\

Monitoring SIP traffic using Support Vector Machines
Mohamed Nassar, Radu State, Olivier Festor

» To cite this version:

Mohamed Nassar, Radu State, Olivier Festor. Monitoring SIP traffic using Support Vector Machines.
11th International Symposium on Recent advances in intrusion detection - RAID 2008, Sep 2008,
Boston, United States. pp.311-330. inria-00325290

HAL 1d: inria-00325290
https://inria.hal.science/inria-00325290
Submitted on 27 Sep 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00325290
https://hal.archives-ouvertes.fr

Monitoring SIP Traffic Using Support Vector
Machines

Mohamed Nassar, Radu State, and Olivier Festor

Centre de Recherche INRIA Nancy - Grand Est
615, rue du jardin botanique, 54602
Villers-Lés-Nancy, France

Abstract. We propose a novel online monitoring approach to distin-
guish between attacks and normal activity in SIP-based Voice over IP
environments. We demonstrate the efficiency of the approach even when
only limited data sets are used in learning phase. The solution builds
on the monitoring of a set of 38 features in VoIP flows and uses Sup-
port Vector Machines for classification. We validate our proposal through
large offline experiments performed over a mix of real world traces from
a large VoIP provider and attacks locally generated on our own testbed.
Results show high accuracy of detecting SPIT and flooding attacks and
promising performance for an online deployment are measured.

1 Introduction

The voice over IP world is facing a large set of threats. SPAM on email systems
takes a new and very annoying form on IP telephony advertising. This threat is
known as SPIT (Spam over Internet Telephony). However, SPIT is not the only
threat vector. The numerous software flaws in IP phones and servers affect their
reliability and open the door to remotely attack previously unseen in the “stable®
world of telecommunication operators (PSTN), which was based on mutual trust
among few peers. Leveraging the IP to support voice communications exposes
this service (voice) to the known denial of service attacks that can be easily
implemented by service or network request flooding on the Internet. Resource
exhaustion thus automatically finds its place against SIP proxies and back-to-
back user agents, which are essential to support this critical infrastructure. The
list of potential threats is huge and ranges from VoIP bots (that could spread
by malware and perform distributed attacks, perform SPIT or toll fraud), to
eavesdropping and Vishing (similar attack to the Phishing are using VoIP as the
transport vehicle) [1].

Securing VoIP infrastructures constitutes one of the major challenges for
both the operational and research communities because security by design was
not a key component in the early phases of both VoIP research and development.
VoIP-specific security solutions are currently required by the market because the
research and standardization efforts are still trying hard to address the issues of
securing and monitoring VoIP infrastructures.

Our work fits into these efforts and addresses a new monitoring approach
for VoIP specific environments. Our monitoring scheme is based on Support
Vector Machines for efficient classification. We continuously monitor a set of 38
features in signaling time slices and use these features as the raw input to the
classification engine. A threshold based alarm generator is placed on top of the
classification engine. We show that the system is both efficient and accurate and
study the impact of the various features on the efficiency.

We start the presentation with a short survey on VoIP security with focus on
flooding attacks and SPIT. We then give a functional description of our moni-
toring solution together with the definition of the 38 features computed in our
system for classification (section 3). In section 4, we provide a short mathemat-
ical background of the SVM learning machine model used in the monitoring
process. Offline traces inspection is presented in section 5 where we also describe
the data set. Section 6 demonstrates the performances of our approach to de-
tect different types of attacks. Related work is addressed in section 7. Section 8
concludes the paper and enumerates some future work.

2 The Threat Model

2.1 Flooding Attacks

Denial of service attacks can target the signaling plane elements (e.g. proxy,
gateway, etc.) with the objective to take them down and produce havoc in the
VoIP network. Such attacks are launched by either flooding the signaling plane
with a large quantity of messages, malformed messages or executing exploits
against device specific vulnerabilities.

The authors of [2] categorize some of these attacks based on the request URI
and perform a comparative study of these ones against popular open source VoIP
equipment. We adopt the same categorization, i.e.:

— UDP flooding: Since the vast majority of SIP systems use UDP as the trans-
port protocol, a large amount of random UDP packets are sent in an attempt
to congest the network bandwidth. Such attacks produce a high packet loss.
Legitimate call signaling has thus a reduced probability to reach the target
and to be processed.

— INVITE flooding with a valid SIP URI: The attacker calls one user/phone
registered at a server/proxy. The proxy relays the calls to the phone. If the
proxy is stateful it will manage a state machine for every transaction. The
phone is quickly overloaded by the high rate of calls and is no more able to
terminate the calls. As a result, the server is allocating resources for a long
time and it will run out of memory.

— INVITE flooding with a non existent SIP URI: If the attacker doesn’t know a
valid SIP URI registered on the target, it can send calls to an invalid address.
The proxy/server responds with an error response like “user not found”.
When the attack rate is higher than the server capabilities, the resources are
exhausted. This type of flooding is less disturbing than the previous one but

the target CPU is loaded with useless transactions and legitimate requests
may be rejected.

— INVITE flooding with an invalid IP domain address: The attacker calls a
user with a rogue IP address of the destination domain. The target is led
to connect several times to an unreachable host/network while keeping the
state of the current SIP transaction. This attack is efficient on some proxies
like OpenSER [2].

— INVITE flooding with an invalid domain name: The attacker calls a user
with a false destination domain name. The target is trapped to send DNS
requests to resolve the domain name. The target may issue different DNS
types (A, AAAA, SRV, NAPTR, ENUM) and repeat them multiple times.
In the same time, the target is managing the transactions waiting for a
valid DNS response to proceed. Memory is quickly exhausted. The effect of
this attack on the performance of OpenSER is shown in Fig. 1. The impact
is evaluated in terms of duration, number of messages exchanged and final
state of sessions or transactions. The behavior of the server can be divided in
two successive phases. In the first phase, the first few requests are correctly
handled (REJECTED) but the session duration is increasing and the proxy
is slowing down. The number of messages is increasing because of response
retransmissions (no ACK is sent by the attacker). In the second phase, the
proxy is no more able to handle the requests (still in CALLSET state) so the
proxy is taken down. The take down time is about 20 seconds for an attack
having just one INVITE/s rate.

