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Abstract. In this paper, we present a method that allows us to recover a
400 meter trajectory purely from monocular omnidirectional images very
accurately. The method uses a novel combination of appearance-guided
structure from motion and loop closing. The appearance-guided monoc-
ular structure-from-motion scheme is used for initial motion estimation.
Appearance information is used to correct the rotation estimates com-
puted from feature points only. A place recognition scheme is employed
for loop detection, which works with a visual word based approach. Loop
closing is done by bundle adjustment minimizing the reprojection error of
feature matches. The proposed method is successfully demonstrated on
videos from an automotive platform. The experiments show that the use
of appearance information leads to superior motion estimates compared
to a purely feature based approach. And we demonstrate a working loop
closing method which eliminates the residual drift errors of the motion
estimation. Note that the recovered trajectory is one of the longest ones
ever reported with a single omnidirectional camera.

1 Introduction

Robust and reliable trajectory recovery for automotive applications using visual
input only needs a very accurate motion estimation step and loop closing for
removing the inevitably accumulated drift. The first focus of this paper is in
using the appearance information to improve the results of feature based motion
estimation. The second focus is in removing accumulated drift with loop closing.

In this paper, we use a single calibrated catadioptric camera mounted on the
roof of the car (Fig. 1). We assume that the vehicle undergoes a purely two-
dimensional motion over a predominant flat ground. Furthermore, because we
want to perform motion estimation in city streets, flat terrains, as in well as in
motorways where buildings or 3D structure are not always present, we estimate
the motion of the vehicle by tracking the ground plane.

The first step of our approach is to extract SIFT keypoints [1] from the scene
all around the car and match them between consecutive frames. After RANSAC
based outlier removal [2], we use these features to compute the translation in
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2 D. Scaramuzza, F. Fraundorfer, M. Pollefeys, R. Siegwart

Fig. 1. Our vehicle with the omnidirectional camera
(blue circle). The field of view is indicated by the red
lines.
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Fig. 2. Our omnidirec-
tional camera model.

the heading direction only. To estimate the rotation angle of the vehicle we
instead use an appearance based method. We show that by using appearance
information our result outperforms the pure feature based approach. At the
same time as motion estimation, a loop detection algorithm is running. We
use a visual word based approach [3, 4] that is very fast and highly scalable. In
addition, we designed a geometric loop verification especially for omnidirectional
images. Loop closing is then finally done in an optimization step using bundle
adjustment. The method is demonstrated on motion estimation. We demonstrate
this method on video data from a 400m trajectory and show that the initial
motion estimation is already very accurate.

The remainder of the paper is organized as follows. Section 2 reviews the re-
lated work. Section 3 describes our homography based motion estimation which
is used for translation estimation. Section 4 describes the details about the ap-
pearance guided Structure from Motion (SfM) which corrects the rotation esti-
mates. Section 5 details the steps of the whole SfM algorithm. Section 6 describes
the loop closing algorithm. Finally, Section 7 is dedicated to the experimental
results.

2 Related Work

Structure from motion and motion estimation (also called visual odometry) with
omnidirectional cameras has already been investigated from various groups [5–
7]. The benefit of camera trajectory determination using large field of view was
firstly demonstrated by Svoboda et al. [8] and further recognized by Chang
and Hebert [9]. However, in those works SfM was performed only over short
distances (up to a few meters). Conversely, in this paper we concentrate on SfM
and accurate trajectory recovery over long distances (hundreds of meters).

Motion estimation with omnidirectional cameras for long trajectories has
been investigated by [10–12]. In [10], Corke et al. provided two approaches for
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Closing the Loop in Appearance-Guided SfM for Omnidirectional Cameras 3

monocular visual odometry based on omnidirectional imagery. As their approach
was conceived for a planetary rover, they performed experiments in the desert
and therefore used keypoints from the ground plane. In the first approach, they
used optical flow computation with planar motion assumption while in the sec-
ond one SfM with no constrained motion using an extended Kalman filter. The
optical flow based approach gave the best performance over 250 meters but the
trajectory was not accurately recovered showing a large drift of the rotation
estimation. Another approach with robust and reliable motion estimation was
presented by Lhuillier [11] where only keypoint tracking and bundle adjustment
were used to recover both the motion and the 3D map. None of these methods
however address loop detection and loop closing.

