Modified Tangential Frequency Filtering Decomposition and its Fourier Analysis

Qiang Niu 1 Laura Grigori 2 Pawan Kumar 2 Frédéric Nataf 3
2 GRAND-LARGE - Global parallel and distributed computing
LRI - Laboratoire de Recherche en Informatique, CNRS : UMR8623, UP11 - Université Paris-Sud - Paris 11, INRIA Saclay - Ile de France, LIFL - Laboratoire d'Informatique Fondamentale de Lille
Abstract : In this paper, a modified tangential frequency filtering decomposition (MTFFD) preconditioner is proposed. The optimal order of the modification and the optimal relaxation parameter are determined by Fourier analysis. With this choice of the optimal order of modification, the Fourier results show that the condition number of the preconditioned matrix is ${\cal O}(h^{-\frac{2}{3}})$, and the spectrum distribution of the preconditioned matrix can be predicted by the Fourier results. The performance of MTFFD is compared with tangential frequency filtering (TFFD) preconditioner on a variety of large sparse matrices arising from the discretization of PDEs with discontinuous coefficients. The numerical results show that the MTFFD preconditioner is much more efficient than the TFFD preconditioner.
Document type :
Reports
[Research Report] RR-6662, 2008


https://hal.inria.fr/inria-00324378
Contributor : Laura Grigori <>
Submitted on : Wednesday, September 24, 2008 - 6:03:53 PM
Last modification on : Thursday, September 25, 2008 - 10:03:31 AM

File

RR-6662.pdf
fileSource_public_author

Identifiers

  • HAL Id : inria-00324378, version 1

Collections

Citation

Qiang Niu, Laura Grigori, Pawan Kumar, Frédéric Nataf. Modified Tangential Frequency Filtering Decomposition and its Fourier Analysis. [Research Report] RR-6662, 2008. <inria-00324378>

Export

Share

Metrics

Consultation de
la notice

237

Téléchargement du document

75