— INVITE flooding with an invalid SIP URI in another domain: The attacker
calls a user/phone located in another domain than the target’s one. The
target relays all requests to the server/proxy of the other domain. The latter
replies with an error response. In this way, multiple targets are hit at the
same time and cascading failures occur.

— INVITE flooding with a valid SIP URI in another domain: The attacker calls
a user/phone registered in another domain. The target relays all requests
to the server/proxy of the other domain which sends them to the phone.
The phone gets quickly out of service and maintaining the state by the
intermediary servers will exhaust the resources from all the servers in the
forwarding chain.

— INVITE/REGISTER flooding when authentication is enabled: The attacker
sends INVITE or REGISTER messages and then stops the handshaking
process. The proxy/registrar responds with a challenge and waits for the
request to be send again with the proper authentication credentials. This
process is costly for the proxy/registrar in term of computing (generating
challenges and nonces) and memory (dialogs/transaction state machines).

2.2 Social Threats and SPIT

Social threats are attacks ranging from the generation of unsolicited commu-
nications which are annoying and disturbing for the users to more dangerous

Fig. 1. OpenSER Response to an INVITE Flooding with Invalid Domain Name

350
et
300 :
@‘“{ | ¥ Duration
250 = ! B Number of messages 1
l 4 Final state(100=REJECTED,

,_.200 el i 50=CALLSET) —
5 #

150

50 \ o
ij“!ﬂ!ﬁnm—ﬂﬂmﬂm

o] 30 time(s) 60

data stealing (Vishing) attacks. The threat is classified as social since the term
"unsolicited" depends on user-specific preferences. This makes this kind of at-
tack difficult to identify. An example of this is a threat commonly referred to
as SPam over Internet Telephony (SPIT). This threat is similar to spam in the
email systems but is delivered by means of voice calls. This leverages the cheap
cost of VoIP when compared with legacy phone systems. It’s currently estimated
that generating VolP calls is three order of magnitude cheaper than generating
PSTN calls. Such SPIT calls can be telemarketing calls that sell products. A sub-
tle variant of SPIT is the so-called Vishing (VoIP phishing) attack, which aims
either to make the callees dial expensive numbers in order to get the promised
prize or to collect personal data redirecting the users towards an Interactive
Voice Responder (IVR) pretended to be trusted. Most of these attacks are going
to be generated by machines (bot-nets) programmed to do such a job. Unso-
licited communications (like SPIT or Vishing) are, from a signalling point of
view, technically correct transactions. It is not possible to determine from the
INVITE message (in the case of SIP) if a VoIP transaction is SPIT or not. From
a technical point of view, the challenge is actually higher since the content is not
available to help in the detection until the phone rings (disturbing the user) and
the callee answers the call. For this reason, techniques successfully used against
e-mail spam like text filtering are hardly applicable in the VoIP sphere. Even if
a transaction is identified as unsolicited how to handle such a transaction highly
depends on the legal environment in the country of the caller.

3 Our Monitoring Solution

When facing the mentioned threats, monitoring of the signalling traffic can de-
tect anomalous situations and prevent them. The monitoring scheme can be
quite simple and flexible to support different techniques. Thus, our approach
follows these principles. As shown in Fig. 2, we track SIP messages in a queue
of predefined size. Once the queue is full, this slice of messages is used to com-
pute a vector of statistics/features. The classifier decides if a vector represents a
certain anomaly and issues an alarm event if necessary. This approach is based
on a learning phase in which couples (vector, class Id) have been used to feed

the engine for learning. This learning process can be made on the fly during the
operational phase of the monitoring system by allowing it to update the pre-
diction model over time. Finally, an event correlator or decider has to filter and
correlate the events. It generates an alarm for a group of events if they trigger
one of the rules/conditions. e.g. if the number of events of type ¢ bypasses a
certain threshold in a period of time ¢.

The architecture is modular and enables experimenting with different clas-
sification and artificial intelligence techniques ranging from statistics and infor-
mation theory to pattern classification and machine learning. The pace of the
system fpqce is the time it takes to make a decision about one slice without
accounting for the time needed by the event correlation stage. This time is com-
posed of two components: the analysis time of the processor and the machine
time of the classifier. The design achieves real time pace if ¢4, is less than the
size of the slice S divided by the arrival rate of messages A:

tpace = tanalysis + tmachine

S
tpace < X

We define in the following the important features that characterize a slice of
SIP traffic and motivate why we collect them. We divide these features in four
groups:

— General statistics : are number of requests, number of responses, number
of requests carrying an SDP (Session Description Protocol) body, average
inter requests arrival time, average inter response arrival time and average
inter requests arrival time for requests having SDP bodies; these statistics
represent, the general shape of the traffic and indicate the degree of conges-
tion. The fraction of requests carrying SDP bodies (normally INVITE, ACK
or UPDATE) is a good indicator because it will not exceed a certain thresh-
old. An excessive use of re-INVITE or UPDATE for media negotiation or
maybe QoS theft increases the number of SDP bodies exchanged and decre-
ments the average inter-arrival of them. Flooding attacks are associated with
peaks of all these statistics.

