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Abstract: This paper is devoted to a conditional stability estimate related
to the ill-posed Cauchy problems for the Laplace’s equation in domains with
Lipschitz boundary. It completes the results obtained in [4] for domains of
class C1,1. This estimate is established by using an interior Carleman estimate
and a technique based on a sequence of balls which approach the boundary.
This technique is inspired from [2]. We obtain a logarithmic stability estimate,
the exponent of which is specified as a function of the boundary’s singularity.
Such stability estimate induces a convergence rate for the method of quasi-
reversibility introduced in [10] to solve the Cauchy problems. The optimality
of this convergence rate is tested numerically, precisely a discretized method of
quasi-reversibility is performed by using a nonconforming finite element. The
obtained results show very good agreement between theoretical and numerical
convergence rates.

Key-words: ill-posed problem, conditional stability, Carleman estimate,
quasi-reversibility, singular boundary



Stabilité conditionnelle pour les problèmes de
Cauchy elliptiques mal posés :

le cas d’un domaine Lipschitzien (partie II)

Résumé : Ce document concerne une estimation de stabilité conditionnelle
relative aux problèmes de Cauchy mal posés pour l’équation de Laplace dans
un domaine Lipschitzien. Il complète les résultats obtenus dans [4] pour les
domaines à bord C1,1. Cette estimation est établie en utilisant une inégalité de
Carleman à l’intérieur et une technique basée sur une suite de boules approchant
le bord. Cette technique est inspirée de [2]. Nous obtenons une inégalité de
stabilité logarithmique, dont l’exposant est précisée en fonction de la singularité
du bord. Une telle inégalité de stabilité implique une vitesse de convergence
pour la méthode de quasi-réversibilité introduite dans [10] pour résoudre les
problèmes de Cauchy. L’optimalité de cette vitesse de convergence est testée
numériquement, précisément une discrétisation de la méthode de quasi-réversibilité
basée sur un élément fini non conforme est mise en oeuvre. Les résultats obtenus
attestent un très bon accord entre les vitesses de convergence théoriques et
numériques.

Mots-clés : problème mal posé, stabilité conditionnelle, inégalité de Carleman,
quasi-réversibilité, bord singulier
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1 Introduction

The problem of stability for ill-posed elliptic Cauchy problems is already dis-
cussed in [4] and we refer to the introduction of this paper for a general presen-
tation of the problem and some bibliography. In [4], the following conditional
stability result was obtained in the case of operator P = −∆.− k., with k ∈ R.
For a bounded and connected open domain Ω ⊂ R

N with C1,1 boundary, if
Γ0 is an open part of ∂Ω, then for all κ ∈]0, 1[ there exists C such that for all
functions u ∈ H2(Ω) which satisfy

||u||H2(Ω) ≤M, ||Pu||L2(Ω) + ||u||H1(Γ0) + ||∂nu||L2(Γ0) ≤ δ,

for some constant M and sufficiently small δ,

||u||H1(Ω) ≤ C
M

(log(M/δ))κ
.

Furthermore, the upper bound κ = 1 of the exponent cannot be improved.
The result obtained in [4] is a generalization of the one obtained in [12] for do-
mains with C∞ boundary. The proof mainly relies on a Carleman estimate near
the boundary, in which the weight function is expressed in term of the distance
to the boundary. Since we have to differentiate twice this weight function, we
need the boundary ∂Ω to be at least C1,1. In the following paper, we now study
how such a conditional stability result can be extended to Lipschitz domains,
the boundary of which is not smooth enough to apply the same method.
We hence consider an open, bounded and connected domain Ω ⊂ R

N the bound-
ary ∂Ω of which is Lipschitz. In particular, this implies that Ω satisfies the cone
property, and we denote by θ the angle value of such cone, θ ∈]0, π/2[. For
sake of self-consistency, we say that Ω satisfies the cone property if there exist
θ ∈]0, π/2[ and R0 > 0 such that for all x0 ∈ ∂Ω, there exists ξ ∈ R

N , |ξ| = 1,
such that the finite cone

C = {x ∈ R
N , (x− x0).ξ > |x− x0| cos θ, |x− x0| < R0}

is included in Ω.
As above, Γ0 denotes an open part of ∂Ω which is C1,1. Lastly, we assume that
k is not an eigenvalue of the Dirichlet problem for the operator −∆ in Ω. The
main result we obtain is that for all α ∈ [0, 1], for all κ ∈]0, (1+α)κ0(θ)/2[ there
exists C such that for all functions u ∈ C1,α(Ω) such that ∆u ∈ L2(Ω) and

||u||C1,α(Ω) ≤M, ||Pu||L2(Ω) + ||u||H1(Γ0) + ||∂nu||L2(Γ0) ≤ δ,

for some constant M and sufficiently small δ, then

||u||H1(Ω) ≤ C
M

(log(M/δ))κ
. (1)

Here, κ0(θ) is the solution of the following simple maximization problem

κ0(θ) =
1

2
sup
x>0

sin θ(1 − e−x)√
1 + x− sin θ

.

The continuous function κ0 is increasing on the segment [0, π/2] and ranges
from κ0(0) = 0 to κ0(π/2) = 1. Since a domain of class C1 has a Lipschitz
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4 Bourgeois & Dardé

boundary which satisfies the cone property with any θ ∈]0, π/2[, we obtain that
(1) is satisfied for all κ ∈]0, (1 + α)/2[ in that case. The analysis of the condi-
tional stability in Lipschitz domains was already addressed in [2] and [13], but
in these works, the exponent in front of the logarithm was not specified. This is
the main novelty of the following paper to specify the exponent as a function of
the geometric singularity. It is obtained by using of sequence of three spheres
inequalities, the sequence of centers of these spheres approaching the boundary,
and the sequence of radii tending to 0. This technique is borrowed from [2],
with two differences. First, the three spheres inequalities result from Carleman
estimates instead of doubling properties. Second, we perform an optimization
of this sequence of inequalities in order to obtain the best possible logarithmic
exponent.
Another concern is to obtain a convergence rate for the method of quasi-reversibility
to solve the ill-posed Cauchy problems for the operator P . This requires a sta-
bility estimate for functions that are only in H2(Ω). For N = 2, we obtain that
for all κ ∈]0, κ0(θ)/2[ there exists C such that for all functions u ∈ H2(Ω) which
satisfy

||u||H2(Ω) ≤M, ||Pu||L2(Ω) + ||u||H1(Γ0) + ||∂nu||L2(Γ0) ≤ δ,

for some constant M and sufficiently small δ, then

||u||H1(Ω) ≤ C
M

(log(M/δ))κ
.

For N = 3, we have the same result for all κ ∈]0, κ0(θ)/4[. As a consequence, we
prove a logarithmic convergence rate for the method of quasi-reversibility, with
the limit exponent κ0(θ)/2 in 2D and κ0(θ)/4 in 3D, possibly κ0(θ) provided
we assume additional regularity for the solution of quasi-reversibility and the
”true” solution.
From a numerical point of view, a connected question is to determine if the in-
fluence of the geometric singularity on the logarithmic exponent can be actually
observed in numerical experiments. An easy way to test this is to capture the
convergence rate of a discretized method of quasi-reversibility for a fixed refined
mesh, when the regularization parameter tends to 0. In 2D, we analyze this
convergence rate as a function of the smallest angle of a polygonal domain, and
observe a pretty good agreement between numerical and theoretical convergence
rates.
The paper is organized as follows. In section 2 we establish some preliminary
useful results related to the three spheres inequality. The section 3 is devoted
to the estimate up to the Lipschitz boundary, which leads to the main result of
conditional stability in Ω. Lastly, in section 4, we derive from this conditional
stability some convergence rate for the method of quasi-reversibility in Lipschitz
domains. It enables one to compare such convergence rate with the convergence
rate obtained numerically by using a discretized method of quasi-reversibility,
and hence to test the optimality of our stability estimate.

