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Abstract: In this paper, a modified tangential frequency filtering decomposi-
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tion and the optimal relaxation parameter are determined by Fourier analysis.
With this choice of the optimal order of modification, the Fourier results show
that the condition number of the preconditioned matrix is O(h− 2

3 ), and the
spectrum distribution of the preconditioned matrix can be predicted by the
Fourier results. The performance of MTFFD is compared with tangential fre-
quency filtering (TFFD) preconditioner on a variety of large sparse matrices
arising from the discretization of PDEs with discontinuous coefficients. The
numerical results show that the MTFFD preconditioner is much more efficient
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Préconditionnement à base de filtrage tangentiel

modifié et son analyse de Fourier

Résumé : Dans ce papier nous proposons une modification du préconditionnement
à base de filtrage tangentiel (MTFFD). Les valeurs optimales des paramètres de
la modification sont déterminées par une analyse de Fourier. Avec ce choix des
paramètres, l’analyse de Fourier montre que le conditionnement de la matrice
préconditionnée est de l’ordre de O(h− 2

3 ). Les résultats numériques présentés
montrent que MTFFD est plus efficace que le préconditionnement à base de
filtrage tangentiel TFFD.

Mots-clés : préconditionnement, systèmes linéaires, GMRES
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1 Introduction
In this paper, we investigate preconditioning techniques for solving the linear
system

Ax = b (1)

with

A =













D1 U1

L1 D2
. . .

. . .
. . . Unx−1

Lnx−1 Dnx













∈ RN×N , b ∈ RN ,

which often arises from the discretization of many PDEs by finite difference
or finite volume schemes. When preconditioned iterative methods are used for
solving (1), the convergence rate of an iterative method heavily depends on
the property of the preconditioner [36]. Therefore, developing efficient precon-
ditioners has been one of the major research interests in many applications.
Algebraic multigrid (AMG) methods work well for many problems in practice
[21, 35]. However, conventional AMG methods may suffer from relatively ex-
pensive setup time and large memory requirements, particularly for three di-
mensional problems [18]. Another more general preconditioner is the multilevel
incomplete block factorization [9, 37]. A theoretical comparison of algebraic
multigrid methods and algebraic multilevel methods are carried out by Y. No-
tay [33] for symmetric positive definite (SPD) matrices, and generalized by C.
Mense and R. Nabben [29, 30] for nonsymmetric matrices.

Tangential Frequency Filtering Decomposition (TFFD) proposed in [2] is a
special kind of incomplete block factorization preconditioner. Similar to some
popular preconditioning techniques discussed in [1, 3, 8, 12, 13, 38, 39, 40, 42],
the TFFD preconditioner can be used as a preconditioner or a smoother for
multigrid methods. The preconditioner has the feature of filtering property, i.e.
(M−A)f = 0 for a vector f , where M is the TFFD preconditioner. For A � 0
(symmetric positive semidefinite), the preconditioner satisfies M − A � 0, i.e.
M is a compensative matrix of A [4, 5, 24]. This is an important property
that preconditioners of SPD coefficient matrix should possess. By combining
TFFD and ILU(0) in a multiplicative way [2], the combinative preconditioner
is shown to be very efficient on several challenging problems. Therefore, it is
important to give a deep understanding of the TFFD preconditioner. In [7, 8],
the authors have presented some nice ways to analyze the properties of general
block factorization preconditioners. For frequency filtering decomposition type
preconditioners, some analysis have been done in [1, 13, 14, 38, 39]. The bounds
on the spectral radii or condition numbers are derived by a couple of compli-
cated inequalities. These results are useful in understanding the behavior of
the preconditioners. However, the results have difficulty in outlining the range
and clustering of the spectrum of the preconditioned matrix, especially when
the matrix dimension is large. Fourier analysis is a powerful tool for analyzing
the properties of a preconditioner [15]. It has been applied successfully to lo-
cal model analysis in multigrid methods [10, 11, 41], and popularized by T. F.
Chan and H. C. Elman [15] for analyzing algebraic preconditioners and classical
iterative methods. Fourier analysis has been recognized as a standard tool for
estimating the convergence rate of preconditioned iterative methods, see e.g. T.
F. Chan et.al [16, 17], R J. Le Veque and L. N. Trefethen [23], K. Otto [34]. For
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4 Q. Niu, L. Grigori, P. Kumar, and F. Nataf

point-wise incomplete factorization type preconditioners like ILU(0), MILU(0)
and RILU preconditioners, Fourier analysis has been done in [15, 16, 17]. The
Fourier analysis of block ILU and MILU factorization preconditioners is consid-
ered in [34] for a time-dependent hyperbolic PDE problem.

The original aim of the present work is to analyze the TFFD preconditioner
by means of Fourier analysis. Whereas, later we find that Fourier analysis for
TFFD preconditioner is not feasible for our model problem. This is because of
an exact cancelation in the denominator of a parameter, which is determined
by symbolic computation (this will be shown in Section 3). But this does not
mean that in practice TFFD is not a good preconditioner. This issue leads us
to the derivation of the Modified Tangential Frequency Filtering Decomposition
(MTFFD) preconditioner, in which the recursion formula of TFFD is modified
by adding a term cΛih

q. This idea of modification comes from the MILU pre-
conditioner [20], where an additional term of order O(h−2) (c 6= 0) is added
to the diagonal along with dropped fill-in. For problems arising from the dis-
cretizations of second-order elliptic partial differential equations, it is known
[6, 20] that the modification is able to reduce the condition number of the pre-
conditioned matrix by MILU from O(h−2) (c = 0) to O(h−1) (c 6= 0). Using a
two dimensional Poisson equation as a model problem, we perform the Fourier
analysis of the MTFFD preconditioner. The optimal choice of q and c are deter-
mined by this analysis, which shows that q = 4