— Call-Id based Statistics: are number of Call-Ids, average of the duration
between the first and the last message having the same Call-Id, the average
number of messages having the same Call-I1d, the number of different senders
(the URI in the From header of a message carrying a new Call-Id) and the
number of different receivers (the URI in the To header of a message carrying
a new Call-Id). Similar to the Erlang model used in the telecommunication
networks, where the arrival rate of calls and the average duration of a call
characterize the underling traffic, the arrival rate of Call-Ids (can be starting
a call or any kind of SIP dialog) and the interval time of messages having the
same Call-Ids, can be used to characterize the overlay SIP traffic. Neverthe-
less, we notice that non-INVITE dialogs have shorter durations and fewer

number of messages than INVITE dialogs. Thus their Call-Id statistics can
be taken as different features.

— Distribution of final state of dialogs/Call-Ids: Since we are using a
limited number of messages in the traffic analysis unit, dialogs can be par-
titioned into two or several units/slices. The final state of a dialog at the
analysis moment is considered and this one is not necessarily the final state
when all the messages of the dialog can be taken into account. The following
states are defined: NOTACALL: for all non-INVITE dialogs, CALLSET: for
all calls/INVITE dialogs that do not complete the initiation, CANCELED:
when the call is cancelled before it is established, REJECTED: for all redi-
rected or erroneous sessions, INCALL: when the call is established but not
realized yet, COMPLETED: for a successful and ended call and RESIDUE:
when the dialog does not start with a request. This latter is a residual of mes-
sages in a previous slice. In a normal situation where the size of the unit is
large enough, NOTACALL, COMPLETED and REJECTED (in busy or not
found situations) dominate this distribution. Major deviations may indicate
an erroneous situation.

— Distribution of SIP requests: are INVITE, REGISTER, BYE, ACK,
OPTIONS, CANCEL, UPDATE, REFER, SUBSCRIBE, NOTIFY, MES-
SAGE, INFO, PRACK. Although the first five types represent the main
methods used in SIP, every other type may point out a specified application
running above. The number of REGISTER sent by a user within a time inter-
val is indirect proportional to the period of registration (expires parameter
or Expires header). Obviously, the total number of REGISTER messages
is proportional to the number of users of the domain and inversely propor-
tional to the average period of registration among all users. The existence of
SUBSCRIBE and NOTIFY messages indicates SIP presence services. Instant
messaging can also be revealed by MESSAGE requests. REFER requests may
reveal a SIP peer to peer application or some call transfer running above.
INFO requests are normally used to carry out of band DTMF tones within
PSTN-VoIP calls. Finally, PRACK requests may reveal VoIP to PSTN ac-
tivity.

— Distribution of SIP responses: are Informational, Success, Redirection,
Client Error, Server Error, Global Error. An unexpected high rate of error
responses is a good indication for error situations.

Fig. 2. Real-time Online SIP Traffic Monitoring

SIP flow Queue queue is full Vector

Feat E t
o [T Processor (> " | Classifier ‘7" .| EVEnt Correlator
/ Decider

I

Update Couples

(vector, Class Id)

. -
Learning Alarms

Among the different scientific approaches in the area of classification (Bayesian
networks, decision trees, neural networks), we have chosen the support vector
machines approach for their superior ability to process high dimensional data [3,
4]. SVM is a relatively novel (1995) technique for data classification and explo-
ration. It has demonstrated good performance in many domains like bioinfor-
matics and pattern recognition (e.g. [5] and [6]). SVM has been used in network-
based anomaly detection and has demonstrated better performance than neural
networks in term of accuracy and processing proficiency [7]. In the next section,
we give a short description of the SVM concept and methodology.

4 Support Vector Machines

Principle Given a set of couples S = (T, yi)1<i<p, With y; € {—1,+1}, which
denotes the correct classification of the training data, the SVM method tries to
distinguish between the two classes by mean of a dividing hyperplane which has
as equation W. 7T +b = 0. If the training data are linearly separable, the solution
consists in maximizing the margin between the two hyperplanes, W.7 +b = +1
and W.T + b = —1, such that for all points either W.@ + b > +1 (1) or
wW.T +b < —1 (2). This is equivalent to minimizing the module || because
the distance between the two mentioned hyperplanes is 2/|w|. The resulting
quadratic problem where the conditions (1) and (2) are aggregated is formulated
as:

Find W and b to minimize %W.W
so that y,(W.7) +b > IV(T[,y) € S

The non linear separation has a similar formulation except that we replace the
dot product by a non-linear kernel function. The kernel function takes the data
set to a transformed feature space where it searches the optimal classifier. The
transformation may be non-linear and the transformed space high dimensional.
The maximum-margin hyperplane in the high-dimensional feature space may be
non-linear in the original input space. The following kernels can be used :

— linear Ki(7,72)=7.7

polynomial K4(7, %)= (Z.Z +7)%,7>0
radial basis function k. (T, Z') = exp(—y| 7 — Z'|*) where v > 0

Z
)
— sigmoid ks (T, Z) = tanh(YZT.Z +r),y>0and r <0

The C-SVC (C parameter - Support Vector Classification) approach is particu-
larly interesting when the training data is not linearly separable.

C-SVC For the general case where the data S is not separable, the solution
allows some points to be mislabeled by the separating hyperplane. This method,
so called soft margin, is expressed by the introduction of slack variables & where
& measures the degree of misclassification of a point z;. The objective function
is then increased by a function which penalizes non-zero &;, and the optimization
becomes a trade off between a large margin, and a small error penalty.

Find @, b and £ to minimize @W.@W +CY_, §
y(W.2)+b>1-§,Y(T,u) €S
so that {fl >0,V

5 Monitoring SIP

We aim to detect anomalies within a SIP traffic capture, demonstrate the accu-
racy of the learning machine to identify attacks and non-attacks and distinguish
between different types of attacks. We have performed an extensive analysis on
offline VoIP traces in order to assess the performance of our approach.