INRIA



Conditional stability for ill-posed Cauchy problem 5

2 Some preliminary results

This section consists of several lemmas that will be used in next section. They
concern the three spheres inequality. We first recall the following interior Car-
leman estimate.

Lemma 1 : We consider the operator P = −∆.−ak. with a, k ∈ R, a ∈]0, 1[.
Let ω,U denote two bounded and open domains with ω ⊂ U ⊂ R

N . Let φ be a
smooth function defined in U such that ∇φ does not vanish in U . Let denote

Pφ = h2e
φ
h ◦P ◦e−φ

h , and pφ(x, ξ) the principal part of operator Pφ. We assume
that

∃c1 > 0, pφ(x, ξ) = 0 and (x, ξ) ∈ U ×R
N ⇒ {Repφ, Impφ}(x, ξ) ≥ c1.

(2)
Then there exist K,h0 > 0, with K independent of ak, with h0 depending on
ak only through |k|, such that ∀h ∈]0, h0[, we have

∫

ω

u2e2
φ
h dx+ h2

∫

ω

|∇u|2e2 φ
h dx ≤ Kh3

∫

ω

|Pu|2e2 φ
h dx, (3)

for all function u ∈ H1
0 (ω,∆), where H1

0 (ω,∆) is the closure of C∞
0 (ω) in

H1(ω,∆) = {u ∈ H1(ω), ∆u ∈ L2(ω)}.

Proof : The inequality (3) is obtained in [6] for k = 0, that is in the case of
the Laplace operator −∆. Since pφ does not depend on ak, there existK,h0 > 0,
such that ∀h ∈]0, h0[, we have for all functions u ∈ H1

0 (ω,∆)
∫

ω

u2e2
φ
h dx+ h2

∫

ω

|∇u|2e2 φ
h dx ≤ Kh3

∫

ω

|Pu+ aku|2e2 φ
h dx.

Since |Pu + aku|2 ≤ 2(|Pu|2 + k2u2), if we assume that in addition h satisfies
2Kk2h3 < 1/2, we obtain (3) provided we replace K by 4K in the right-hand
side of the inequality. �

A short calculation shows that

Repφ = |ξ|2 − |∇φ|2, Impφ = 2ξ.∇φ

and

{Repφ, Impφ} = 4

n
∑

j=1

∇(
∂φ

∂xj
).(ξjξ +

∂φ

∂xj
∇φ).

One considers now a smooth function ψ defined on U such that ∇ψ 6= 0 on U ,
and for α > 0, φ(x) = eαψ(x). We obtain

{Repφ, Impφ} = 4αφ
(

ξt.∇2ψ.ξ + α2φ2(∇tψ.∇2ψ.∇ψ) + α(ξ.∇ψ)2 + α3φ2|∇ψ|4
)

,

whence by denoting µ0(x) the smallest eigenvalue of ∇2ψ(x),

{Repφ, Impφ} ≥ 4αφ
(

µ0(|ξ|2 + α2φ2|∇ψ|2) + α(ξ.∇ψ)2 + α3φ2|∇ψ|4
)

.

For pφ(x, ξ) = 0, we have

|ξ|2 = α2φ2|∇ψ|2, ξ.∇ψ = 0,

RR n 6588



6 Bourgeois & Dardé

whence
{Repφ, Impφ} ≥ 4α3φ3|∇ψ|2

(

2µ0 + α|∇ψ|2
)

.

In we define
m0 := inf

x∈U
µ0(x), c0 := inf

x∈U
|∇ψ|2,

and if m0 < 0, we have {Repφ, Impφ} ≥ c1 > 0 on U × R
N when pφ(x, ξ) = 0

for
α > −2

m0

c0
.

We consider now the particular domain ω = B(R1, R2) := {x ∈ R
N , R1 <

|x − q| < R2} with q ∈ R
N , and the function ψ(x) = −|x − q|2. We can take

U = B(q,R1−ε,R2+ε) for small ε > 0. We obtainm0 = −2 and c0 = 4(R1−ε)2,
and finally assumption (2) holds as soon as α > 1/R2

1.

We now apply lemma 1 and lemma 3 in [4] to obtain a so-called three spheres
inequality. The proof of such inequality is classical (see [11, 12]), but it is
reproduced here in order to find how the constants involved in the inequality
depend on some useful parameters.

Lemma 2 : We consider the operator P = −∆ − ak. with a, k ∈ R and
a ∈]0, 1[. Let q ∈ Ω, and let 0 < r0 < r1 < r2 < r3 < r4 < r5 < r6 such
that B(q, r6) ⊂ Ω. If α satisfies αr20 > 1, then there exists a constant C, which
depends on ak only through |k|, such that we have for all u ∈ H1(Ω,∆),

||u||H1(B(q,r3)) ≤ C
(

||Pu||L2(B(q,r6)) + ||u||H1(B(q,r2))

)
s

s+1 ||u||
1

s+1

H1(B(q,r6))
, (4)

with

s =
g(r3) − g(r4)

g(r1) − g(r3)
, g(r) = e−αr

2

.

Proof : One applies lemma 1 in the domain ω = B(r0, r6) for φ = eαψ with
ψ(x) = −|x − q|2. We have seen that assumption (2) is satisfied as soon as
αr20 > 1. Assuming that this inequality holds, we obtain there exists K,h0 > 0
such that for 0 < h < h0 (K does not depend on ak, h0 depends on ak only
through |k|),

∫

ω

(|v|2 + |∇v|2)e2 φ
h dx ≤ K

∫

ω

|Pv|2e2 φ
h dx, (5)

for all functions v ∈ H1
0 (ω,∆).

Now we take u ∈ H1(Ω,∆) and v = χu ∈ H1
0 (ω,∆), where χ is a C∞ cut-off

function such that χ ∈ [0, 1] and

{

χ = 0 in B(r0, r1) ∪B(r5, r6)

χ = 1 in B(r2, r4).

In the following we denote g(r) = e−αr
2

. Hence g is a non increasing function.

∫

ω

(|v|2 + |∇v|2)e2 φ
h dx ≥ e2

g(r3)
h

∫

B(r2,r3)

(|u|2 + |∇u|2) dx,

INRIA



Conditional stability for ill-posed Cauchy problem 7

and
∫

ω

|Pv|2e2 φ
h dx =

∫

B(r2,r4)

|Pu|2e2 φ
h dx+

∫

B(r1,r2)

|P (χu)|2e2 φ
h dx

+

∫

B(r4,r5)

|P (χu)|2e2 φ
h dx.

Since we have P (χu) = χ(Pu) − 2∇χ.∇u − (∆χ)u, we obtain the following
estimates (K is a constant which depends only on χ) :

∫

B(r2,r4)

|Pu|2e2 φ
h dx ≤ e2

g(r2)
h

∫

B(r2,r4)

|Pu|2 dx,

∫

B(r1,r2)

|P (χu)|2e2 φ
h dx ≤ e2

g(r1)
h

∫

B(r1,r2)

|Pu|2 dx+Ke2
g(r1)

h

∫

B(r1,r2)

(|u|2+|∇u|2) dx,
∫

B(r4,r5)

|P (χu)|2e2 φ
h dx ≤ e2

g(r4)
h

∫

B(r4,r5)

|Pu|2 dx+Ke2
g(r4)

h

∫

B(r4,r5)

(|u|2+|∇u|2) dx.