Loop closing in general was described by Bosse et al. [13]. The approach
worked by map matching of laser scans using 3D points and 3D lines as features.
Map matching with 3D point and 3D line features from image data was demon-
strated in [14]. Experiments were shown on indoor and urban areas with plenty
of line features. No result is shown on image data similar to ours, where almost
no line features are present. Loop detection in a similar manner to ours is also
described in [15]. In their case a loop detection probability is computed from the
visual similarity of images. In contrast to our approach no geometric verification
of visual features is performed and no actual loop closure using the detected
loops is done. Loop detection and loop closure is successfully demonstrated in
[16] where they use a laser range finder to get the initial trajectory and image
data for loop detection. Loop closure however also relies on information from
the laser range finder, whereas our proposed approach uses visual features only.

In this paper we extend our previous work on appearance-guided visual odom-
etry for outdoor ground vehicles [17, 18] by addressing the problem of loop detec-
tion and closing. To make this paper self consistent, we summarize our previous
work in Section 3 and 4.

3 Homography Based Motion Estimation

Our initial motion estimation proceeds along the lines of our previous work
(please refer to [17, 18] for major details). The method uses planar constraints
and point tracking to compute the motion parameters. As we assume planar
motion and that the camera is orthogonal to the ground plane with quite a good
approximation, only two points are needed to estimate the motion parameters
up to a scale (the scale is then recovered from the height of the camera). Then,
after a two-point RANSAC based outlier removal, rotation and translation pa-
rameters between consecutive frames are computed from the remained inliers.
For this the homography decomposition of Triggs [19] is used being adapted to
omnidirectional images. A subsequent non-linear refinement improves the accu-
racy. In this we constrain the minimization so that the rotation is about the
plane normal and the translation is parallel to the same plane as we assume
planar motion.
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4 D. Scaramuzza, F. Fraundorfer, M. Pollefeys, R. Siegwart

Fig. 3. Two unwrapped omnidirectional images taken
at consecutive time stamps. For reasons of space, here
only one half of the whole 360 deg is shown. The red
line indicates the horizon.
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Fig. 4. The cylindrical
panorama is obtained by
unwrapping the white re-
gion.

4 Visual Compass

Unfortunately, when using point features to estimate the motion, the resulting
rotation is extremely sensitive to systematic errors due to the intrinsic calibration
of the camera or the extrinsic calibration between the camera and the ground
plane. This effect is even more accentuated with omnidirectional cameras due
to the large distortion introduced by the mirror. In addition to this, integrating
rotational information over the time has the major drawback of generally be-
coming less and less accurate as integration introduces additive errors at each
step. An example of camera trajectory recovered using only the feature based
approach described in Section 3 is depicted in Fig. 5 (blue trajectory).

To improve the accuracy of the rotation estimation, we use an appearance
based approach. This approach was inspired by the work of Labrosse [20], which
describes a method to use omnidirectional cameras as visual compass.

Directly using the appearance of the world as opposed to extracting features
or structure of the world is attractive because methods can be devised that do
not need precise calibration steps. Here, we describe how we implemented our
visual compass.

For ease of processing, every omnidirectional image is unwrapped into cylin-
drical panoramas (Fig. 3). The unwrapping considers only the white region of
the omnidirectional image that is depicted in Fig 4. We call these unwrapped
versions “appearances”. If the camera is perfectly vertical to the ground, then a
pure rotation about its vertical axis will result in a simple column-wise shift of
the appearance in the opposite direction. The exact rotation angle could then
be retrieved by simply finding the best match between a reference image (before
rotation) and a column-wise shift of the successive image (after rotation). The
best shift is directly related to the rotation angle undertaken by the camera. In
the general motion, translational information is also present. This general case
will be discussed later.

The input to our rotation estimation scheme is thus made of appearances
that need to be compared. To compare them, we use the Euclidean distance. The
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Closing the Loop in Appearance-Guided SfM for Omnidirectional Cameras 5

Euclidean distance between two appearances Ii and Ij , with Ij being column-
wise shifted (with column wrapping) by α pixels, is:

d(Ii, Ij , α) =

√√√√ h∑
k=1

w∑
h=1

c∑
l=1

|Ii(k, h, l)− Ij(k, h− α, l)|2 (1)

where h× w is the image size, and c is the number of color components. In our
experiments, we used the RGB color space, thus having three color components
per pixel.