We use the popular LibSVM tool [8] which contains several algorithms for
classification and regression. In addition, the tool provides support for multi-class
classification and probability estimates (so a test vector x; seems to be of class
i with a probability p;) as well as support for one class SVM training. LibSVM
is bound to other several tools such as an algorithm that performs a grid search
over the SVM parameters space and optimizes their values by cross validation
(divide the data into n subsets, for 7 going from 1 until n, learn over all the
subsets except subset number i then test over subset number 7). At the end, we
can measure the test accuracy for each subset. The aggregation of all results is
the accuracy given by the selected parameters. In Fig. 3 we illustrate this tool’s
flow. The data we use in this study originates from two different sources. The

Fig. 3. SVM Flow Chart

Scaled grid-search
Data file —msvm-scale |—m» — +
data cross-validation

'

svm-train

Best Parameters

Fig. 4. Analysis Flow Chart

Captured trafic & SIP trace
_\ %
(Normal) . / (Normal) \ Merging +
SIP filter \ Adapting

SIP trace /
—
(Attack)

Captured trafic
(Attack)

lModel file

] tool adapted Features
Output file e Input fle |Slice cutter
Test file —m svm-predict —m + Leaming machine }4—{ Adapter }4, AnaJ!ryser
Accuracy

Mixed trace

'

first source is traffic from a real-world VoIP provider and it is supposed to be
completely normal. The second source is signaling traffic from a small test-bed
installed by us to generate different forms of SIP attacks. We have three types
of data files: clean and normal trace, clean attack trace, and mixed trace which
is a normal trace where attack is injected.

To be processed by the SVM tool, each data file is cut into slices and entered
into the analyzer. For each slice, the analyzer evaluates a set of predefined fea-
tures (38 variables are defined in our study) and builds a vector for the LibSVM.
All vectors are assembled in one file and annotated as either attack vector or
normal vector. In Fig. 4, this process is shown for a mixed trace.

Fig. 5. Long Term Statistics over Real World Traces

Type of Messages Distribution Type of Requests Distribution
17 = 5003 * INVITE
4 W ACK

A REGISTER

& 1250 - W BYE
B B Malformed 2 iy
5 1000 g A » A A b |
3 750 | [] Other Requests £ < OPTIONS
=S B S0P requests z X SUBSCRIBE
= 500 S 150 V MESSAGE
% [l Responses 3) < PRACK
8 20 ONOTIFY

0 50. A UPDATE

i i e ’ 42 1872 O W WA W B M |INFO
21 61 101 1471 1871 22/1 22 6/2 1012 1472 182 2202 04/1 0871 121 16/1 20/1 0071 0472 082 122 162 182 002
Time (Mean Hour/Day) Time (Mean Hour/Day)
Inter Arrival Distribution Types of Responses Distribution
4, B

A ¢ InterReq
| InterResp
A InterSDP

Count (Thousands)

1)

[A A

5 A A A e R S S B e~ S~ I \ Al
s A

0
041 081 121 161 2071 00/ 042 082 122 162 182 0072 041 081 121 161 201 0071 042 082 122 162 182 002
Time (Mean Hour/Day) Time (Mean Hour/Day)

5.1 Normal Traffic

The input data is a SIP trace from a two days continuous capture at a real
world VoIP provider server. We performed a preliminary long term analysis of
the traces with a two hours step. We depict the results in the four charts of Fig.
5. If we consider the distribution of different SIP messages, we can remark the
following:

— The two main components of the traffic are the OPTIONS messages in the
first place and then the REGISTER messages.

— Some methods are absent from the capture such a MESSAGE, PRACK and
UPDATE.

— Some methods like NOTIFY have constant statistics over all periods of the
day which reveal SIP devices remaining always connected and periodically
sending notifications.

— The three main components of the call signalling (INVITE, BYE and ACK)
have practically constant ratios over all the slots, with an average ratio
#INVITE/#BYE =2.15 and #INVITE/#ACK = 0.92.

Response distribution is dominated by the 2nd response class (most of them be-
long to OPTIONS and REGISTER transactions). 3xx, 5xx and 6xx are very rare
while informational responses (1xx) follow INVITE messages because they are
exclusively used in INVITE transactions (the average ratio #INVITE/#1lzx =
0.59 can be explained by the fact that a call probably regroups one 100 Trying
and one 180 Ringing so two 1xx responses). Average inter-request arrival and
average inter-response arrival seem to be constant over all periods and they
are about 20 ms. While average inter-request carrying SDP bodies which are
exchanged in call dialogs move inversely to the quadruple (INVITE-BYE-ACK-
1xx) curve, they reach 3s in quiet hours and decrease to 0.5s in rush hours.

5.2 The Testbed

The testbed consists of one OpenSER server and three other machines: the
first machine plays the role of the attacker and uses a number of hacking tools
(scanning, flooding, SPIT). The two other machines play the role of victims
where one hundred SIP bots are equally distributed and running. The bots are
programmable SIP agents and are controlled by an IRC channel®. All SIP bots
and a GrandStream hardphone are registered to the OpenSER server and all
machines belong to the same domain. Traces of attacks performed by the attacker
machine are collected at the OpenSER server.

Fig. 6. Testbed of Attack Generation

Attack Machine
(Hacking tools)

OpenSer 1.1.0

- GrandStream Wireshark
Switch
Machinel Machine2
(50 bots) (50 bots)

Spitter/Asterisk
JE——
—

&

&e—@

|[‘ﬂ

6 Performance and Accuracy

All experiments are done in a machine which has an Intel Pentium 4 CPU
3.40GHz and 2GB RAM memory running a Linux kernel 2.6.18-1. In term of
performance, experiments show that a file containing 2449 slices/vectors of 38
features takes between 196 and 994 ms in the SVM prediction stage (depending
on the used kernel).