Gathering the above inequalities, it follows that

∫

ω

|Pv|2e2 φ
h dx ≤ K1e

2
g(r1)

h

(

∫

B(q,r6)

|Pu|2 dx+

∫

B(q,r2)

(|u|2 + |∇u|2) dx
)

+K2e
2

g(r4)
h

∫

B(q,r6)

(|u|2 + |∇u|2) dx,

where K1 and K2 are two constants which are independent of ak.
Finally, the inequality (5) implies

e2
g(r3)

h ||u||2H1(B(r2,r3))
≤ K1 e

2
g(r1)

h

(

||Pu||2L2(B(q,r6))
+ ||u||2H1(B(q,r2))

)

+K2 e
2

g(r4)
h ||u||2H1(B(q,r6))

.

Using
||u||2H1(B(q,r3))

= ||u||2H1(B(q,r2))
+ ||u||2H1(B(r2,r3))

,

We obtain

e2
g(r3)

h ||u||2H1(B(q,r3))
≤ K1 e

2
g(r1)

h

(

||Pu||2L2(B(q,r6))
+ ||u||2H1(B(q,r2))

)

+K2 e
2

g(r4)
h ||u||2H1(B(q,r6))

.

Denoting k1 = g(r1) − g(r3) > 0 and k2 = g(r3) − g(r4) > 0, we obtain

||u||H1(B(q,r3)) ≤ K1 e
k1
h

(

||Pu||L2(B(q,r6)) + ||u||H1(B(q,r2))

)

+K2 e
−

k2
h ||u||H1(B(q,r6))).

Let s > 0 and c > 0 such that

c

ε
= K1e

k1
h , εs = K2e

−
k2
h .

A simple calculation proves that

s =
k2

k1
=
g(r3) − g(r4)

g(r1) − g(r3)
, c = K1(K2)

(k1/k2),
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8 Bourgeois & Dardé

and we obtain for all u ∈ H1(Ω,∆), for all ε ∈]0, ε0[ with

ε0 = K
(k1/k2)
2 e−

k1
h0 ,

the inequality

||u||H1(B(q,r3)) ≤
c

ε

(

||Pu||L2(B(q,r6)) + ||u||H1(B(q,r2))

)

+ εs||u||H1(B(q,r6)).

The constant c does not depend on ak, ε0 depends on ak only through |k|. It
remains to apply lemma 3 in [4], since ||u||H1(B(q,r3)) ≤ ||u||H1(B(q,r6)). �

Lemma 3 : Let us denote Pk the operator −∆.−k., with k ∈ R. Let q̃ ∈ Ω,
and let 0 < r̃0 < r̃1 < r̃2 < r̃3 < r̃4 < r̃5 < r̃6 such that B(q̃, r̃6) ⊂ Ω. Consider
now q ∈ Ω and for µ ∈]0, 1[, ri = µr̃i (i = 1, 2, ..., 6), with B(q, r6) ⊂ Ω.
We assume that the three spheres inequality (4) associated to the operator Pµ2k

and the sequence of balls B(q̃, r̃i) is satisfied with the constants C̃ and s. Then
the three spheres inequality (4) associated to the operator Pk and the sequence
of balls B(q, ri) is satisfied with the constants C = C̃/µ and s.

Proof : The proof relies on the change of variables x − q = µ(x̃ − q̃). We
define the function ũ as ũ(x̃) = u(x) = ũ(q̃ + (x− q)/µ).
We obtain

∫

B(q,ri)

|u(x)|2 + |∇u(x)|2 dx = µN

(

∫

B(q̃,r̃i)

|ũ(x̃)|2 +
1

µ2
|∇ũ(x̃)|2 dx̃

)

,

whence

µ
N
2 ||ũ||H1(B(q̃,r̃i)) ≤ ||u||H1(B(q,ri)) ≤ µ

N
2 −1||ũ||H1(B(q̃,r̃i)).

Similarly, we obtain

||Pku||L2(B(q,ri)) = µ
N
2 −2||Pµ2kũ||L2(B(q̃,r̃i)).

By using the three spheres inequality (4) associated to the balls B(q̃, r̃i) for
operator Pµ2k, we obtain

||u||H1(B(q,r3)) ≤ µ
N
2 −1||ũ||H1(B(q̃,r̃3))

≤ C̃µ
N
2 −1

(

||Pµ2kũ||L2(B(q̃,r̃6)) + ||ũ||H1(B(q̃,r̃2))

)
s

s+1 ||ũ||
1

s+1

H1(B(q̃,r̃6))

≤ C̃µ
N
2 −1

(

1

µ
N
2 −2

||Pku||L2(B(q,r6)) +
1

µ
N
2

||u||H1(B(q,r2))

)
s

s+1
(

1

µ
N
2

||u||H1(B(q,r6))

)
1

s+1

≤ C̃

µ

(

||Pku||L2(B(q,r6)) + ||u||H1(B(q,r2))

)
s

s+1 ||u||
1

s+1

H1(B(q,r6))
,

which completes the proof. �

INRIA



Conditional stability for ill-posed Cauchy problem 9

3 The main theorem

Our main theorem is based on the following proposition, which is similar to
proposition 4 in [4]. It concerns the propagation of data from the interior of
the domain up the boundary of such domain. However, it should be noted
that in proposition 4 of [4], we estimated the H1 norm of the function in a
neighborhood of a point x0 ∈ ∂Ω with the help of the H1 norm of the function
in an open domain ω1 ⋐ Ω. Here, we estimate the value of the function and its
first derivatives at x0 with the help of the H1 norm of the function in ω1. As
a result, the regularity assumptions concerning the function u are not the same
as in [4].

Proposition 1 : There exists an open domain ω1 ⋐ Ω such that for all
α ∈]0, 1], for all κ < ακ0(θ) and κ′ < κ0(θ), with

κ0(θ) =
1

2
sup
x>0

sin θ(1 − e−x)√
1 + x− sin θ

, (6)

there exists c > 0 such that for sufficiently small ε, for all u ∈ C1,α(Ω) with
∆u ∈ L2(Ω),

||u||C1(∂Ω) ≤ ec/ε(||Pu||L2(Ω) + ||u||H1(ω1)) + εκ||u||
C1,α(Ω)

,

||u||C0(∂Ω) ≤ ec/ε(||Pu||L2(Ω) + ||u||H1(ω1)) + εκ
′ ||u||

C1,α(Ω)
.

The second inequality holds also in the case α = 0.

In order to obtain proposition 1, we need the two following lemmas. The
first one is a minor generalization of the lemma proved in [11] in the particular
case µ = 1, while the second one is the counterpart of lemma 3 in [4].

Lemma 4 : Let βn > 0 satisfy for n ∈ N,

βn+1 ≤ 1

µn
(βn +A)νB1−ν ,

with A > 0, B > 0, ν ∈]0, 1[, µ ∈]0, 1[ and βn ≤ B. Then one has for n ∈ N
∗

βn ≤ 2
1

1−ν

µ
n−1
1−ν

(β0 +A)ν
n

B1−νn

.

Proof : If B < β0 + A, the proof is complete. If β0 + A ≤ B, in particular
A ≤ B, we have

βn+1

B
≤ 1

µn

(

βn +A

B

)ν

and
A

B
≤ 1

µn

(

A

B

)ν

≤ 1

µn

(

βn +A

B

)ν

.