If αm is the best shift that minimizes the distance between two appearances
Ii and Ij , the rotation angle ∆ϑ (in degrees) between Ii and Ij can be computed
as:

∆ϑ = αm ·
360
w

(2)

The width w of the appearance is the width of the omnidirectional image
after unwrapping and can be chosen arbitrarily. In our experiments, we used
w = 360, that means the angular resolution was 1 pixel per degree. To increase
the resolution to 0.1 deg, we used cubic spline interpolation with 0.1 pixel pre-
cision. We also tried larger image widths but we did not get any remarkable
improvement in the final result. Thus, we used w = 360 as the unwrapping can
be done in a negligible amount of time.

The distance minimization in (1) makes sense only when the camera un-
dergoes a pure rotation about its vertical axis, as a rotation corresponds to a
horizontal shift in the appearance. In the real case, the vehicle is moving and
translational component is present. However, the “pure rotation” assumption
still holds if the camera undergoes small displacements or the distance to the
objects (buildings, tree, etc.) is big compared to the displacement. In the other
cases, this assumption does not hold for the whole image but an improvement
that can be done over the theoretical method is to only consider parts of the
images, namely the front and back part (Fig. 4). Indeed, the contribution to
the optical flow by the motion of the camera is not homogeneous in omnidirec-
tional images; a forward/backward translation mostly contributes in the regions
corresponding to the sides of the camera and very little in the parts correspond-
ing to the front and back of the camera, while the rotation contributes equally
everywhere.

Because we are interested in extracting the rotation information, only con-
sidering the regions of the images corresponding to the front and back of the
camera allows us to reduce most of the problems introduced by the translation,
in particular sudden changes in appearance (parallax).

According to the last considerations, in our experiments we use a reduced
Field Of View (FOV) around the front and back of the camera (Fig. 4). A reduced
field of view of about 30 deg around the front part is shown by the white window
in Fig. 3. Observe that, besides reducing the FOV of the camera in the horizontal
plane, we operate a reduction of the FOV also in the vertical plane, in particular
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6 D. Scaramuzza, F. Fraundorfer, M. Pollefeys, R. Siegwart

under the horizon line. The objective is to reduce the influence of the changes in
appearance of the road. The resulting vertical FOV is 50 deg above and 10 deg
below the horizon line (the horizon line is indicated in red in Fig. 3).

5 Motion Estimation Algorithm

As we already mentioned, the appearance based approach provides rotation angle
estimates that are more reliable and stable than those output by the pure feature
based approach. Here, we describe how we combined the rotation angle estimates
of Section 4 with the camera translation estimates of Section 3.

In our experiments, the speed of the vehicle ranged between 10 and 20 Km/h
while the images were constantly captured at 10 Hz. This means that the distance
covered between two consecutive frames ranged between 0.3 and 0.6 meters. For
this short distance, the kinematic model of the camera configuration (x, y, θ),
which contains its 2D position (x,y) and orientation θ, can be approximated in
this way: xi+1 = xi + δρi cos(θi + δθi

2 )
yi+1 = yi + δρi sin(θi + δθi

2 )
θi+1 = θi + δθi

(3)

where we use δρ = |T| h and δθ = ∆ϑ. |T| is the length of the translation vector
assuming the camera at unit distance from the ground plane; h is the scale factor
(i.e. in our case this is the height of the camera to the ground plane). The camera
rotation angle ∆ϑ is computed as in (2). Observe that we did not use at all the
rotation estimates provided by the feature based method of Section 3.

Now, let us resume the steps of our motion estimation scheme, which have
been described in Sections 3 and 4. Our omnidirectional visual odometry operates
as follows:

1. Acquire two consecutive frames. Consider only the region of the omnidirec-
tional image, which is between Rmin and Rmax (Fig. 4).

2. Extract and match SIFT features between the two frames. Use the double
consistency check to reduce the number of outliers. Then, use the calibrated
omnidirectional camera model to normalize the feature coordinates so that
the z-coordinate is equal to -1 (see Fig. 2).

3. Use 4-point RANSAC to reject points that are not coplanar (at lest 4 points
are needed to compute a homography).

4. Apply the Triggs algorithm followed by non-linear refinement described in
Section 3 to estimate R and T from the remaining inliers.

5. Unwrap the two images and compare them using the appearance method
described in Section 4. In particular, minimize (1), with reduced field of
view, to compute the column-wise shift αm between the appearances and
use (2) to compute the rotation angle ∆ϑ.