Coherence Test

The first question we addressed was how many of the normal traces are self-
similar and consistent. For example, is traffic from 22:00 to 02:00 from a day
similar to traffic of the same period in another day? To test the coherence be-
tween two given traces, we used the following procedure: the analyzer evaluates
feature vectors from each trace. Vectors are then labeled with respect to the
origin trace and scaled. We make a 2-fold training test over all the vectors. In
a 2-fold test, training is done over one part of the file and the testing is per-
formed over the second. We define the coherence to be indirect proportional to

! http://www.loria.fr/ nassar/readme.html

the resulting accuracy of the 2-fold cross training. As long as the SVM can not
distinguish between the two traces, they are tagged to the same class. In Table 1,
we summarize some results: We tested the coherence of a period with respect to

Table 1. Coherence Test for two Successive Days

Day 1 06-10(10-14|14-18|18-22
Day 2 06-10|10-14|14-18|18-22

[Accuracy (%)[55.91[53.72[52.83]56.90

other periods. In Table 2, we show the results of the same procedure for a period
of 2-6 of Day 1 compared to other periods of the same day. SVM is not able to

Table 2. Coherence Test for Different Periods of the Same Day

Day 1 02-06|02-06|02-06|02-06|22-02
Day 1 06-10|10-14|14-18|18-22|22-02

[Accuracy (%)[51.82[62.79]63.72]63.76]60.80]

label 50% of vectors in the correct class while proceeding with the same period of
two successive days and 40% of vectors during different periods of the same day.
The second table reveals that period 02-06 is more coherent with neighboring
periods (06-10 and 22-02) than with other periods of the day. In conclusion, the
coherence of the data is acceptable.

Multi-Class Detection Experiment

We also tested SVM’s ability to distinguish between different classes of traffic:
for instance traces coming form different VoIP platforms. We built a group of
four traces, each representing a different traffic class : normal traffic, a burst
of flooding DoS, a trace generated by the KIF stateful fuzzer [9], and a trace
generated by an unknown testbed as shown in Table 3. The size of the analyzed
slice is fixed to 30 messages. After analysis, a 2-fold training/testing cross test is
performed over all respectively labeled vectors (2449 vectors). The test Accuracy
is defined as the percentage of correctly classified vectors over all test vectors.
When the RBF (Radial Basis Function) kernel is used with default parameters
(C=1 and v = 1/38), the accuracy is 98.24%.

Comparison between Different Kernel Experiments

The RBF kernel is a reasonable first choice if one can assume that the classes are
not linearly separable and because it has few numerical settings (small number of

Table 3. Multi-Class SIP Traffic Data Set

I’I‘race ‘Normal‘ DoS ‘ KIF ‘Unknown‘

SIP pkts| 57960 6076 2305 7033
Duration|8.6(inin)|3.1(min)|50.9 (min)| 83.7(day)

parameters, exponential function bounded between 0 and 1). On the other hand,
linear and RBF kernels have comparable performance if the number of features
is significantly higher than the number of instances or if both are to large [§].
Therefore, we have tested all kernels with their default parameters over our
dataset. The accuracy (defined as the percentage of correctly classified messages
over all the test results) for 2-fold cross and machine dependent running time are
shown in Table 4. The last two lines of the table are for RBF and linear kernels

Table 4. Testing Results for Different Kernels

Kernel Parameters|Accuracy(%)|Time(ms)
Linear c=1 99.79 196
C =1
Polynomial| ~ = 1/38; 79.09 570
r=0;d=3
C =1,
Sigmoid v =1/38; 93.83 994
r=0
C =1,
RBF y=1/38 98.24 668
Linear c=2 99.83 157
RBF C=2 99.83 204
v=0.5

after parameter selection. Machine running time is given for comparison purpose
only and it is averaged over ten runs. RBF and linear kernels have clearly better
accuracy and execution time. We expect that RBF kernel will bypass linear
kernel performance when dealing with larger sets of data.

Size of SIP Slice Experiment

The analyzer window is an important parameter in the feature evaluation pro-
cess. The size of the slice can be fixed or variable with respect to other moni-
toring parameters. In this experiment, we report the accuracy of our solution,
when changing the size of the analyzed slice. The results shown in Table 5 were
obtained using a 5-fold cross test using a RBF kernel and the default parameters.
The time the analyzer takes to process the packets is critical in online monitor-
ing. This is the reason why we show the analysis time of the overall trace: (note

that values are for comparison purpose). As expected, the accuracy improves
with larger window size, which incurs an increased analysis time.

Table 5. Testing Results for Different Kernels

Window size 5| 15 | 30 | 60 | 90 |120|150
Accuracy (%) 95.4]99.32(99.30(99.67(99.63| 100 | 100
Analysis Time (min)|(1.12|2.40 | 2.56 | 4.31 | 6.39 |7.42(8.51

Feature Selection

The 38 features are chosen based on domain specific knowledge and experience,
but other features might be also relevant. The selection of highly relevant features
is essential in our approach. In the following experiments, we rank these features
with respect to their relevance. We can thus reduce the number of features by
gradually excluding less important features from the analysis. In Table 6, the
results of a preliminary experiment, where we exclude one group of features at
each column in the following order: the distribution of final state of dialogs, the
distribution of SIP requests, the distribution of SIP responses, and the Call-
Id based statistics are given. The last column of the table represents only the
general statistics group of features. Experiments use a 5-fold cross test over our
data set with RBF kernel and its default parameters. The test accuracy is the
percentage of correctly classified vectors over all the vectors in the test data set.
Although we notice a sudden jump between 12 and 7 features, the associated

Table 6. Results for Decreasing Size of Features Set

of features 38 | 31 18 | 12 7
Accuracy (%) 99.30{99.39(98.90|98.65|98.22
Machine Time (s)|1.85|1.59|1.42|1.28 | 0.57

accuracy is not strictly decreasing as a function of number of features used. It is
thus reasonable to inquire on the dependencies among the features.