From the two above inequalities, it follows that

βn+1 +A

2
1

1−ν B
≤ 1

µn

(

βn +A

2
1

1−ν B

)ν

,
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10 Bourgeois & Dardé

that is

xn+1 ≤ xνn
µn
, xn :=

βn +A

2
1

1−ν B
.

By iterating the above inequality, we obtain

xn ≤
(

1

µ

)n−1+(n−2)ν+(n−3)ν2+···+νn−2

xν
n

0

≤
(

1

µ

)(n−1)(1+ν+ν2+···+νn−2)

xν
n

0 ≤
(

1

µ

)

n−1
1−ν

xν
n

0 ,

whence

βn ≤ 2
1

1−ν

µ
n−1
1−ν

(β0 +A)ν
n

B1−νn

,

which completes the proof. �

Lemma 5 : Let C, β, A and B denote four non negative reals and ν ∈]0, 1[
such that

β ≤ C AνB1−ν .

Then ∀ε > 0,

β ≤ c

ε
A+ εsB,

with

s =
ν

1 − ν
, c = (

C

s1/(s+1) + s−s/(s+1)
)

s+1
s .

Proof : For c, s > 0 as defined in the statement of the lemma, the minimum
of the function f defined for ε > 0 by

f(ε) =
c

ε
A+ εsB

is C AνB1−ν , which completes the proof. �

Proof of proposition 1 : The proof is divided into three parts. In the
first step of the proof we follow the technique of [2], which consists in defining
a sequence of balls the radii of which is decreasing and the center of which is
approaching the boundary of the domain. Since Ω satisfies the cone property
(see our definition in the introduction), there exist R0 > 0, θ ∈]0, π/2[ with R0

and θ independent of x0 ∈ ∂Ω, and ξ ∈ R
N with |ξ| = 1 such that the finite

cone
C = {x, |x− x0| < R0, (x− x0).ξ > |x− x0| cos θ}

satisfies C ⊂ Ω. We also denote

C ′ = {x, |x− x0| < R0, (x− x0).ξ > |x− x0| cos θ′},

with
θ′ = arcsin(t sin θ), (7)

where the coefficient t ∈]0, 1[ will be specified further. It should be noted that
definition (7) leads to θ′ ∈]0, π/2[. We now denote q0 = x0 + (R0/2)ξ, d0 =

INRIA



Conditional stability for ill-posed Cauchy problem 11

|q0 − x0| and ρ0 = d0 sin θ′. We hence have B(q0, ρ0) ∈ C ′. Let define the
sequence of balls B(qn, ρn) ⊂ C ′ with dn = |qn − x0| and ρn = dn sin θ′ by
following induction :







qn+1 = qn − αnξ
ρn+1 = µρn
dn+1 = µdn,

(8)

where αn and µ will be defined further. From the above equations, we deduce
that

αn = (1 − µ)dn. (9)

The objective is to use a three spheres inequality such as (4) for each n, the
center of these three spheres being q = qn. We hence define, for n ∈ N, 0 <
r0n < r1n < r2n = ρn < r3n < r4n < r5n < r6n and yin = rin/r0n > 1 for
i = 1, ..., 6. We assume that the yin do not depend on n, that is yin := yi. We
specify t = r2n/r6n = y2/y6 in (7), so that we have B(qn, r6n) ∈ C ⊂ Ω for all
n (see figure 1).
On the other hand, if αn is chosen such that

ρn+1 + αn = r3n, (10)

we have B(qn+1, ρn+1) ⊂ B(qn, r3n) since for |x− qn+1| < ρn+1,

|x− qn| ≤ |x− qn+1| + |qn+1 − qn| < ρn+1 + αn = r3n.

The equations (9) and (10) uniquely define µ as

µ =
r6n − r3n sin θ

r6n − r2n sin θ
=
y6 − y3 sin θ

y6 − y2 sin θ
∈]0, 1[.

By using the notation Pk = −∆.−k., we now apply lemma 2 for operator Pµ2nk

and for the spheres of center q0 and of radii ri0, with α such that β := αr200 > 1.
We thus obtain for u ∈ H1(Ω,∆),

||u||H1(B(q0,r30)) ≤ C
(

||Pµ2nku||L2(B(q0,r60)) + ||u||H1(B(q0,r20))

)
s

s+1 ||u||
1

s+1

H1(B(q0,r60))
,

with C independent of µ and n. With the help of lemma 3, and since rin = µnri0
for i = 1, ..., 6, the three spheres inequality for the spheres of center qn and of
radii rin is

||u||H1(B(qn,r3n)) ≤
C

µn
(

||Pku||L2(B(qn,r6n)) + ||u||H1(B(qn,r2n))

)
s

s+1 ||u||
1

s+1

H1(B(qn,r6n)),

which implies that for all u ∈ H1(Ω,∆),

||u||H1(B(qn+1,ρn+1)) ≤
C

µn
(

||Pu||L2(Ω) + ||u||H1(B(qn,ρn))

)
s

s+1 ||u||
1

s+1

H1(Ω).

It should be noted that in the above inequality, C and s are independent of n,
in particular

s =
e−βy

2
3 − e−βy

2
4

e−βy
2
1 − e−βy

2
3

.
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∂Ω

θ

θ′

ξ
x0

r06

r03

r02

q0

qn

Figure 1: The sequence of three spheres inequalities
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Conditional stability for ill-posed Cauchy problem 13

Without loss of generality we assume that C ≥ 1, so that by denoting C ′ =
Cs+1, ||u||H1(B(qn+1,ρn+1)) ≤ C ′||u||H1(Ω), and we can apply lemma 4 with βn =
||u||H1(B(qn,ρn)), A = ||Pu||L2(Ω), B = C ′||u||H1(Ω), ν = s/(s+ 1). We obtain

||u||H1(B(qn,ρn)) ≤
2

1
1−ν

µ
n−1
1−ν

(

||Pu||L2(Ω) + ||u||H1(B(q0,ρ0))

)νn
(

C ′||u||H1(Ω)

)1−νn

.

We apply now lemma 5 and obtain ∀ε > 0,

||u||H1(B(qn,ρn)) ≤
cn
ε

(

||Pu||L2(Ω) + ||u||H1(B(q0,ρ0))

)

+ εsn C ′||u||H1(Ω)

with

sn =
νn

1 − νn
, cn =

(

2
1

1−ν

µ
n−1
1−ν

1

E(sn)

)

sn+1
sn

,

and
E(s) := s1/(s+1) + s−s/(s+1).

We notice that for s > 0, E(s) > 1, whence

log

(

2
1

1−ν

µ
n−1
1−ν

1

E(sn)

)

<
1

1 − ν
log

(

2

µn−1

)

.

As a result,

0 < cn < e
1

sn
1

(1−ν)2
log
(

2

µn−1

)

= e
c

sn
log
(

2

µn−1

)

,

for some constant c > 0. Here we have used the fact that sn + 1 < 1/(1 − ν).
Since sn > νn, we finally obtain ∀n ∈ N

∗, ∀ε > 0 and ∀u ∈ H1(Ω,∆),

||u||H1(B(qn,ρn)) ≤
e

c
νn log

(

2

µn−1

)

ε

(

||Pu||L2(Ω) + ||u||H1(B(q0,ρ0))

)

+C ′εν
n ||u||H1(Ω).