6. Use δρ = |T| h and δθ = ∆ϑ and integrate the motion using (3).
7. Repeat from step 1.

in
ria

-0
03

25
32

4,
 v

er
si

on
 1

 - 
28

 S
ep

 2
00

8



Closing the Loop in Appearance-Guided SfM for Omnidirectional Cameras 7

6 Vision based loop detection and closing

Loop closing is essential to remove accumulated drift errors in the camera trajec-
tory. Our loop closing proceeds along three steps. The first step is loop detection
which is done by a visual place recognition scheme. Next geometric correspon-
dences between the two matching places are established. Finally loop closing is
performed by optimization of structure and motion using bundle adjustment.

6.1 Loop detection by visual place recognition

For loop detection we use a visual word based place recognition system. Each
image that got acquired is assigned a place in the world. To recognize places that
have been visited before, image similarity (based on local features) is used. Our
approach is along the lines of the method described in [3]. Firstly local features
are extracted from images. We use Difference of Gaussian (DoG) keypoints and
compute a SIFT feature vector for each keypoint. Each SIFT feature vector is
quantized by a hierarchical vocabulary tree. All visual words from one image
form a document vector which is a v-dimensional vector where v is the number
of possible visual words. It is usually extremely sparse. For place recognition
the similarity between the query document vector to all document vectors in
a database is computed. As similarity score we use the L2 distance between
document vectors. The organization of the database as an inverted file and the
sparseness of the document vectors allows a very efficient scoring. For scoring, the
different visual words are weighted based on the Inverse Document Frequency
(IDF) measure. Place recognition in our case works as an online approach. For
each new image the similarity to all the images in the database is computed.
The n top ranked images are stored as loop hypotheses. The current image is
then stored in the database as well. The loop hypotheses are then geometrically
verified. If one hypothesis passes this verification the loop closing optimization
will be invoked. Our place recognition is very fast and maintains online speed
for very large databases (almost up to 1 million images). The visual word based
image representation is extremely compact and allows the storage of many places.

6.2 Geometric correspondences and loop verification

For loop closing geometric correspondences need to be established for the loop
hypothesis. For our loop closing we need to get point matches between the images
from matching places. These are created from the geometric verification step.
Our geometric verification is designed for our omnidirectional images. Besides
the image similarity our place recognition also returns point correspondences be-
tween the two images. These point correspondences are now used for geometric
verification. For verification we first compute a polar coordinate representation
(r, φ) from the (x, y) image coordinates. We assume that both images only differ
by an in-plane rotation, neglecting a possible translation. Then we rotate the fea-
tures of one of the images to search for the rotation that produces the maximum
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8 D. Scaramuzza, F. Fraundorfer, M. Pollefeys, R. Siegwart

feature overlap. If the number of overlapping features is higher than a thresh-
old S the loop hypothesis is counted as correct. An inlier set from overlapping
features is then used in the loop closing process.

6.3 Loop closing

Loop closing is carried out as bundle adjustment [21] over camera poses and
structure (3D points). In our case poses and points are restricted to the ground
plane, so that we have fewer parameters than standard bundle adjustment. Initial
poses and 3D points come from the SfM algorithm. The detected loop now adds
an extra constraint to the optimization. From loop detection we know the two
poses p0 and p1 so far, as well as 2D image matches between the images I0 and
I1. As we assume planar motion and with known height of the camera we can
compute 3D points directly from 2D image points. We do this for image I0 with
pose p0 creating X0. Reprojecting X0 into image I1 should ideally create points
that exactly lie on the original features in I1 if pose p1 is correct. We denote
them p′

0. In loop closing this reprojection error is now minimized by changing
the initial camera poses and structure. Loop closing usually cannot be done with
online speed, but it is scalable up to large maps using for instance the method
described in [22].

7 Results

7.1 Motion estimation

This experiment shows motion estimation results using the proposed approach
and also compares it to a feature only based approach. It was tested with data
from a real vehicle equipped with a central omnidirectional camera. A picture of
our vehicle (a Smart) is shown in Fig 1. Our omnidirectional camera, composed
of a hyperbolic mirror (KAIDAN 360 One VR) and a digital color camera (SONY
XCD-SX910, image size 640× 480 pixels), was installed on the front part of the
roof of the vehicle. The frames were grabbed at 10 Hz and the vehicle speed
ranged between 10 and 20 Km/h. The resulting path estimated by our SfM
algorithm using a horizontal reduced FOV of 10 deg is shown in figures 5, 6, and
7. The results of the feature only based approach in Fig. 5 are shown in blue.
The trajectory with our appearance based method is shown in red. From the
aerial view in 6 it is clear that our method produces the correct trajectory.

