the results obtained in \cite{bourgeois1} for domains of class $C^{1,1}$. This estimate is established by using an interior Carleman estimate and a technique based on a sequence of balls which approach the boundary. This technique is inspired from \cite{alessandrini}. We obtain a logarithmic stability estimate, the exponent of which is specified as a function of the boundary's singularity. Such stability estimate induces a convergence rate for the method of quasi-reversibility introduced in \cite{lions} to solve the Cauchy problems. The optimality of this convergence rate is tested numerically, precisely a discretized method of quasi-reversibility is performed by using a nonconforming finite element. The obtained results show very good agreement between theoretical and numerical convergence rates.
Type de document :
[Research Report] RR-6588, INRIA. 2008
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger
Contributeur : Laurent Bourgeois <>
Soumis le : mercredi 24 septembre 2008 - 11:26:53
Dernière modification le : mercredi 28 novembre 2018 - 10:46:03
Document(s) archivé(s) le : mardi 28 juin 2011 - 16:48:11


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00324166, version 1


Laurent Bourgeois, Jérémi Dardé. Conditional stability for ill-posed elliptic Cauchy problems : the case of Lipschitz domains (part II). [Research Report] RR-6588, INRIA. 2008. 〈inria-00324166〉



Consultations de la notice


Téléchargements de fichiers