3 and c = (4π2)
2
3 are the optimal

choices as h tends to 0. The optimality of these parameters is illustrated by the
numerical tests. When the optimal choice of modification order q is used, the
Fourier analysis reveals that the condition number of the preconditioned matrix
is O(h− 2

3 ). This bound is better compared with other incomplete factoriza-
tion type preconditioners (c.f. [15]). To compare the preconditioning effect of
MTFFD with TFFD, we present tests on large sparse matrices arising from the
discretization of PDEs with discontinuous coefficients. The results show that
the MTFFD preconditioner is much more efficient, and MTFFD preconditioned
GMRES needs less than half of the iteration numbers of TFFD preconditioned
GMRES.

We use ctridm(α, β, γ) and circm(γ1, . . . , γm) to denote the tridiagonal cir-
culant matrix and circulant matrix of order m, i.e.

ctridm(α, β, γ) =













β γ α

α
. . .

. . .

. . .
. . . γ

γ α β













, circm(γ1, . . . , γm)















γ1 γ2 . . . γm−1 γm

γm γ1 γ2 . . . γm−1

...
. . .

. . .
. . .

...
γ3 . . . γm γ1 γ2

γ2 γ3 . . . γm γ1















We also use tridm(α, β, γ) and Btridm(L, T, U) to denote the m×m tridiagonal
and mk × mk block tridiagonal matrix with each diagonal block of size k × k

respectively, i.e.

tridm(α, β, γ) =













β γ

α
. . .

. . .

. . .
. . . γ

α β













and Btridm(L, T, U) =













T U

L
. . .

. . .

. . .
. . . U

L T













.
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MTFFD and its Fourier Analysis 5

The paper is organized as follows, In Section 2, a model problem is described,
which will be used for Fourier analysis. In Section 3, we present the modified
TFFD preconditioner and carry out the Fourier analysis for the MTFFD pre-
conditioner. In Section 4, the performance of the MTFFD preconditioner is
compared with the TFFD preconditioner by several examples. Finally, we con-
clude the paper in Section 5.

2 Description of the model problem

We consider the 2-D Poisson equation as the model problem, i.e.

− ∆u = f (2)

posed on the unit square Ω = 0 ≤ x, y ≤ 1 with Dirichlet boundary conditions

u(x, y) = 0.

This model problem is also used in [8, 15, 17]. Discretizing this problem by the
standard second-order finite difference (FE) scheme on a uniform grid with step
size hd = 1

m+1 in each direction, we can obtain a linear system of order m2

Ãu = b̃, (3)

where
Ã = Im ⊗ D̃ + κ2S̃ ⊗ Im,

D̃ = tridm(−κ1, d,−κ1),

S̃ = tridm(−1, 0,−1).

and d = 2(κ1 + κ2), κ1 = κ2 = 1.
Fourier analysis can only be performed on constant coefficient problems with

periodic boundary conditions [15]; hence we also introduce the discretization of
equation (2) with periodic boundary conditions

u(x, 0) = u(x, 1) u(0, y) = u(1, y).

According to the argument in [15], we assume the discretization step size hp

for the periodic case to be half that of Dirichlet case, i.e. hp = 1
n+1 = 1

2(m+1) .

Then we have a linear system of order n2

Au = b (4)

where
A = In ⊗ D + κ2S ⊗ In,

D = ctridn(−κ1, d,−κ1),

S = ctridn(−1, 0,−1),

and the values of d, κ1 and κ2 are the same as in (3).
The main idea of Fourier analysis to use the theoretical results obtained

for a periodic problem to predict the convergence results of the corresponding

RR n° 6662



6 Q. Niu, L. Grigori, P. Kumar, and F. Nataf

Dirichlet problem. Therefore, we present in this paper the Fourier analysis of
the linear system (4). In the following discussion, the equation (3) and (4) will
be referred to as Dirichlet problem and periodic problem respectively, and we
always use subscript d and p to distinguish the parameters for the Dirichlet case
and the periodic case.

Firstly, the Fourier eigenvalue of the coefficient matrix A is given by the
following equation [15]

Au(j,k) = λAu(j,k),

where u(j,k) is defined by

u
(j,k)
s,t = eisθj eitφk (5)

with

θj =
2πj

n + 1
, φk =

2πk

n + 1
, 1 ≤ j, k ≤ n. (6)

and i is the imaginary unit.

Substituting the expression of u
(j,k)
s,t into the grid-equation related to A (refer

to [15]), we have

Au(j,k) = dus,t − κ1us+1,t − κ1us−1,t − κ2us,t−1 − κ2us,t+1

= (d − κ1e
iθj − κ1e

−iθj − κ2e
iφk − κ2e

−iφk)eisθj eitφk

= (4 − 2 cos(θj) − 2 cos(φk))eisθj eitφk

= 4(κ1 sin2(
θj

2 ) + κ2 sin2(φk

2 ))u(j,k).

(7)

Thus, the Fourier eigenvalue of A corresponding to the Fourier eigenvector u(j,k)

are

λA = λj,k(A) = 4(κ1 sin2(
θj

2
) + κ2 sin2(

φk

2
)). (8)

The expression of the Fourier eigenvalue of A will be used later in the Fourier
analysis.