In this experiment, the vehicle was driven along a 400 meter long loop and
returned to its starting position (pointed to by the yellow arrow in Fig. 6). The
estimated path is indicated with red dots in Fig. 6 and is shown superimposed
on the aerial image for comparison. The final error at the loop closure is about
6.5 meters. This error is due to the unavoidable visual odometry drift; however,
observe that the trajectory is very well estimated until the third 90-degree turn.
After the third turn, the estimated path deviates smoothly from the expected
path instead of continuing straight. After road inspection, we found that the
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Closing the Loop in Appearance-Guided SfM for Omnidirectional Cameras 9
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Fig. 5. Comparison between the standard feature based approach (blue) and the ap-
proach combining features with visual compass proposed in this paper (red).Circles are
camera poses, dots are reconstructed feature points.

reason for this were most likely three 0.3 meter tall road humps (pointed to by
the cyan arrow in Fig. 5).

The content of Fig. 7 is very important as it allows us to evaluate the quality
of motion estimation. In this figure, we show a textured top viewed 2D recon-
struction of the whole path. Observe that this image is not an aerial image but
is an image mosaicing. Every input image of this mosaic was obtained by an In-
verse Perspective Mapping (IPM) of the original omnidirectional image onto an
horizontal plane. After being undistorted through IPM, these images have been
merged together using the 2D poses estimated by our visual odometry algorithm.
The estimated trajectory of the camera is shown superimposed with red dots. If
the reader visually compares the mosaic (Fig. 7) with the corresponding aerial
image (Fig. 6), he will recognize in the mosaic the same elements that are present
in the aerial image, that is, trees, white footpaths, pedestrian crossings, roads’
placement, etc. Furthermore, as can be verified, the position of these elements
in the mosaic fits well the position of the same elements in the aerial image.
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10 D. Scaramuzza, F. Fraundorfer, M. Pollefeys, R. Siegwart

Fig. 6. The estimated path (before loop closing) superimposed onto a Google Earth
image of the test environment. The scale is shown at the lower left corner.
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Fig. 7. Image mosaicing that shows a textured 2D reconstruction of the estimated path
before closing the loop.

7.2 Motion estimation with loop closing

We performed the same experiment as in the previous section with loop closing
running in parallel. The inlier threshold S (to accept a loop hypothesis) was set
to 10, which led to the detection of a loop between frame 2 and 298. 10 geo-
metric matches were extracted and used as additional constraints in the bundle
adjustment. Fig. 8 shows the results after loop closing. The optimized trajectory
is shown in red, while the initial parameters are shown in blue and black. The
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Closing the Loop in Appearance-Guided SfM for Omnidirectional Cameras 11

Fig. 8. Structure and motion after loop closing (red). Initial estimates are shown in
blue and black. The loop is nicely closed.

circles are the camera position and the dots are reconstructed feature points.
The loop got nicely closed. Fig. 9 shows the path after loop closing superim-
posed on a Google Earth aerial view. It is an almost perfect fit. Fig. 10 shows
the image mosaic created from the optimized path. Fig. 11 visualizes the loop
constraints, the feature points p0 and p′

0. Before loop closing they don’t coincide,
the distance between them is high. Loop closing will now try to minimize the
distance. As it is visible in the right image this could be done successfully, the
total distance of 851.8 pixel could be reduced to 13.8 pixel.

8 Conclusion

It this paper, we presented a reliable and robust method for structure from mo-
tion for omnidirectional cameras. Initial motion estimates from feature tracks
were corrected using appearance information. Finally loop detection and loop
closing removed accumulated drift. The proposed method runs fast and is scal-
able. The method however assumes planar motion which is in particular the case
in many automotive and robotics applications. Only features from the ground
plane are tracked, i.e. this approach will also work outside urban areas and it is
perfectly suited for outdoor areas. In our experiments we demonstrated motion
estimation on a challenging 400m long path that is one of the longest distances
ever reported with a single omnidirectional camera. We showed that the use of
appearance information enormously improved the motion estimates resulting in
a very accurate estimate. Loop closing finally again improved the accuracy by
removing accumulated drift.
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12 D. Scaramuzza, F. Fraundorfer, M. Pollefeys, R. Siegwart

Fig. 9. The estimated path after loop closing superimposed onto a Google Earth.
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Fig. 10. Image mosaicing of the estimated path after loop closing.
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Closing the Loop in Appearance-Guided SfM for Omnidirectional Cameras 13

Reprojection original Reprojection bundled

(a) (b)

Fig. 11. Plot of the feature matches that are used as loop closing constraints. (a) Before
loop closing. (b) After loop closing.
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