Detection of Flooding Attacks

We have used the Inviteflood tool [2] to launch SIP flooding attacks. We have
used INVITE flooding with an invalid domain name (which is the most impacting
on the OpenSER server). We have generated five attacks at five different rates,
where each attack lasts for one minute. After adaptation (we assume that one
machine of the real world platform is performing the attack), each one minute

attack period is injected into a normal trace of two hours duration. The time of
the attack is fixed to five minutes after the start of the two hours period. Each
mixed trace is then analyzed and labeled properly (positively along the period
of attack and negatively in all the remaining time).

We have trained the system with the mixed trace (flooding at 100 INVITE/s
- normal trace) in the learning stage. This means that 100 INVITE messages are
taken as a critical rate (the rate we consider as threshold to launch an alarm).

As shown in Fig. 7 (for simplification and clarity sake a slice is sized to only
three packets), we take the period of attack and we calculate the correspond-
ing SVM estimation. The estimated probability is the average of the estimated
probabilities for the elementary slices composing the attack traffic. This granular
probability is given by the LibSVM tool and is useful for both the probability
estimate option in both learning and testing stages. We define the detection ac-
curacy as the percentage of vectors correctly classified as attack over all vectors
of the attack period. The results are in Table 7: the detection accuracy-1 is ob-
tained without a parameter selection (Default parameters : C' = 1, v = 1/38,
training accuracy: 90.95), detection accuracy-2 and calculated probabilities are
after parameter selection (C' = 32, v = 0.5, training accuracy is of 93.93).

Fig. 7. Attack Detection in a Mixed Trace
Slice 2 Slice 4

time
Pre-annotation: -1 -1 +1 +1 +1 +1 -1 -1
Post-annotation: +1 +1 -1 L B g Trace 1
Probability: 07 09 03 06 l race2

Overall Probability = 0.625
Accuracy = 3/4

Table 7. Attack Estimation for Different Rates of Flooding

Flooding Rate (INVITE/s)|0.5| 1 | 10 | 100 |1000
Detection Accuracy-1 (%) | 0 | 0 |5.47(67.57|97.36
Detection Accuracy-2 (%) | 0 (1.48/30.13|88.82|98.24
Pr(Normal) 0.96]0.95| 0.73 | 0.24 | 0.07
Pr(Attack) 0.04/0.05| 0.27 | 0.76 | 0.93

Even though stealthy attacks cannot to be detected, the results show a
promising opportunity to fine-tune the defensive solution. The threshold rate

can be learnt by a dual trace : the ongoing normal/daily traffic and a stress con-
dition where the server was troubleshooted or was noticed to be under-operating.
In this way, SVM is promising for an adaptive online monitoring solution against
flooding attacks.

Detection of SPIT Attacks

SPIT mitigation is one of the open issues in VoIP security today. Detection of
SPIT alone is not sufficient if it is not accompanied by a prevention system.
In-depth search in the suspicious traffic is needed to build a prevention system
to block the attack in the future. Elements like IP source and URI in the SIP
headers can be automatically extracted.

To generate SPIT calls, we used a well known tool which is the Spit-
ter/Asterisk tool [2]. Spitter is able to generate call instances described in a
“.call” file using the open source Asterisk PBX. The rate of simultaneous con-
current calls can also be specified as an option of the attack. We profiled our
programmable bots to receive SPIT calls. Once an INVITE is received, the bot
chooses randomly between three different responses :

— the first choice is to ring for a random time interval between one and six
seconds and then to pick up the phone. This emulates two cases : a voice
mail which is dumping a message or a human which is responding. The bot
then listens during a random time between five and ten seconds and hangs
up,

— the second choice is to respond with 'Busy’,

— the last choice is to ring for some time and then to send a redirection response
informing the caller that the call has to be directed to another destination
(destination that we assume to not be served by this proxy). Other similar
scenarios like forking (by the proxy) or transferring (by the bot) can also be
supported.

We have performed two experiments with two different hit rates. The former is
a partial SPIT: Spitter targets the proxy with hundred destinations and among
these only ten are actually registered bots. In this case the hit rate is just 10%.
This emulates the real world scenario where attackers are blindly trying a list of
extensions. The latter is a total SPIT: we assume that attackers knew already
the good extensions so the hit rate is 100%. This emulates the real world sce-
nario where attackers knew already the good extensions either by a previous
enumerating attack or from a web crawler.

In the partial SPIT experiment (SPIT not covering all the domain extensions,
hit rate < 100 %), we send four successive campaigns with respectively one, ten,
fifty and hundred concurrent calls. In the first campaign, Spitter does not start a
dialog before the previous dialog is finished. In the second campaign, ten dialogs
go on at the same time and only when a dialog is finished, a new dialog is started.

The four resulting traces (duration about two minutes each) are injected -
after adaptation (we assume that one agent of the real trace is performing the

attack against the hundred other agents) - in four different normal traces (dura-
tion of two hours each). The traces are then cut into slices of thirty messages and
analyzed. These are annotated positively for the period of attack and negatively
in all the remaining duration. The mixed trace with fifty concurrent calls SPIT
is used in the training stage. The SVM prediction results are shown in Table 8.
True positives are the percentage of vectors correctly classified as attack over
all the vectors of the attack period. True negatives are the percentage of vectors
correctly classified as normal over all the vectors of the normal period. These

Table 8. Detection of Partial SPIT in Four Mixed Traces With Different Intensities

of Concurrent CallslTrue Positives (%)lTrue Negatives (%)
RBF; C= 1; v = 1/38; Training accuracy = 99.0249

1 0 (0/3697)

10 1.30 (10/766)

50 10.01 (62/619) 100
100 18.31 (102/557)

Linear ; C=1 ; Training accuracy = 99.0197

1 0 (0/3697)

10 2.09 (16/766)

50 10.66 (66/619) 100
100 19.39 (108/557)

results should be considered under the larger umbrella of event correlation. For
instance, the example with ten concurrent calls:

— Most of the two hours traffic is normal and is correctly detected (47436
slices).