3 Modified Tangential Frequency Filtering De-

compositions and its Fourier analysis

For a general block tridiagonal linear system (3), we introduce the Modified
Tangential Frequency Filtering Decomposition (MTFFD) preconditioner M̃ as
follows

M̃ =











T̃1

L1 T̃2

. . .
. . .

Lm−1 T̃m





















T̃−1
1

T̃−1
2

. . .

T̃−1
m























T̃1 U1

T̃2
. . .

. . . Um−1

T̃m













.

(9)
The diagonal blocks T̃i in MTFFD are computed by the following recursion
formula

T̃i =

{

D1 + cΛ1h
q, i = 1,

Di − Li−1(2βi − βiT̃i−1βi)Ui−1 + cΛih
q, 1 < i ≤ m.

(10)

INRIA



MTFFD and its Fourier Analysis 7

where Λi, 1 ≤ i ≤ m, are diagonal matrices, parameter q is the order of modi-
fication, and c is a relaxation parameter. The optimal choice of q and c will be
discussed later. The matrix βi is an approximation to the inverse of T̃i−1, and
it can be determined by enabling M̃ to have a filtering condition. The analysis
in [2] shows that it reduce to solving

βi(Ui−1f) = T̃−1
i−1Ui−1f, (11)

where f is a filtering vector.
We can see that the MTFFD preoconditioner differs from the TFFD pre-

conditioner in that an additional term cΛih
q is added in the recursion formula

(10). If Λi = Im, then the modification is similar to those done in the modified
ILU factorization [6, 20], where the modification is ch2Im. The modification in
(10) is quite similar to the shifted iteration methods discussed in [43], where
the ILU factorization of a shifted coefficient matrix is constructed and used
as a preconditioner for the original problem. For analysis purpose, we will fix
Λi = Im, 1 ≤ i ≤ m, and the filtering vector is chosen as 1 = [1, . . . , 1]T .

As mentioned before, Fourier analysis can be performed only on the con-
stant coefficient problems with periodic boundary conditions. According to the
theory developed in [15], there are several assumptions on which our analysis
will be based,

• The grid size hp = 1
2hd should be used in order to relate the Fourier anal-

ysis results to that of the Dirichlet problems. We have made this assumption
be satisfied when the discretization of (2) is done.

• For the linear system (4) generated by the discretization of (2) with periodic
boundary conditions, the MTFFD preconditioner M̂ is forced to have constant
diagonals, i.e. the MTFFD preconditioner M̂ for periodic system (4) should
take the form of

M̂ = (L + T̂ )T̂−1(T̂ + U), (12)

where T̂ has the same diagonal blocks, i.e.

T̂ = In ⊗ T̂0

and each diagonal block T̂0 is circulant, i.e.

T̂0 = circn(d̂,−κ̂1, 0, . . . , 0,−κ̂1)

with parameters d̂ and κ̂1 to be determined by the recursion formula (10).
Using the assumptions above and the recursion formula (10), we now con-

struct MTFFD preconditioner for which we will perform Fourier analysis.

RR n° 6662



8 Q. Niu, L. Grigori, P. Kumar, and F. Nataf

Firstly, the parameters d̂ and κ̂1 can be computed by solving

T̂i = Di − Li−1(2βi−1 − βi−1T̂i−1βi−1)Ui−1 + chqIn

=













d −κ1 −κ1

−κ1 d
. . .

. . .
. . . −κ1

−κ1 −κ1 d













+
κ2
2

(d̂−2κ̂1)2













d̂ −κ̂1 −κ̂1

−κ̂1 d̂
. . .

. . .
. . . −κ̂1

−κ̂1 −κ̂1 d̂













− 2κ2
2

(d̂−2κ̂1)
In + chqIn

=



















d − κ2
2d̂−2κ2

2(d̂−2κ̂1)
2

(d̂−2κ̂1)
−κ1 − κ2

2κ̂1

(d̂−2κ̂1)2
−κ1 − κ2

2κ̂1

(d̂−2κ̂1)2

−κ1 − κ2
2κ̂1

(d̂−2κ̂1)2
d − κ2

2d̂−2κ2
2(d̂−2κ̂1)

2

(d̂−2κ̂1)

. . .

. . .
. . . −κ1 − κ2

2κ̂1

(d̂−2κ̂1)2

−κ1 − κ2
2κ̂1

(d̂−2κ̂1)2
κ1 − κ2

2κ̂1

(d̂−2κ̂1)2
d − κ2

2d̂−2κ2
2(d̂−2κ̂1)

2

(d̂−2κ̂1)



















+ chqIn.

(13)
From the above relationship, we have

d̂ = d − κ2
2d̂ − 2κ2

2(d̂ − 2κ̂1)
2

(d̂ − 2κ̂1)
+ chq,

κ̂1 = κ1 +
κ2

2κ̂1

(d̂ − 2κ̂1)2
,

or
(d̂ − d)(d̂ − 2κ̂1)

2 = κ2
2(d̂ − 2κ̂1) − 2κ2

2(d̂ − 2κ̂1) + 2κ̂1κ
2
2, (14)

(κ̂1 − κ1)(d̂ − 2κ̂1)
2 = κ2

2κ̂1. (15)

By using matlab symbolic computation [27], we have

d̂ − 2κ̂1 = −1 + 1
2 (d + chq) + 1

2

√

(d + ch)2 − 4(d + chq)

= 1 + 1
2chq + 1

2

√

(4 + chq)chq

= 1 + ηh,

(16)

and

κ̂1 =
−(d+chq)−

√
−4(d+chq)+(d+chq)2+(−1+ 1

2 (d+chq)+ 1
2

√
−4(d+chq)+(d+chq)2)(d+chq)

(d+chq)(d+chq−4)

= 1
2 +

√
(d+chq)chq( 1

2 (d+chq)−1)

chq(d+chq)

= 1
2 +

1
2 chq+1√

(4+chq)chq

= 1
2 + 1

2δh
,

(17)

where ηh = 1
2chq + 1

2

√

(4 + chq)chq, δh =

√
(4+chq)chq

chq+2 .
From (16) and (17) we can see that κ̂1 → ∞ as c → 0. Thus, Fourier

analysis can not be performed on the original tangential frequency filtering
decomposition preconditioner.