(11)
The second step of the proof consists of estimating the C1 norm of u on ∂Ω by
using the estimate (11) for sufficiently large n and the regularity of u, which is
C1,α(Ω), α ∈]0, 1]. We have B(qn, ρn) ⊂ B(x0, ε

′) if and only if dn+ρn ≤ ε′, that
is µn(d0 + ρ0) ≤ ε′. Let n0 denote the smaller n which satisfies this inequality,
that is

log((d0 + ρ0)/ε
′)

log 1/µ
≤ n0 <

log((d0 + ρ0)/ε
′)

log 1/µ
+ 1.

For all x ∈ B(qn0
, ρn0

), and for v = u or v = ∂u/∂xi, i = 1, ..., N , we have

|v(x0)|2 ≤ 2|v(x)|2 + 2||u||2
C1,α(Ω)

ε′2α. (12)

After integration over B(qn0
, ρn0

), we obtain by denoting

Sx0
(u) = max(|u(x0)|, |

∂u

∂x1
(x0)|, ..., |

∂u

∂xN
(x0)|),

VNρ
N
n0
S2
x0

(u) ≤ 2||u||2H1(B(qn0
,ρn0

)) + 2VNρ
N
n0
ε′

2α||u||2
C1,α(Ω)

,
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14 Bourgeois & Dardé

where VN is the volume of the unit sphere in R
N . Finally,

Sx0
(u) ≤

√

2

VNρNn0

||u||H1(B(qn0
,ρn0

)) +
√

2ε′α||u||C1,α(Ω). (13)

From (11) with n = n0 and (13), we obtain there exists c, C > 0 such that for
all ε, ε′ > 0,

Sx0
(u) ≤ C

1

ρ
N/2
n0

e
c

νn0 log
(

2

µn0−1

)

ε

(

||Pu||L2(Ω) + ||u||H1(B(q0,ρ0))

)

+C
1

ρ
N/2
n0

εν
n0 ||u||H1(Ω) + Cε′α||u||C1,α(Ω).

We have ||u||H1(Ω) ≤ c ||u||C1,α(Ω) for some c > 0. Furthermore, µn0−1(d0+ρ0) >

ε′ and ρn0
= µn0ρ0 lead to

ρn0
> µ

ρ0

d0 + ρ0
ε′.

We obtain there exists c, C > 0 such that for all ε, ε′ > 0,

Sx0
(u) ≤ C

1

ε′N/2
e

c
νn0 log

(

2

µn0−1

)

ε

(

||Pu||L2(Ω) + ||u||H1(B(q0,ρ0))

)

+C

(

εν
n0

ε′N/2
+ ε′α

)

||u||C1,α(Ω).

Now we introduce the relationship εν
n0
/ε′

N
2 = ε′α, and since νn0 < 1 we obtain

a new constant C > 0 such that

Sx0
(u) ≤ C

e
c

νn0 log
(

2

µn0−1

)

ε′
α+N
νn0

(

||Pu||L2(Ω) + ||u||H1(B(q0,ρ0))

)

+ Cε′α||u||C1,α(Ω).

(14)
Since 1/νn0 = en0 log(1/ν), we have

1

νn0
< e

log(1/ν)
(

log((d0+ρ0)/ε′)

log(1/µ)
+1
)

=
1

ν

(

d0 + ρ0

ε′

)γ0

,

with γ0 = log(1/ν)/ log(1/µ).
Furthermore, since 1/µn0−1 < (d0 + ρ0)/ε

′, we have

log

(

2

µn0−1

)

< log

(

2(d0 + ρ0)

ε′

)

.

Then,

e
c

νn0 log
(

2

µn0−1

)

ε′(α+N)/νn0
= e

1
νn0

(

c log
(

2

µn0−1

)

+(α+N) log( 1
ε′ )

)

≤ e
1
ν ( d0+ρ0

ε′ )
γ0
(

c log
(

2(d0+ρ0)

ε′

)

+(α+N) log( 1
ε′ )

)

.

As a result, for some new c′ > 0, for sufficiently small ε′ we have

e
c

νn0 log
(

2

µn0−1

)

ε′(α+N)/νn0
≤ e

c′

ε′γ0
log( 1

ε′
).
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Conditional stability for ill-posed Cauchy problem 15

For all γ > γ0, for some new c′ > 0, for sufficiently small ε′ we have

e
c

νn0 log
(

2

µn0−1

)

ε′(α+N)/νn0
≤ e

c′

ε′γ .

Coming back to (14), we obtain

Sx0
(u) ≤ ec

′/ε′γ
(

||Pu||L2(Ω) + ||u||H1(B(q0,ρ0))

)

+ Cε′α||u||C1,α(Ω).

By denoting ε = ε′γ for any γ > γ0, for small ε > 0,

Sx0
(u) ≤ ec

′/ε
(

||Pu||L2(Ω) + ||u||H1(B(q0,ρ0))

)

+ C ′εα/γ ||u||C1,α(Ω).

Finally, by denoting κ0 = 1/γ0, for all κ < ακ0 there exists c, ε0 > 0 such that
for all ε < ε0,

Sx0
(u) ≤ ec/ε

(

||Pu||L2(Ω) + ||u||H1(B(q0,ρ0))

)

+ εκ||u||C1,α(Ω).

By following the history of the constants c and ε0 throughout the proof, it is
readily seen that c and ε0 do not depend on x0 ∈ ∂Ω. Furthermore, if we define
ω1 ⋐ Ω as the union of the balls B(q0, ρ0) when x0 describes ∂Ω, we obtain that
for all κ < ακ0, there exists c, ε0 > 0 such that for all ε < ε0, for all u ∈ C1,α(Ω)
with ∆u ∈ L2(Ω),

||u||C1(∂Ω) ≤ ec/ε
(

||Pu||L2(Ω) + ||u||H1(ω1)

)

+ εκ||u||C1,α(Ω), (15)

which is the first inequality of the proposition.
The second inequality is obtained by using the imbedding C1,α(Ω) → C1(Ω),
for all α ∈ [0, 1]. For x ∈ B(qn0

, ρn0
), we replace (12) by

|u(x0)|2 ≤ 2|u(x)|2 + 2||u||2
C1(Ω)

ε′
2
,

and we use the same technique as above. The third step of the proof consists
in maximizing

κ0 =
log(1/µ)

log(1/ν)
,

with
1

µ
=
y6 − y2 sin θ

y6 − y3 sin θ
,

1

ν
=
eβ(y2

4−y
2
1) − 1

eβ(y2
4−y

2
3) − 1

.

The inequality (15) holds for all κ < κ̃0, with

κ̃0 = sup
1<β, 1<y1<y2<y3<y4<y6

log

(

y6 − y2 sin θ

y6 − y3 sin θ

)

/ log

(

eβ(y2
4−y

2
1) − 1

eβ(y2
4−y

2
3) − 1

)

. (16)

Now, let specify β and the yi as follows, for k ∈]0, 1[ and δ > 0,







































β =
√

1 + k2,
y := (1 + k2)1/4,

y1 = y,
y2 = y(1 + k2δ),

y3 = y(1 + kδ + k2δ),
y4 = y(1 + δ + k2δ),
y6 = y(1 + δ + 2k2δ).

