K. Q. Alekseev and I. M. Navon, The Analysis of an Ill Posed Problem Using Multiscale Resolution and Second Order Adjoint Techniques, Computer methods on Applied Mechanics and Engineering, vol.190, pp.15-17, 1937.

A. Adcroft and D. Marshall, How slippery are piecewise-constant coastlines in numerical ocean models?, Tellus A: Dynamic Meteorology and Oceanography, vol.26, issue.124, pp.95-108, 1998.
DOI : 10.3402/tellusa.v50i1.14514

S. E. Cohn, An Introduction to Estimation Theory J, Meteor. Soc. Japan, vol.75, issue.1, pp.257-288, 1997.

P. Courtier, Dual formulation of four-dimensional variational assimilation, Quarterly Journal of the Royal Meteorological Society, vol.121, issue.544, pp.2449-2462, 1997.
DOI : 10.1002/qj.49712354414

J. Derber, A Variational Continuous Assimilation Technique, Monthly Weather Review, vol.117, issue.11, pp.2437-2446, 1989.
DOI : 10.1175/1520-0493(1989)117<2437:AVCAT>2.0.CO;2

J. Derber and F. Bouttier, A reformulation of the background error covariance in the ECMWF global data assimilation system, Tellus A: Dynamic Meteorology and Oceanography, vol.51, issue.123, pp.195-221, 1999.
DOI : 10.3402/tellusa.v51i2.12316

K. Ide, P. Courtier, M. Ghill, and A. C. Lorenc, Unified notation for data assimilation: operational, sequential and variational, J. Meterol. Soc. Japan, vol.75, pp.181-189, 1997.

R. E. Kalman, A New Approach to Linear Filtering and Prediction Problems, Journal of Basic Engineering, vol.82, issue.1, pp.35-45, 1960.
DOI : 10.1115/1.3662552

T. N. Krishnamurti, X. Jishan, H. S. Bedi, K. Ingles, and D. Oosterhof, Physical initialization for numerical weather prediction over the tropics, Tellus B: Chemical and Physical Meteorology, vol.30, issue.4, pp.53-81, 1991.
DOI : 10.3402/tellusb.v43i4.15398

J. Gilbert and C. Lemarechal, Some numerical experiment with variable storage quasi- Newton algorythms, Math. Prog, vol.25, pp.407-435, 1989.

J. Lellouche, J. Devenon, and I. Dekeyser, Boundary control of Burgers' Equation-A Numerical Approach Computers Math Applic, pp.33-44, 1994.

Z. Li and I. M. Navon, Optimality of variational data assimilation and its relationship with the Kalman filter and smoother, Quarterly Journal of the Royal Meteorological Society, vol.121, issue.1, pp.661-684, 2001.
DOI : 10.1002/qj.49712757220

A. C. Lorenc, Analysis methods for numerical weather prediction, Quarterly Journal of the Royal Meteorological Society, vol.108, issue.474, pp.1177-1194, 1986.
DOI : 10.1002/qj.49711247414

A. C. Lorenc, R. S. Bell, and B. Macpherson, The Meteorological Office analysis correction data assimilation scheme, Quarterly Journal of the Royal Meteorological Society, vol.114, issue.497, pp.59-89, 1991.
DOI : 10.1002/qj.49711749704

W. H. Lyne, R. Swinbank, and N. T. Birch, A data assimilation experiment and the global circulation during the FGGE special observing periods, Quarterly Journal of the Royal Meteorological Society, vol.33, issue.457, pp.575-594, 1982.
DOI : 10.1002/qj.49710845706

A. H. Jazwinski, Stochastic processes and filtering theory, 1970.

R. Ménard, Kalman Filtering of Burger's Equation and its Application to Atmospheric Data Assimilation, 1993.

N. K. Nichols and A. K. Griffith, Adjoint Methods in Data Assimilation for estimating Model Error, Journal of Flow, p.65, 2000.

A. Piacentini, PALM : A modular data assimilation system, Proceedings of the third WMO symposium on data assimilation, pp.321-323, 1999.
URL : https://hal.archives-ouvertes.fr/inria-00325653

F. Rabier and P. Courtier, Four-Dimensional Assimilation In the Presence of Baroclinic Instability, Quarterly Journal of the Royal Meteorological Society, vol.119, issue.506, 1992.
DOI : 10.1002/qj.49711850604

J. N. Thepaut and P. Moll, Variational inversion of simulated TOVS radiances using the adjoint technique, Quarterly Journal of the Royal Meteorological Society, vol.113, issue.496, pp.1425-1448, 1990.
DOI : 10.1002/qj.49711649609

A. V. Tikhonov and V. Arserin, Solution of Ill posed Problems, p.224, 1997.

P. A. Vidard, E. Blayo, L. Dimet, F. Piacentini, and A. , 4D-variational data analysis with imperfect model. reduction of the size of control, Journal of Flow, vol.65, pp.489-504, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00325356

Z. Wang, I. M. Navon, L. Dimet, F. Zou, and X. , The second order adjoint analysis: Theory and applications, Meteorology and Atmospheric Physics, vol.44, issue.3, pp.3-21, 1992.
DOI : 10.1007/BF01025501

A. Weaver and P. Courtier, Correlation modelling on the sphere using a generalized diffusion equation, Quarterly Journal of the Royal Meteorological Society, vol.108, issue.575, pp.1815-1846, 2001.
DOI : 10.1002/qj.49712757518

C. Wunsch, The Ocean Circulation Inverse Problem, p.99, 1996.
DOI : 10.1017/CBO9780511629570

W. Yang, I. M. Navon, and P. Courtier, A New Hessian Preconditioning Method Applied to Variational Data Assimilation Experiments Using NASA General Circulation Models, Monthly Weather Review, vol.124, issue.5, pp.1000-1017, 1996.
DOI : 10.1175/1520-0493(1996)124<1000:ANHPMA>2.0.CO;2

X. Zou, I. M. Navon, L. Dimet, and F. J. Roy, An Optimal Nudging Data Assimilation Scheme Using Parameter Estimation, Quarterly Journal of the Royal Meteorological Society, vol.116, issue.508, pp.1163-1186, 1992.
DOI : 10.1002/qj.49711850808