By straightforward computation as in (7), the Fourier eigenvalues of L, U ,
and T̂ are

λL = −κ2e
−iφk ,

λU = −κ2e
iφk ,

INRIA
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λ
T̂

= d̂ − κ̂1 cos(θj),

respectively. Therefore, the Fourier eigenvalues of the MTFFD preconditioner
M̂ are

λ(M̂) = (λL + λ
T̂
)λ−1

T̂
(λU + λ

T̂
)

=
(d̂−2κ̂1 cos(θj)−κ2 cos(φk)+iκ2 sin(φk))(d̂−2κ̂1 cos(θj)−κ2 cos(φk)−iκ2 sin(φk))

d̂−2κ̂1 cos(θj)
.

(18)

Letting ξ = d̂ − 2κ̂1 cos(θj), we have

λ(M̂) = 1
ξ
(ξ − κ2 cos(φk) + iκ sin(φk)(ξ − κ2 cos(φk) − iκ2 sin(φk))

= 1
ξ
((ξ − κ2 cos(φk))2 + κ2

1 sin(φk)2)

= 1
ξ
((ξ2 − 2ξκ2 cos(φk) + κ2

2).

(19)
As we know,

λj,k(A) = 4(κ1 sin2(
θj

2
) + κ2 sin2(

φk

2
)).

Hence

λ(M̂−1A) =
4ξ(κ1 sin2(

θj
2 )+κ2 sin2(

φk
2 ))

ξ2−2ξκ2 cos(φk)+κ2
2

=
4(d̂−2κ̂1 cos(θj))(κ1 sin2(

θj
2 )+κ2 sin2(

φk
2 ))

(d̂−2κ̂1 cos(θj)−κ2)2+2κ2(d̂−2κ̂1 cos(θj))(1−cos(φk))

=
4(d̂−2κ̂1+4κ̂1 sin2(

θj
2 ))(κ1 sin2(

θj
2 )+κ2 sin2(

φk
2 ))

(d̂−2κ̂1+4κ̂1 sin2(
θj
2 )−κ2)2+4κ2(d̂−2κ̂1+4κ̂1 sin2(

θj
2 )) sin2(

φk
2 )

=
4(ηh+1+4κ̂1 sin2(

θj
2 ))(sin2(

θj
2 )+sin2(

φk
2 ))

(ηh+4κ̂1 sin2(
θj
2 ))2+4κ2(ηh+1+4κ̂1 sin2(

θj
2 )) sin2(

φk
2 )

.

(20)

Thus,

λ−1(M̂−1A) =
(ηh+4κ̂1 sin2(

θj
2 ))2+4κ2(ηh+1+4κ̂1 sin2(

θj
2 )) sin2(

φk
2 )

4(ηh+1+4κ̂1 sin2(
θj
2 ))(sin2(

θj
2 )+sin2(

φk
2 ))

=
16κ̂2

1 sin4(
θj
2 )+16κ̂1 sin2(

θj
2 ) sin2(

φk
2 )+η2

h+8δhκ̂1 sin2(
θj
2 )+4(1+ηh) sin2(

φk
2 )

16κ̂1 sin4(
θj
2 )+16κ̂1 sin2(

θj
2 ) sin2(

φk
2 )+4(1+ηh)(sin2(

θj
2 )+sin2(

φk
2 ))

= 1 +
16(κ̂1−1)κ̂1 sin4(

θj
4 )+η2

h+8κ̂1ηh sin2(
θj
2 )−4(1+ηh) sin2(

θj
2 )

16κ̂1 sin4(
θj
2 )+16κ̂1 sin2(

θj
2 ) sin2(

φk
2 )+4(1+ηh)(sin2(

θj
2 )+sin2(

φk
2 ))

= 1 +
4(δ−1

h
+1)(δ−1

h
−1) sin2(

θj
2 )+

η2
h

sin2(
θj
2

)

16κ̂1 sin2(
θj
2 )+16κ̂1 sin2(

φk
2 )+4(1+ηh)+4(1+ηh)

sin2(
φk
2

)

sin2(
θj
2

)

.

(21)
As h tends to 0, we have δ−1

h ≥ 1. Then from (21) it is easy to see that
asymptotically

λ−1(M̂−1A) ≥ 1,

i.e. λ(M̂−1A) ≤ 1. This is consistent with the theoretical results obtained in
[2].

Subsequently, we will derive the upper bound of λ−1(M̂−1A) in an analytical
way.

Let

f(s1, s2) = 1 +
αs2

1 + γ

s2
1

βs2
1 + βs2

2 + e
s2
2

s2
1

+ e
, (22)
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10 Q. Niu, L. Grigori, P. Kumar, and F. Nataf

where we use s1 = sin( θ
2 ), s2 = sin(φ

2 ). It is easy to see that f(s1, s2) is a

continuous function of sin(θ
2 ) and sin(φ

2 ), with ( θ
2 , φ

2 ) defined in (0, π) × (0, π).