(17)

RR n 6588



16 Bourgeois & Dardé

A first order expansion in k around 0 for fixed δ leads to

log

(

y6 − y2 sin θ

y6 − y3 sin θ

)

=
δ sin θ

1 + δ − sin θ
k + oδ(k),

log

(

eβ(y2
4−y

2
1) − 1

eβ(y2
4−y

2
3) − 1

)

= 2δ
e2δ+δ

2

e2δ+δ2 − 1
k + oδ(k)

By passing to the limit k → 0 and by taking the sup in δ, we obtain the following
particular value κ0 ≤ κ̃0 :

κ0 = sup
δ>0

1

2

sin θ

1 + δ − sin θ
(1 − e−(2δ+δ2)),

and the optimization problem (6) follows by setting x = 2δ + δ2 > 0. �

Remark 1 : We can verify that in fact the values κ̃0 and κ0, defined by
(16) and (6) respectively, actually satisfy κ̃0 = κ0. First, we eliminate β in (16)
simply by using the change of variables zi =

√
βyi with i = 1, ..., 6. We obtain

κ̃0 = sup
1<z1<z2<z3<z4<z6

log

(

z6 − z2 sin θ

z6 − z3 sin θ

)

/ log

(

ez
2
4−z

2
1 − 1

ez
2
4−z

2
3 − 1

)

. (18)

We remark that the function to maximize in (18) is an increasing function
of z1 and a decreasing function of z6, that is why we can consider only the
asymptotic situation z1 → z2 and z6 → z4. In order to simplify the analysis
with the remaining variables z2, z3, z4, we denote

z3 − z2 = k̃δ̃z2, z4 − z2 = δ̃z2, z2 = z̃,

with δ̃ > 0 and k̃ ∈]0, 1[. We obtain

κ̃0 = sup
1<z̃, 0<δ̃, 0<k̃<1

log

(

1 + δ̃ − sin θ

1 + δ̃ − sin θ − k̃δ̃ sin θ

)

/ log

(

e(2δ̃+δ̃
2)z̃2 − 1

e(2(1−k̃)δ̃+(1−k̃2)δ̃2)z̃2 − 1

)

.

Furthermore, it is easy to prove that since 2δ̃ + δ̃2 > 2(1− k̃)δ̃ + (1− k̃2)δ̃2, for
fixed (k̃, δ̃), the function to maximize is a non increasing function of z̃ > 1, so
that the maximum of the function is obtained for z̃ → 1, and

κ̃0 = sup
0<δ̃, 0<k̃<1

log

(

1 + δ̃ − sin θ

1 + δ̃ − sin θ − k̃δ̃ sin θ

)

/ log

(

e2δ̃+δ̃
2 − 1

e2(1−k̃)δ̃+(1−k̃2)δ̃2 − 1

)

.

We notice that for fixed δ̃, the maximum of the function of two variables is
obtained for k̃ → 0, and a first order expansion in k̃ leads us to the same
expression as (6), that is κ̃0 = κ0.

In order to obtain our main theorem, we recall the two following results, the
first one is obtained in [12] while the second one is obtained in [4].

Proposition 2 : Let ω0, ω1 be two open domains such that ω0, ω1 ⋐ Ω.
There exist s, c, ε0 > 0 such that ∀ε ∈]0, ε0[, ∀u ∈ H1(Ω,∆),

||u||H1(ω1) ≤
c

ε

(

||Pu||L2(Ω) + ||u||H1(ω0)

)

+ εs ||u||H1(Ω).
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Conditional stability for ill-posed Cauchy problem 17

Proposition 3 : Assume Γ0 ⊂ ∂Ω is of class C1,1 and let x0 ∈ Γ0 and τ > 0
such that ∂Ω ∩ B(x0, τ) ⊂ Γ0. There exists a neighbourhood ω0 of x0, there
exist s, c, ε0 > 0 such that ∀ε ∈]0, ε0[, for all u ∈ H2(Ω),

||u||H1(Ω∩ω0) ≤
c

ε

(

||Pu||L2(Ω) + ||u||H1(Γ0) + ||∂nu||L2(Γ0)

)

+ εs ||u||H1(Ω).

The inequality holds also for all u ∈ C1(Ω) with ∆u ∈ L2(Ω).

We are now in a position to state the main theorem, which is a consequence
of propositions 1, 2 and 3.

Theorem 1 : Let Ω ⊂ R
N be a bounded and connected open domain with

Lipschitz boundary. If the cone property is satisfied with angle θ ∈]0, π/2[, let
denote κ0(θ) the solution of the following maximization problem

κ0(θ) =
1

2
sup
x>0

sin θ(1 − e−x)√
1 + x− sin θ

.

Let Γ0 be a C1,1 open part of ∂Ω such that there exist x0 ∈ Γ0 and τ > 0 with
∂Ω ∩B(x0, τ) ⊂ Γ0.
Let introduce the operator P = −∆. − k., where k is not an eigenvalue of the
Dirichlet problem for the operator −∆ in Ω.
For α ∈ [0, 1], for all κ ∈]0, (1 + α)κ0(θ)/2[, there exists C, δ0 such that for all
δ ∈]0, δ0[, for all functions u ∈ C1,α(Ω) such that ∆u ∈ L2(Ω) and which satisfy

||u||C1,α(Ω) ≤M, ||Pu||L2(Ω) + ||u||H1(Γ0) + ||∂nu||L2(Γ0) ≤ δ, (19)

where M > 0 is a constant, then

||u||H1(Ω) ≤ C
M

(log(M/δ))κ
. (20)

If we do not assume that Γ0 is of class C1,1, the estimate (20) holds under
assumption (19) and provided we restrict to the functions u which satisfy u|Γ0

=
0 and ∂nu|Γ0

= 0.

Proof : Assume first that α ∈]0, 1]. By using proposition 1, there exists a
domain ω1 ⋐ Ω such that for any κ < ακ0(θ) and any κ′ < κ0(θ), there exist
c, ε0 > 0 such that for all ε < ε0, for all u ∈ C1,α(Ω) with ∆u ∈ L2(Ω),

||u||C1(∂Ω) ≤ ec/ε(||Pu||L2(Ω) + ||u||H1(ω1)) + εκ||u||C1,α(Ω),

and
||u||C0(∂Ω) ≤ ec/ε(||Pu||L2(Ω) + ||u||H1(ω1)) + εκ

′ ||u||C1,α(Ω).

If u = 0 and ∂nu = 0 on Γ0 (case 2), since ∂Ω ∩B(x0, τ) ⊂ Γ0, the extension ũ
of u by 0 in B(x0, τ) belongs to H1(Ω ∪ B(x0, τ),∆). By applying proposition
2 to function ũ in domain Ω∪B(x0, τ) and by choosing ω0 ⋐ B(x0, τ)∩Ω

c
, we

obtain that for sufficiently small ε, for all u ∈ C1,α(Ω) such that ∆u ∈ L2(Ω),

||u||C1(∂Ω) ≤ ec/ε||Pu||L2(Ω) + εκ||u||C1,α(Ω),

||u||C0(∂Ω) ≤ ec/ε||Pu||L2(Ω) + εκ
′ ||u||C1,α(Ω).
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18 Bourgeois & Dardé

We conclude that if moreover u satisfies assumption (19) then

||u||C1(∂Ω) ≤ ec/εδ + εκM, ||u||C0(∂Ω) ≤ ec/εδ + εκ
′

M.

By using the same ε optimization procedure as in corollary 1 of [4], we obtain
that for all κ < ακ0(θ) and κ′ < κ0(θ), there exists C > 0 such that for
sufficiently small δ,

||u||C1(∂Ω) ≤ C
M

(log(M/δ))κ
, ||u||C0(∂Ω) ≤ C

M

(log(M/δ))κ′
. (21)

Since k is not an eigenvalue of the Dirichlet problem for the operator −∆ in Ω,
there exists a constant C ′ > 0 such that for all u ∈ H1(Ω,∆),

||u||H1(Ω) ≤ C ′(||Pu||L2(Ω) + ||u||H1/2(∂Ω)). (22)

With the help of an interpolation inequality, we obtain for some constant c > 0,

||u||H1/2(∂Ω) ≤ c||u||1/2L2(∂Ω)||u||
1/2
H1(∂Ω), (23)

hence for some new constant c,

||u||H1/2(∂Ω) ≤ c||u||1/2C0(∂Ω)||u||
1/2
C1(∂Ω), (24)

and it follows from (21) that

||u||H1/2(∂Ω) ≤ cC
M

(log(M/δ))(κ+κ′)/2
.