— 16 out of the 766 slices that compose the attack traffic are detected. This
means that we have ten correct events in a period of two minutes, because
the detection of one slice is highly relevant to all ongoing traffic around this
slice.

In addition, the attacks are partial since they target a small fraction of the users
of the VoIP server (more than 3000 users are identified in the two hours period).
We agree that a stealthy SPIT of the magnitude of one concurrent call is never
detected, but in the case of hundred concurrent calls, one over five positives is
successfully detected when training was done using a half of this intensity attack.

With the help of a set of deterministic event correlation rules, our online
monitoring system is able to detect the attacks efficiently:

Predicate ‘SPIT intensity
10 distributed positives in a 2 minutes period Low
Multiple Series of 5 Successive Positives Medium

Multiple Series of 10 Successive Positives High

In the full SPIT experiment, we request the hundred bots to register with the
proxy. Spitter hits all the bots in four successive campaigns with increasing
intensity. Results are slightly better than in the partial SPIT experiment (Table
9). Partial SPIT generates an abnormal traffic at the same level as full SPIT
does.

Table 9. Detection of Full SPIT in Four Mixed Traces With Different Intensities

of Concurrent calls‘ 1 ‘ 10 ‘ 50 ‘ 100
RBF; C= 1; v = 1/8; Training accuracy = 98.9057
True Positives 0.03 | 3.056 | 12.18 | 23.41
2/7015|15/492|85/698|184 /786
True Negatives 100

7 Related Works

VoIP security is a recent research domain that emerged over the last few years
with the increasing use of this technology by enterprises and individuals. Com-
bating SPIT and DoS is the subject of many research proceedings. Quittek et al.
[10] apply hidden Turing tests and compare the resulting patterns with typical
human communication patterns. Passing these tests causes significant resource
consumption in the SPIT generation side. The authors of [11] propose a call rank
mechanism based on call duration, social networks and global reputation to filter
SPIT calls. Other ideas include a progressive and multi (short term -long term)
grey level algorithm [12] and incorporating active stack fingerprinting [13].

The authors of [14] design application and transport sensors to protect en-
terprise networks from VoIP DoS attacks based on previous works on TCP DoS
protection and study different recovery algorithms. The authors of [15] modify
the original state machine of SIP transactions to detect transaction anomalies
and apply different thresholds to detect flooding attacks. More adaptive to such
attacks is the work of Sengar et al. [16] where the Hellinger distance between
learning and testing periods is used to detect TCP SYN, SIP INVITE and RTP
floods. Their approach shows good performances. There have many papers in
the community on generic intrusion detection methods [17-19] without to ex-
tend to the fine tuned session, dialog, transaction related parameters found in
SIP. Over the past, many security related applications have leveraged machine
learning techniques and the reader is referred to [20] and [21] for an overview.

The closest work to ours is the study of [22] where the authors have presented
a traffic behavior profiling methodology and demonstrated its applications in
problem diagnosis and anomaly detection. Our work is more oriented towards
attack detection and classification rather than proposing a global and multi level
profiling methodology. We have addressed the VoIP specific event correlation and

honeypots in previous published work [23] and [24], which did not cover SIP-level
monitoring.

8 Conclusion and Future Works

As attacks on VoIP are popping-up in different forms with increasing impact on
both the users and infrastructure, more monitoring and security management is
needed. In this paper, we proposed an online monitoring methodology based on
support vector machines. Our idea is to cut the ongoing signalling (SIP) traffic
into small slices and to extract a vector of defined features characterizing each
slice. Vectors are then pushed into a SVM for classification based on a learning
model. We then use a deterministic event correlator to raise an alarm when
suspicious and abnormal situations occur.

We validated our approach by offline tests over a set of real world traces and
attacks which are generated in our customized testbed and inserted in the normal
traffic traces. Results showed a real time performance and a high accuracy of
detecting flooding and SPIT attacks especially when coupled with efficient event
correlation rules. Detection of other types of attacks are future work.

Unsupervised learning techniques are appealing because they don’t need a
priori knowledge of the traffic and can detect new and previously unknown at-
tacks. We consider currently to redefine and reorder our set of features based
on different features selection algorithms. We will extend the current event cor-
relation and filtering algorithm in order to reveal attack strategies and improve
intrusion prevention/detection accuracy.

Acknowledgment. We would like to thank Mr Dorgham Sisalem and Mr.
Sven Ehlert, both from Fraunhofer Institute in Berlin for their comments and
feedback on discussing the analysis of SIP traces.

References

1. VoIPSA: VoIP security and privacy threat taxonomy. Public Realease 1.0 (Oct
2005) http://www.voipsa.org/Activities/VOIPSA_Threat_Taxonomy_0.1.pdf.

2. Endler, D., Collier, M.: Hacking Exposed VoIP: Voice Over IP Security Secrets
and Solutions. McGraw-Hill Professional Publishing (2007)

3. Vapnik, V.N.: The nature of statistical learning theory. Springer-Verlag New York,
Inc., New York, NY, USA (1995)

4. Vapnik, V.: Statistical Learning Theory, New York (1998)

5. Guyon, L., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classifi-
cation using support vector machines. Mach. Learn. 46(1-3) (2002) 389-422

6. Romano, R.A., Aragon, C.R., Ding, C.: Supernova recognition using support vec-
tor machines. In: ICMLA ’06: Proceedings of the 5th International Conference
on Machine Learning and Applications, Washington, DC, USA, IEEE Computer
Society (2006) 77-82