In the representation form of f(s1, s2), we have set α = 4(δ−1
h + 1)(δ−1

h − 1),
γ = η2

h, β = 16κ̂1, and e = 4(1 + ηh).

Taking partial derivation of f(s1, s2) with s2, we have

f ′
s2

(s1, s2) =
−2(αs2

1 + γ

s2
1
)(β + e

s2
1
)s2c2

(βs2
1 + βs2

2 + e
s2
2

s2
1

+ e)2

{

≤ 0, φ ∈ (0, π
2 ),

> 0, φ ∈ (π
2 , π),

(23)

where c2 = cos(φ
2 ).

Thus,

max
θ,φ

(f(s1, s2)) = f(s1, 0) = f(s1, π) = 1 +
αs2

1 + γ

s2
1

βs2
1 + e

.

Therefore, the maximum value of λ(M̂−1A) is attained on the line (j, k) with
k = 1, or k = n.

Also we have

f ′
s1

(s1, 0) =
4αs3

1c1(βs4
1+es2

1)−(αs4
1+γ)(4βs3

1c1+2es1c1)

(βs4
1+es2

1)2

=
2αes4

1−γ(4βs2
1+2e)

(βs4
1+es2

1)2
s1c1

=
32(δ−2

h
−1)(1+ηh)s4

1−
32η2

h
(1+δh)s2

1
δh

−8η2
h(1+ηh)

(βs4
1+es2

1)2
s1c1

≈ s1c1

(βs4
1+es2

1)2
(
32s4

1

δ2
h

− 32η2
hs2

1

δh
)

≈ s1c1

(βs4
1+es2

1)2
(
32s4

1

chq − 32
√

ch
q
2 s2

1).

(24)

In the above approximation, the high-order terms are ignored as h is assumed
to be sufficiently small. Subsequently, we will analyze the sign of f ′

s1
(s1, 0) in

two cases:

• When q ≥ 4
3 , then as h → 0, we have

f ′
s1

(s1, 0) is

{

≥ 0, θ ∈ (0, π
2 ],

< 0, θ ∈ (π
2 , π),

(25)

Therefore, the maximum value of λ−1(M̃−1A) is attained whenever j = ⌊n
2 ⌋+1,

and k = 1 or k = n, where ⌊n
2 ⌋ denotes the largest integer less than n

2 . At these
points (j, k), we have

λ−1
⌊n

2 ⌋+1,k
(M̃−1A) ≈ 1 +

4
chq +chq−4

8
√

chq+4

≈ 1 + 1

2
√

ch
q
2

≥ 1

2
√

ch
2
3
.

(26)

• When 0 ≤ q ≤ 4
3 , then as h → 0, we have

f ′
s1

(s1, 0) is















≤ 0, θ ∈ (0, ξh],
> 0, θ ∈ (ξh, π

2 ),
≤ 0, θ ∈ [π

2 , π − ξh],
> 0, θ ∈ (π − ξh, π),

(27)
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MTFFD and its Fourier Analysis 11

where ξh the positive angle such
32s4

1

chq = 32
√

ch
q
2 s2

1, i.e. s2
1 = c

3
2 h

3q
2 . From the

equality, we have ξh = arcsin(c
3
4 h

3q
4 ). Therefore, in this case, the maximum

value of λ−1(M̂−1A) is possibly attained at one of the following three points
(j, k) = (1, k), (j, k) = (n, k), or (j, k) = (⌊n

2 ⌋ + 1, k), with k = 1 or k = n. At
the first two points, we have

λ−1
1,k(M̂−1A) = λ−1

n,k(M̂−1A) ≈ 1 +
chq

p

8π2h2

≈ 1 + c
8π2h2−q

≥ c

8π2h
2
3
.

(28)

At the third point, we have

λ−1
⌊n

2 ⌋+1,k
(M̃−1A) ≈ 1 +

4
chq +chq−4

8
√

chq+4

≈ 1 + 1

2
√

ch
q
2

≤ 1

2
√

ch
2
3
.

(29)

Therefore, in this case the maximum value of λ−1(M̂−1A) is attained at (j, k) =
(1, 1), or (j, k) = (n, n), i.e. the value shown by (28).

As we have shown above, the maximum eigenvalue of the preconditioned
matrix is approximately equal to 1. Therefore, the condition number of the
preconditioned matrix is approximately given by

κ(M̂−1A) =
maxj,k λj,k(M̂−1A)

minj,k λj,k(M̂−1A)

≈ λ−1
max(M̂−1A)

1

where λ−1
max(M̂−1A) denotes the maximum value of λ−1(M̂−1A). For fixed

c, from the above analysis we can see that the optimal q that minimizes the
condition number is attained at 4

3 .
Define

{

g1(c) = 1 + 1

2
√

ch
2
3
,

g2(c) = 1 + c

8π2h
2
3
.

Then the optimal c can be determined by solving

min
c

max{g1(c), g2(c)}. (30)

This min-max problem can be solved by their plot. In Figure 1, we give the
curve of function g1(c) and g2(c) when h

2
3 = 0.1. From the figure we can see

that (30) is solved whenever

g1(c) = g2(c).

From this equation, we can get the optimal c = (4π2)
2
3 .

Suppose q is chosen as 4
3 , then the condition estimate of the preconditioned

linear system is

κ(M̂−1A) =
maxj,k λj,k(M̂−1A)

minj,k λj,k(M̂−1A)

≈ λmax(M̂−1A)−1

1
≤ 1 + max{ 1

2
√

ch
2
3
, c

8π2h
2
3
}

= O(h− 2
3 ).
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Figure 1: The curves of function g1(c) and g2(c).