The result follows from (22).
If we do not assume that u = 0 and ∂nu = 0 on Γ0, but if moreover Γ0 is of
class C1,1 (case 1), then we can apply proposition 3 in addition to propositions
1 and 2, hence for all κ < ακ0(θ) and κ′ < κ0(θ), there exist c, ε0 > 0 such that
for all ε < ε0, for all u ∈ C1,α(Ω) such that ∆u ∈ L2(Ω),

||u||C1(∂Ω) ≤ ec/ε(||Pu||L2(Ω) + ||u||H1(Γ0) + ||∂nu||L2(Γ0)) + εκ||u||C1,α(Ω),

||u||C0(∂Ω) ≤ ec/ε(||Pu||L2(Ω) + ||u||H1(Γ0) + ||∂nu||L2(Γ0)) + εκ
′ ||u||C1,α(Ω).

We complete the proof as in the case 2.
As concerns the case α = 0, the result follows from (24), from the second
inequality of (21), which remains true, and from the fact that ||u||C1(∂Ω) ≤ M.
�

Remark 2 : It is readily shown by analyzing the variations of the function
kθ defined on [0,+∞[ by

kθ(x) =
1

2

sin θ(1 − e−x)√
1 + x− sin θ

, (25)

that the maximization problem (6) is well-posed. In particular, the argument x
that maximizes the function is unique. In figure 2, the graph of function kθ is
plotted for increasing values of θ, and the values of function κ0 are plotted for
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all values of θ ∈ [0, π/2]. The function κ0 is increasing on the segment [0, π/2],
with κ0(0) = 0 and κ0(π/2) = 1.

Remark 3 : The fact that κ0(0) = 0 indicates that when θ → 0, which
means that the domain Ω has a cusp, the logarithmic stability does not hold
any more. This is consistent with the result obtained in [2] when the domain is
not Lipschitz, then a logarithmic-logarithmic estimate was established.

Remark 4 : The fact that κ0(π/2) = 1 implies that for domains of class
C1, theorem 1 holds for all κ < (1 + α)/2. Hence, in the case of functions u
in C1,1(Ω) ⊂ H2(Ω) (α = 1), theorem 1 extends the result of corollary 1 in [4],
which was satisfied for domains of class C1,1, to domains of class C1, provided
either Γ0 is of class C1,1 or we restrict to the functions u which satisfy u = 0 and
∂nu = 0 on Γ0. It is also interesting to note that in 2D, if Ω has only reentrant
corners, then the cone property is satisfied for any θ ∈]0, π/2[, and theorem 1
holds for all κ < 1. Hence, the corners of angle smaller than π deteriorate the
exponent of the logarithmic stability, while those of angle larger than π do not.
A similar remark can be done in 3D.
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Figure 2: Left : graph of function kθ for increasing values of θ : π/16, π/10,
π/6, π/4, π/3, 3π/8, 7π/16, π/2. Right : function κ0(θ)

Remark 5 : The obtained function (25) is strongly dependent on the choice
of the function ψ(x) = −|x − q|2 which was used in the exponential weight
φ = eαψ of our Carleman estimate (3). Besides, the values of κ0(θ) induced by
this choice and given by (6) are not necessarily optimal, except for θ = π/2, for
which we have proved in [4] that κ0(π/2) = 1 is optimal. By testing other types
of function ψ, in particular ψ(x) = −|x − q|β with other values of β > 0 and
ψ(x) = − log |x− q|, we have found other functions κ0, but taking lower values.

Remark 6 : From the proof of theorem 1, we obtain the following corollary
concerning the data completion problem. This problem consists, for a function u
that solves Pu = 0 in Ω in the sense of distributions, to compute with the help of
the values of u and ∂nu on Γ0, the values of u and ∂nu on the complementary part
Γ1. If u ∈ C1,α(Ω), α ∈]0, 1], solves Pu = 0 in Ω and satisfies ||u||C1,α(Ω) ≤ M

and ||u||C1(Γ0)
≤ δ, then for all κ < ακ0(θ), there exists C, δ0 > 0 such that for

δ < δ0, ||u||C1(Γ1)
≤ CM/(log(M/δ))κ.
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In a view to derive a convergence rate of the method of quasi-reversibility,
we now study the case of functions that are H2(Ω) for N = 2 and N = 3. We
obtain the following theorem.

Theorem 2 : We define the sets Ω, Γ0 and the operator P exactly as in the
statement of theorem 1.
In the case N = 2 (resp. N = 3), for all κ ∈]0, κ0(θ)/2[ (resp. κ ∈]0, κ0(θ)/4[),
there exists C, δ0 such that for all δ ∈]0, δ0[, for all functions u ∈ H2(Ω) which
satisfy

||u||H2(Ω) ≤M, ||Pu||L2(Ω) + ||u||H1(Γ0) + ||∂nu||L2(Γ0) ≤ δ, (26)

where M > 0 is a constant, then

||u||H1(Ω) ≤ C
M

(log(M/δ))κ
. (27)

If we do not assume that Γ0 is of class C1,1, the estimate (27) holds under
assumption (26) and provided we restrict to the functions u which satisfy u|Γ0

=
0 and ∂nu|Γ0

= 0.

Proof : By classical imbeddings for Sobolev Spaces (see for example [1], p.
108), we have that for N = 2, H2(Ω) → C0,α(Ω), for all α ∈ [0, 1[, and for
N = 3, H2(Ω) → C0,1/2(Ω).
Then the proof is very similar to the proof of theorem 1. For all κ < κ0(θ) in
the case N = 2 (resp. for all κ < κ0(θ)/2 in the case N = 3), there exists c > 0
such that for sufficiently small ε, for all u ∈ H2(Ω),

||u||C0(∂Ω) ≤ ec/ε(||Pu||L2(Ω) + ||u||H1(ω1)) + εκ||u||H2(Ω),

and then by using propositions 2 and 3,

||u||C0(∂Ω) ≤ ec/ε(||Pu||L2(Ω) + ||u||H1(Γ0) + ||∂nu||L2(Γ0)) + εκ||u||H2(Ω).

Then assumption (26) implies

||u||C0(∂Ω) ≤ ec/εδ + εκM.

By using the same ε optimization procedure as in corollary 1 of [4], we obtain
that there exists C > 0 such that for sufficiently small δ,

||u||C0(∂Ω) ≤ C
M

(log(M/δ))κ
.

Combining (22) and (23), we obtain

||u||H1(Ω) ≤ C(||Pu||L2(Ω) + ||u||1/2C0(∂Ω)||u||
1/2
H1(∂Ω)).