7. Mukkamala, S., Janoski, G., Sung, A.: Intrusion detection: Support vector ma-
chines and neural networks. The IEEE Computer Society Student Magazine 10(2)
(2002)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. (2001)
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Abdelnur, H.J., State, R., Festor, O.: KiF: a stateful SIP fuzzer. In: IPTComm
’07: Proceedings of the 1st international conference on Principles, systems and
applications of IP telecommunications, New York, NY, USA; ACM (2007) 4756
Quittek, J., Niccolini, S., Tartarelli, S., Stiemerling, M., Brunner, M., Ewald, T.:
Detecting SPIT calls by checking communication patterns. In: IEEE International
Conference on Communications (ICC 2007). (Jun 2007)

Balasubramaniyan, V.A., Ahamad, M., Park, H.: CallRank: Combating SPIT
using call duration, social networks and global reputation. In: Fourth Conference
on Email and Anti-Spam (CEAS2007), Mountain View, California USA (2007)
Shin, D., Shim, C.: Progressive multi gray-leveling: A voice Spam protection algo-
rithm. IEEE Network 20

Yan, H., Sripanidkulchai, K., Zhang, H., Shae, Z.Y., Saha, D.: Incorporating active
fingerprinting into SPIT prevention systems. In: Third annual security workshop
(VSW’06), ACM Press (Jun 2006)

Reynolds, B., Ghosal, D.: Secure IP Telephony using Multi-layered Protection.
In: Proceedings of The 10th Annual Network and Distributed System Security
Symposium, San Diego, CA, USA (feb 2003)

Chen, E.: Detecting DoS attacks on SIP systems. In: Proceedings of 1st IEEE
Workshop on VoIP Management and Security, San Diego, CA, USA (apr 2006)
53-58

Sengar, H., Wang, H., Wijesekera, D., Jajodia, S.: Detecting VoIP Floods using the
Hellinger Distance. Transactions on Parallel and Distributed Systems : Accepted
for future publication (sep 2007)

Valdes, A., Skinner, K.: Adaptive, model-based monitoring for cyber attack detec-
tion. In: RAID ’00: Proceedings of the Third International Workshop on Recent
Advances in Intrusion Detection, London, UK, Springer-Verlag (2000) 80-92
Denning, D.E.: An intrusion-detection model. In: IEEE Symposium on Security
and Privacy, IEEE Computer Society Press (Apr 1986) 118-133

Kriigel, C., Toth, T., Kirda, E.: Service specific anomaly detection for network
intrusion detection. In: SAC ’02: Proceedings of the 2002 ACM symposium on
Applied computing, New York, NY, USA, ACM Press (2002) 201-208

Ning, P., Jajodia, S.: Intrusion Detection in Distributed Systems: An Abstraction-
Based Approach. Springer (2003)

Maloof, M.: Machine Learning and Data Mining for Computer Security: Methods
and Applications. Springer (2005)

Kang, H.J., Zhang, Z.L., Ranjan, S., Nucci, A.: Sip-based voip traffic behavior
profiling and its applications. In: MineNet '07: Proceedings of the 3rd annual
ACM workshop on Mining network data, New York, NY, USA, ACM (2007) 39-44
Nassar, M., State, R., Festor, O.: Intrusion detections mechanisms for VoIP appli-
cations. In: Third annual security workshop (VSW’06), ACM Press (Jun 2006)
Nassar, M., State, R., Festor, O.: VoIP honeypot architecture. In: Proc. of 10 th.
IEEE/IFIP Symposium on Integrated Management. (Jun 2007)

Table 10. Appendix: List of features

Number [Name

[Description

Group 1 - General Statistics

1 Duration Total time of the slice
2 NbReq # of requests / Total # of messages
3 NbResp # of responses / Total # of messages
4 NbSdp # of messages carrying SDP / Total # of messages
5 AvInterReq Average inter arrival of requests
6 AvInterResp Average inter arrival of responses
7 AvInterSdp Average inter arrival of messages carrying SDP bodies

Group 2 - Call-ID Based Statistics
8 NbSess # of different Call-IDs
9 AvDuration Average duration of a Call-ID
10 |NbSenders # of different senders / Total # of Call-IDs
11 |NbReceivers # of different receivers / Total # of Call-IDs
12 |AvMsg Average # of messages per Call-ID

Group 3 - Dialogs Final State Distribution

13 |[NbNOTACALL |# of NOTACALL/ Total # of Call-ID
14 |NbCALLSET # of CALLSET/ Total # of Call-ID
15 |NbCANCELED |# of CANCELED/ Total # of Call-ID
16 |[NbREJECTED |# of REJECTED/ Total # of Call-ID
17 |NbINCALL # of INCALL/ Total # of Call-ID
18 |NbCOMPLETED|# of COMPLETED/ Total # of Call-ID
19 |NbRESIDUE # of RESIDUE/ Total # of Call-ID

Group 4 - Requests Distribution
20 |NbInv # of INVITE / Total # of requests
21 |NbReg # of REGISTER/ Total # of requests
22 |NbBye # of BYE/ Total # of requests
23 |NbAck # of ACK/ Total # of requests
24 |NbCan # of CANCEL/ Total # of requests
25 |NbOpt # of OPTIONS / Total # of requests
26 |NDb Ref # of REFER/ Total # of requests
27 |[NbSub # of SUBSCRIBE/ Total # of requests
28 |NbNot # of NOTIFY/ Total # of requests
29 |NbMes # of MESSAGE/ Total # of requests
30 |NbInf # of INFO/ Total # of requests
31 |NbPra # of PRACK/ Total # of requests
32 |[NbUpd # of UPDATE/ Total # of requests

Group 5 - Responses Distribution
33 |Nblxx # of Informational responses / Total # of responses
34 |Nb2xx # of Success responses / Total # of responses
35 |Nb3xx # of Redirection responses / Total # of responses
36 |Nbdxx # of Client error responses / Total # of responses
37 |Nbbxx # of Server error responses / Total # of responses
38 |Nbb6xx # of Global error responses / Total # of responses