We remark that the analysis above is for a periodic problem. If subscripts
of cd and cp are used to distinguish the parameters for Dirichlet and periodic

problems, then the optimal cp = (4π2)
2
3 . From the mesh size relationship of

Dirichlet and periodic problems, we have hp = 1
2hd. Hence, For q = 4

3 , the
modification should satisfy the relationship [17]

cph
4
3
p = cdh

4
3

d ,

from where we can get the optimal cd, i.e. cd = (1
2 )

4
3 (4π2)

2
3 ≈ 4.6012.

The above analysis can be concluded by the following theorem

Theorem 1 For the MTFFD preconditioner with Λi be an identity matrix, the
optimal choice of modification order is q = 4

3 , the optimal relaxation parameter

is cp = (4π2)
2
3 . For q = 4

3 and fixed c, then asymptotically (h → 0) the eigen-

values of MTFFD preconditioned matrix M̂−1A are always less than 1, and the
condition number of M̂−1A is O(h− 2

3 ).

Remarks: By using the semi-discrete analysis, Y. Achdou and F. Nataf (cf.
Reference [1]) obtain an optimal filtering vector that minimizes the condition
number of preconditioned matrix by the tangential frequency filtering precon-
ditioner [38]. In this paper, we choose 1 as the filtering vector, but modify
the recursion formula of tangential tangential filtering decomposition proposed
in [2]. The optimal condition numbers obtained in both papers have the same
order. In Reference [13], the same order of the condition number is obtained
by using optimized two-frequency filtering decomposition. However, it is not
tangential filtering decomposition.
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Figure 2: The dependence of minimum eigenvalues on parameter cp.
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Figure 3: The dependence of condition numbers on parameter cp
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Table 1: Dirichlet and periodic results for cd = 2.5.

cd = 2.5 λmax λmin condition number
1

hd
Dirichlet Periodic Dirichlet Periodic Dirichlet Periodic

8 1.00 0.97 0.64 0.54 1.55 1.77

16 1.00 0.99 0.43 0.38 2.34 2.58

32 1.00 1.00 0.27 0.26 3.72 3.88

64 1.00 1.00 0.17 0.17 5.83 5.96

128 1.00 1.00 0.11 0.11 9.14 9.28

256 1.00 1.00 0.07 0.07 14.37 14.58

Table 2: Dirichlet and periodic results for cd = 5.

cd = 5 λmax λmin condition number
1

hd
Dirichlet Periodic Dirichlet Periodic Dirichlet Periodic

8 1.00 0.94 0.49 0.51 2.03 1.84

16 1.00 0.98 0.40 0.42 2.49 2.33

32 1.00 0.99 0.31 0.32 3.21 3.09

64 1.00 1.00 0.23 0.23 4.40 4.32

128 1.00 1.00 0.15 0.15 6.61 6.66

256 1.00 1.00 0.097 0.096 10.32 10.39

Table 3: Dirichlet and periodic results for cd = 7.5.

cd = 7.5 λmax λmin condition number
1

hd
Dirichlet Periodic Dirichlet Periodic Dirichlet Periodic

8 1.00 0.96 0.40 0.42 2.53 2.20

16 1.00 0.96 0.31 0.33 3.20 2.95

32 1.00 0.99 0.23 0.24 4.28 4.09

64 1.00 0.99 0.17 0.17 6.02 5.88

128 1.00 1.00 0.11 0.11 8.83 8.69

256 1.00 1.00 0.075 0.076 13.27 13.21

In Figures 2 -3, the minimum eigenvalues and the condition numbers are plot-
ted as a function of c, with 1

16 , 1
32 , 1

64 , 1
128 (corresponding to hp = 1

32 , 1
64 , 1

128 , 1
256 ).

As the maximum eigenvalues are both close to 1 and their plots are not easy to
distinguish, so we don’t display them. From the figures, it is easy to see that the
minimal eigenvalue (and hence the condition numbers) are quite similar. From
Figure 3, we can see that the experimental optimal cp is a little smaller than
the theoretical asymptotical optimal value. This is possibly because the mesh
size is not sufficiently refined. However, as hp → 0, the experimental optimal

value c indeed tends to (4π2)
2
3 .

As we have shown above, the experimental optimal parameter cp is slightly

smaller than the asymptotically optimal value (4π2)
2
3 = 11.59. In the following

test, we compare the numerical results with three different parameter cp and
various mesh sizes. Three parameters cp = 5, cp = 10, and cp = 15 are chosen;

INRIA
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Figure 4: The dependence of condition numbers on hp.

in the sense that cp = 5 is less than the optimal value; cp = 10 is close to the
optimal value; and cp = 15 is larger than the optimal value. The test results are
shown in Table 1 - 3, where we use Dirichlet and Periodic to denote the results
for Dirichlet case and periodic case, respectively. In order to approximate the
extremal eigenvalues of the preconditioned Dirichlet system, we use restarted
harmonic Arnoldi method [31] when mesh size hd ≤ 1

64 . The computed approx-

imate eigenpairs (λi, ϕ̂i) satisfy ||Aϕ̂i − λ̂iϕ̂i|| < 10−2. From the three tables,
we can see that the periodic values are very close to the Dirichlet values. The
condition number of the preconditioned Dirichlet system can be captured by the
periodic results. By comparing Table 1, Table 3 with Table 2 respectively, we
can see that cd = 5 produces the best condition number as hd is refined. The
results are consistent with the theoretical results.