By using a classical trace inequality, we obtain

||u||H1(Ω) ≤ C(||Pu||L2(Ω) + ||u||1/2C0(∂Ω)||u||
1/2
H2(Ω)),

which completes the proof . �
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4 Application to the method of quasi-reversibility

In this section, we use the stability estimates obtained in previous section to
derive a convergence rate for the quasi-reversibility method, and therefore to
complete the results already obtained in [4, 8]. The method of quasi-reversibility,
first introduced in [10], enables one to regularize the ill-posed elliptic Cauchy
problems.
Specifically, we consider a bounded and connected open domain Ω ⊂ R

N with
Lipschitz boundary and an open part Γ0 of ∂Ω such that there exist x0 ∈ Γ0

and τ > 0 with ∂Ω ∩B(x0, τ) ⊂ Γ0.
Now we assume that u ∈ H2(Ω) solves the ill-posed Cauchy problem with data
(g0, g1) ∈ H1(Γ0) × L2(Γ0) :







Pu = 0 in Ω
u|Γ0

= g0
∂nu|Γ0

= g1.
(28)

In order to solve the Cauchy problem with these uncorrupted data (g0, g1), for
α > 0 we consider the formulation of quasi-reversibility, written in the following
weak form : find uα ∈ H2(Ω) such that ∀v ∈ H2(Ω), v|Γ0

= ∂nv|Γ0
= 0,







(Puα, Pv)L2(Ω) + α(uα, v)H2(Ω) = 0
uα|Γ0

= g0
∂nuα|Γ0

= g1.
(29)

Using Lax-Milgram theorem and introducing the solution u to the system (28),
we easily prove that formulation (29) is well-posed. On the other hand, it follows
from (28) and (29) that there exist constants C1, C2 > 0 such that

||uα − u||H2(Ω) ≤ C1, ||P (uα − u)||L2(Ω) ≤ C2

√
α. (30)

Using (30) and theorem 2 in the case 2 for function uα − u ∈ H2(Ω), we obtain
the following convergence rate : there exists C > 0 for all κ ∈]0, κ0(θ)/2[ (resp.
κ ∈]0, κ0(θ)/4[) for N = 2 (resp. for N = 3), such that for sufficiently small
α > 0,

||uα − u||H1(Ω) ≤ C
1

(log(1/α))κ
. (31)

Note that if additionally we assume that uα − u ∈ H3(Ω) and

||uα − u||H3(Ω) ≤ C1, (32)

with the help of the imbeddingsH3(Ω) → C1,λ(Ω) for all λ ∈ [0, 1[ andH3(Ω) →
C1,1/2(Ω), the estimate (31) holds for all κ ∈]0, κ0(θ)[ (resp. κ ∈]0, 3κ0(θ)/4[)
for N = 2 (resp. for N = 3).
In order to test the optimality of (31), we introduce a discretized weak formula-
tion of quasi-reversibility, which is associated to the continuous weak formulation
(29). In this view, we consider the particular case N = 2, P = −∆, and Ω is
a polygonal domain. We use the so-called Fraeijs de Veubeke’s finite element
(F.V.1), introduced in [7] and analyzed in [9]. This nonconforming finite ele-
ment, initially designed to solve plate bending problems, can be also used to
solve the quasi-reversibility formulation (29). In the present paper, we briefly
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describe such element, but a comprehensive analysis of the discretized formula-
tion is postponed in a future paper.
We consider a regular triangulation Th of Ω (see [5] for definition) such that the
diameter of each triangle K ∈ Th is bounded by h. The set Γ0 consists of the
union of the edges of some triangles K ∈ Th, and the complementary part of the
boundary ∂Ω is denoted Γ1. We denote Wh, the set of functions wh ∈ L2(Ω)
such that for all K ∈ Th, wh|K belongs to the space of shape functions PK in
K (see [9] for definition of PK), and such that the degrees of freedom coincide,
that is : the values of the function at the vertices, the values at the mid-points
of the edges of the element, and the mean values of the normal derivative along
each edge.
Then, we define Vh,0 as the subset of functions of Wh for which the degrees of
freedom on the edges contained in Γ0 vanish, and Vh as the subset of functions
of Wh for which the degrees of freedom on the edges contained in Γ0 coincide
with the corresponding values obtained with data g0 and g1.
For α > 0, we consider the discretized formulation of quasi-reversibility, written
in the following weak form : find uh,α ∈ Vh, such that for all wh ∈ Vh,0,

∑

K∈Th

{

(∆uh,α,∆wh)L2(K) + α(uh,α, wh)H2(K)

}

= 0. (33)

To analyze convergence when h tends to 0, we introduce the norms ||.||2,h and
||.||1,h, which are defined, for wh ∈Wh, by

||wh||22,h =
∑

K∈Th

||wh||2H2(K), ||wh||21,h =
∑

K∈Th

||wh||2H1(K).

By adapting to our case the arguments used in [3] with the Morley’s finite
element for the plate bending problem, we prove that provided uα is smooth
enough, then for fixed α, ||uh,α−πhuα||2,h → 0 like h when h→ 0, where πhuα
is the interpolate of uα in Wh. By using the estimate (31), we conclude that for
small fixed h, we have the approximate convergence rate in α :

||uh,α − πhu||1,h . C
1

(log(1/α))κ
. (34)

This is the reason why we hope to capture the logarithmic exponent κ by using
a refined mesh.
In our numerical experiments, we solve the problem (33) with data g0 = u|Γ0

and g1 = ∂nu|Γ0
for different harmonic functions u defined by un = Re(zn), with

z = x+iy and n = 1, 2, .... For increasing values of n, the corresponding function
un is more and more oscillating, which is likely to deteriorate the convergence
rate in α for fixed h. We stop increasing n as soon as ||uh,α − πhu||1,h becomes
bigger than 0.1 ||πhu||1,h, that is when h is not sufficiently small to enable the
regularization process in α. In order to test different angles θ, Ω is either a
triangle of smaller angle 2θ = π/8, 2θ = π/5, 2θ = π/3, or a pentagon of
smaller angle 2θ = π/2 (see figure 3). The set Γ0 covers 60% of the total
boundary ∂Ω in all cases. The size of the mesh h is fixed to 1/150, which has to
be compared to the edge of length 1 such as indicated on figure 3. The figure 4
represents the function πhu for u = Re(z3) in the case 2θ = π/3, as well as the
function uh,α − πhu, where uh,α is the solution of (33) for α = 10−2, α = 10−4

INRIA



Conditional stability for ill-posed Cauchy problem 23

1

x

y

(0,0)

Γ0

Γ1

2Θ Ω

1

(0,0)
x

y

Γ0

Ω

2Θ

Γ1

Figure 3: Domains Ω under consideration

Figure 4: Exact solution Re(z3) for angle 2θ = π/3, discrepancy between the
retrieved and the exact solution for α = 10−2, α = 10−4 and α = 10−6

and α = 10−6. In order to capture the dependence of ||uh,α − πhu||1,h on α
given by (34), we plot

log(||uh,α − πhu||1,h) = F (log(log(1/α)))

for functions u = un which correspond to increasing values of n. The first
important result is that the graph of the function F we obtain is actually a line of
negative slope, which is an experimental confirmation of the logarithmic stability
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we have established. Furthermore, we remark that this slope is decreasing with
n, as predicted above. The figure 5 clearly illustrates this fact, in the case
2θ = π/3, for n = 2, 3, 5. The second and main important result is the way the
slope depends on the smaller angle 2θ of the polygon. As can be seen on figure
6, the slope of F is increasing as a function of θ for fixed n, as predicted by
(6). More precisely, we observe that for increasing values of n, the slope tends
asymptotically to some value which is approximately the value κ0(θ) given by
(6), in particular for small values of θ. Hence, it turns out that our estimate
(31) for any κ < κ0(θ) (with the additional regularity assumption (32)), which
is not proved to be optimal, seems not far away from optimality.
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Figure 5: Function F for 2θ = π/3 and n = 2, 3, 5
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