Boundary Value Problems for the Inviscid Primitive Equations in Limited Domain

Abstract : This work aims to contribute to what is considered as a major computational issue for the geophysical fuid dynamics (GFD) for the coming years, that is the boundary conditions for numerical computations in a limited domain, with a boundary that has (at least partly) no physical justification. Numerical computations in limited domains in ocean and atmosphere are "constantly" required (and sometimes lead to commercial softwares) in order to provide forecasts for agriculture, tourism industry, insurances, aircraft navigation, etc. This article focuses on the nonviscous primitive equations in a limited domain, in space dimension 2, 2.5 and 3 and provides in each case a set of boundary conditions wich is shown to lead to a well-posed problem. The suitability of these new boundary conditions is also computationnally evidenced in space dimension two.
Type de document :
Chapitre d'ouvrage
Roger Temam and Joe Tribbia. Computational Methods for the Atmosphere and the Oceans, 14, Elsevier, pp.481-576, 2009, Handbook on Numerical Analysis, 〈10.1016/S1570-8659(08)00211-1〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00324224
Contributeur : Antoine Rousseau <>
Soumis le : mercredi 24 septembre 2008 - 14:11:00
Dernière modification le : jeudi 11 janvier 2018 - 06:21:48
Document(s) archivé(s) le : lundi 8 octobre 2012 - 13:30:23

Fichier

HdB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Antoine Rousseau, Roger Temam, Joe Tribbia. Boundary Value Problems for the Inviscid Primitive Equations in Limited Domain. Roger Temam and Joe Tribbia. Computational Methods for the Atmosphere and the Oceans, 14, Elsevier, pp.481-576, 2009, Handbook on Numerical Analysis, 〈10.1016/S1570-8659(08)00211-1〉. 〈inria-00324224〉

Partager

Métriques

Consultations de la notice

608

Téléchargements de fichiers

149