To illustrate that the condition number of M̂−1A is O(h− 2
3 ), we display in

Figure 4 the experimental periodical condition numbers of Tables 1- 3. The
x-axis denotes the values of hp; the y-axis is the logarithmic scale of the ex-

perimental condition numbers and the function values of h
− 2

3
p and 1

4h
− 2

3
p . The

results at the points hp = 1
8 , 1

16 , 1
32 , 1

64 , 1
128 , 1

256 are plotted. From the Figures
we can see that the periodical experimental condition numbers depend linearly

on h
− 2

3
p . As hp tends to zero, the plot of experimental results with cp = 10 (c.f.

Table 2) becomes very close to the curve of function 1
4h

− 2
3

p .
To compare the range and clustering of the Fourier eigenvalues with that

of preconditioned Dirichlet system, we display the spectrum distributions when
cp = 5 and cp = 10, see Figures 5 and 6 respectively. The test results of mesh
size hd = 1

8 , 1
16 , 1

32 , (corresponding to hp = 1
16 , 1

32 , 1
64 ) are plotted. From the

Figures, we see that the range and clustering of the preconditioned Dirichlet
system and the Fourier eigenvalue distribution are extremely close. As mesh
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Figure 5: Spectrum distribution of the preconditioned matrices, with cp = 5.
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Figure 6: Spectrum distribution of the preconditioned matrices, with cp = 10.

size h decreases, the extremal eigenvalues (and hence the condition number) of
both cases become closer.

4 Numerical Examples

The performance of the MTFFD preconditioner, the TFFD preconditioner [2],
and the ILU(0) [36] preconditioner are compared on several problems arising
from the discretization of partial differential equations. All the tests are run
on an Intel Pentium IV Dual-Core with main memory 1G and the machine
precision eps = 2.22 × 10−16 using Matlab 7.5 on a Linux-based system.

In the tests, we stop the algorithm when the relative norm ||b−Axk||
||b|| is less

than 10−12. Both the exact solution and the initial approximate solutions are
chosen randomly. In the following discussions, the restarted GMRES [36] is used
with maximum subspace dimension 200. The filtering vector is always chosen
as 1 = [1, . . . , 1]T . In the following tables, iter denotes the number of iterations,
error denotes the infinite norm of the difference between the final approximate
solution and the exact solution. We use ”†” to denote that the method fails to
converge within 200 iteration steps.
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Example 1. We consider the boundary value problem as in [2]

η(x)u + div(a(x)u) − div(κ(x)∇u) = f in Ω
u = 0 on ∂ΩD

∂u
∂n

= 0 on ∂ΩN

(31)

where Ω = [0, 1]k with k = 2, ∂ΩN = ∂Ω \ ∂ΩD, ∂ΩD = [0, 1] × {0, 1}.
We consider the following five different cases. As these problems are no

longer constant coefficient, we choose the additional term as cΛih
4
3 , where Λi =

diag(Di), i.e. the diagonal matrix of the ith diagonal block of the coefficient
matrix.

Case I: The advection-diffusion problem with a rotating velocity in two di-
mensions:
The tensor κ is the identity, and the velocity is a(x) = (2π(x2 − 0.5), 2π(x1 −
0.5))T . The function η(x) is zero. The uniform grid with n × n nodes, n =
100, 200, 300, 400 nodes are tested respectively. The diagonal elements of A are
close to 4. We set parameter c to be 2.5 in the numerical test. Table 4 displays
the results obtained by using three different preconditioners.

Table 4: Test results for advection-diffusion problems, nonsymmetric matrix

MTFFD TFFD ILU(0)

1/h iter error iter error iter error

100 26 2.4e-13 57 8.3e-12 108 7.3e-10

200 32 5.6e-9 82 1.3e-11 191 3.2e-9

300 37 9.7e-10 101 1.6e-11 † 2.4e-6

400 40 8.1e-12 117 1.4e-11 † 2.0e-5

Table 5: Test results for non-Homogeneous problems, symmetric matrix

MTFFD TFFD ILU(0)

1/h iter error iter error iter error

100 26 8.7e-13 57 7.5e-12 108 3.0e-10

200 32 3.0e-12 82 9.2e-12 186 4.3e-9

300 37 5.8e-10 101 1.4e-11 † 2.6e-6

400 41 1.1e-12 116 1.7e-11 † 4.9e-5

Case II: Non-Homogenous problems with large jumps in the coefficients in
two dimensions:

The coefficient η(x) and a(x) are both zero. The tensor κ is isotropic and
discontinuous. It jumps from the constant value 103 in the ring 1

2
√

2
≤ |x −

c| ≤ 1
2 , c = (1

2 , 1
2 )T , to 1 outside. We tested uniform grids with n × n nodes,

n = 100, 200, 300, 400. The choice of the parameter c is the same with Case I.
Table 5 displays the results obtained by using three different preconditioners.
The results are quite similar to the advection-diffusion problem.
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From Table 4 - 5, we can see that MTFFD is much more efficient; it only
needs less than half of the iteration numbers that TFFD needs.

Case III: Skyscraper problems:
The tensor κ is isotropic and discontinuous. The domain contains many zones of
high permeability which are isolated from each other. Let [x] denote the integer
value of x. In 2D, we have

κ(x) =

{

103 ∗ ([10 ∗ x2] + 1), if [10 ∗ xi] = 0 mod(2) , i = 1, 2,

1, otherwise.

The diagonal elements of A jump between 4 and 36000. The parameter c is
chosen as 10 in the test. The numerical results are shown in table 6.

Case IV: Convective skyscraper problems:
The same with the Skyscraper problems except that the velocity field is changed
to be a = (1000, 1000, 1000)T . The diagonal elements of A jump between 24
and 36020. The parameter is chosen as 1. The tested results are displayed in
Table 7.

From Table 6 - 7 we can see that Skyscraper and Convective skyscraper
problems are quite difficult. The TFFD and ILU(0) preconditioned GMRES
fail to converge for both problems. The MTFFD preconditioned GMRES has
much better performance. For Skyscraper problem with h = 1

400 , we note that
MTFFD needs 222 iterations to converge.

Case V: Anisotropic layers:
The domain is made of 10 anisotropic layers with jumps of up to four orders
of magnitude and an anisotropy ratio of up to 103 in each layer. The diagonal
elements jump between 22 and 220000. The parameter c is chosen as 2

5 . The
test results are displayed in Table 8. From the table we can see that MTFFD
preconditioner is much more efficient; as h decreases, it needs only 1

3 of the
number of iterations that TFFD preconditioner needs.

Table 6: Test results for skyscraper problems, nonsymmetric matrix

MTFFD TFFD ILU(0)

1/h iter error iter error iter error

100 151 8.8e-7 † 1.3e-1 † 1.1e-3

200 185 2.9e-6 † 2.6e-1 † 6.6e-3

300 159 6.2e-6 † 3.9e-1 † 8.6e-3

400 † 3.6e-4 † 4.8e-1 † 3.6e-2

In Figure 7, the eigenvalue distributions of the preconditioned matrices by
TFFD and MTFFD preconditioners are displayed. The test matrices are gen-
erated from discretization of (31) with the above five different conditions and
mesh size h = 1

50 . From the figures we can see that the MTFFD preconditioner
can improve the eigenvalue distributions considerably. Particularly, the small-
est eigenvalues are shifted in the positive direction, which makes the smallest
eigenvalues to be well separated from the origin. The largest eigenvalues are
remain very close to 1.
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Table 7: Test results for convective skyscraper problems, nonsymmetric matrix

MTFFD TFFD ILU(0)

1/h iter error iter error iter error

100 66 1.1e-8 † 1.0e-4 173 3.7e-8

200 94 9.2e-8 † 4.3e-2 † 1.1e-3

300 82 5.0e-8 † 8.4e-2 † 8.6e-3

400 133 4.1e-8 † 2.9e-1 † 4.5e-2

Table 8: Test results for anisotropic layers problems, nonsymmetric matrix

MTFFD TFFD ILU(0)

1/h iter error iter error iter error

100 29 3.1e-11 68 1.4e-8 190 3.6e-7

200 36 6.8e-7 97 1.8e-8 † 2.1e-4

300 40 2.3e-6 120 1.2e-8 † 2.8e-4

400 42 5.0e-6 139 2.6e-8 † 6.5e-3
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Figure 7: Spectrum distribution the preconditioned matrices.
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Example 2. We consider the constant-coefficient convection diffusion equa-
tion

−∆u + 2p1ux + 2p2uy − p3u = f in [0, 1]2,
u = g on ∂[0, 1]2,

(32)

where p1, p2 and p3 are positive constants. Discretization of the equation by
the standard second order 5 -point stencil on a uniform n × n mesh gives rise
to a sparse linear system

Ax = b

where
A = Btridn(−(β + 1)I, T, (β + 1)I)

and
T = tridn(−γ − 1, 4 − σ, γ − 1),

with β = p1hd, γ = p2hd and hd = 1
n+1 . The matrices series cdde1-cdde6 are

based on the above equation with different parameters. We have tested all of
the matrices, and the results are shown in Table 9. In the tests, the parameter
cd is set to be 8 for cdde3 and cdde5, and 1 for other matrices.

Table 9: Test results for the cdde series matrices, nonsymmetric matrices

MTFFD TFFD ILU(0)

matrix(p1, p2, p3) iter error iter error iter error

cdde1 (1,2,30) 32 6.4e-11 197 3.4e-11 50 5.0e-11

cdde2 (25,50,30) 10 2.6e-11 10 7.3e-12 15 2.3e-12

cdde3 (1,2,80) 42 5.9e-10 † 3.4e-2 62 3.0e-10

cdde4 (25,50,80) 10 2.4e-11 10 3.0e-12 18 7.2e-12

cdde5 (1,2,250) 68 1.5e-10 † 1.8e-1 96 5.6e-10

cdde6 (25,50,250) 12 4.2e-12 11 1.2e-11 19 5.0e-12

From Table 9 we can see that the MTFFD preconditioner produces nearly
the same results as that of the TFFD preconditioner for cdde2, cdde4 and cdde6.
For the relatively difficult problems cdde1, cdde3 and cdde5, we can see that
the MTFFD preconditioner is more efficient.

5 Conclusions

A modified tangential frequency filtering preconditioner is proposed and ana-
lyzed in this paper. The optimal order of modification and the optimal pa-
rameter are determined by the Fourier analysis. With the optimal order of
modification, the results show that the preconditioned matrix has the condition
number O(h− 2

3 ), which is much better than the BILU and MBILU precodni-
tioner. All the theoretical results are illustrated by the numerical tests. Finally,
the performance of the new preconditioner is examined by some problems arising
from discretization of PDEs with discontinuous coefficient. With the optimal
order of modification, the major inconvenience of the present preconditioner is
the choice of the relaxation parameter c, whose value is problem dependent. For
future work, it may be worthwhile to investigate the idea of dynamically relaxed
methods [25, 26, 32]. This would hopefully further improve the robustness of
the current preconditioner.
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