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Abstract. This paper presents a simulation framework for multiple
stereo camera placement. Multiple stereo camera systems are becoming
increasingly popular these days. Applications of multiple stereo camera
systems such as tele-immersive systems enable cloning of dynamic scenes
in real-time and delivering 3D information from multiple geographic loca-
tions to everyone for viewing it in virtual (immersive) 3D spaces. In order
to make such multi stereo camera systems ubiquitous, solving the prob-
lem of optimal deployment (configuration) of 3D imaging components is
motivated by the need (a) to create high quality 3D content and (b) to
accommodate application specific requirements into optimal deployment
without ad-hoc experimentations. One of the configuration parameters
is the placement of stereo cameras that affects the quality of 3D recon-
structions as well as the resolution achieved by the reconstruction. The
novelty of our work is in formulating an optimization framework for op-
timal camera placement using error based objective function and five
constraints. We generate an initial solution to the optimization problem
using Genetic Algorithms and then refine the solution using Gradient
Descent. The algorithm is validated using actual camera placement as
well as using simulation results. The results not only show promising
features of our optimization approach but also eliminate ad-hoc experi-
mentation of camera placement for each end application where multiple
stereo camera systems can be deployed.

1 Introduction

Multiple stereo camera systems are becoming ubiquitous these days. Applica-
tions of such systems such as tele-immersive systems are being used for per-
forming activities such as remote monitoring of physiotherapeutic patients, un-
derstanding and annotating dance movements, identification and tracking, etc.
The main requirement for all these applications is to have a high resolution and
accuracy of 3D video content. Therefore, it is important to place the 3D stereo
cameras in space optimally. If the cameras are placed too near from an object
then although the resolution will be high but the 3D reconstruction error is also
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high. Also, the entire object may not be captured. On the other hand, if they
are placed too far from the object, then the resolution is low. So, a good resolu-
tion is required ensuring that the whole object is visible in order for the object
features to be easily distinguished from one another. Therefore, optimal camera
placement is important for achieving for the highest resolution and lowest 3D
error.

Another requirement comes from the fact that it eliminates ad-hoc experi-
mentation in camera placement, which is application specific. Different applica-
tions have different working space requirements. For example, the requirements
for camera placement for application involving wheelchair basketball players dif-
fers from dancers and from application of tele-conference. Thus, the solution
of this problem aids in easy and quick placement of many cameras in space in
an application specific manner. It also helps in saving user’s time in camera
deployment.

One of our applications for which we are developing camera placement is tele-
immersive systems (TEEVE)[1][2][3]. In our work, we use TEEVE experimental
system, which is organized into several layers depending on the functionality
required. These consist of the capturing layer, the transmission layer and finally
the displaying layer [1]. The capturing layer is of our interest since it consists
of a series of 3D cameras, each with four 2D cameras. Each 3D camera is a set
of three greyscale cameras used for 3D reconstruction and one color camera for
providing color information. These four 2D cameras are fixed and calibrated in
the beginning.

In this paper, we consider the task of determining the placement of 3D stereo
cameras in space so as to reduce reconstruction error in the rendered video as well
as to improve the spatial resolution 3D content. The input parameters include
the application defined working volume for the users in space, camera properties
and the room dimensions. The output is a determination of the 3D camera
positions and orientations in space. Identifying camera placement positions is
hard due to all the large and unknown number of configurations having a very
similar accuracy, but with a very different imaging geometry. Several constraints
need to be taken into account such as placement limitations, camera visibility
and so on. The goal of stereo camera placements is to view all sides of a working
space except from the bottom surface since it would be defined by the room
floor. We assume that the working space is represented by a convex hull in 3D.

Recently, some researchers have started looking the the problem of camera
placement. In [4, 5], authors have looked at placement of 2D cameras in order to
avoid occlusions. They have not looked at 3D reconstruction or the resolution of
features that our paper does. In the past in photogrammetry [6], authors have
looked at the problem of optimal camera placement. However, their approach
was limited to very few number of cameras and the kind of assumptions made in
the work are very limiting for actual placement. In this paper, we have actually
implemented the algorithm and tested it in both real life scenarios as well as on
a simulator.

The major contributions of this paper are:
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1. Formulation of objective function and constraints for automatic placement
of multiple stereo cameras.

2. Solving the optimization problem using genetic algorithms and improving
the result by using a gradient descent algorithm.

3. Validating the algorithm by comparing it against other heuristic placements
by actual placement as well as by simulations.

The paper is organized as follows. Section 2 provides related work. In section
3, we formulate the objective function as well as the constraints for optimization
of camera placement. In section 4, we provide experimental results in order to
validate the algorithm. In section 5, we provide the conclusions and scope for
future work.

2 Related Work

Researchers in computer vision and computer graphics have recognized the need
to automate the process of camera placement. The camera placement can be
broadly divided into two broad categories: single camera placement and multiple
camera placement.

In single camera systems, Sakane et al. [7] developed a system that finds
possible camera positions using a generate and test strategy. This is for the
inspection of an object tessellated by a sphere of a given radius. They have
incorporated an analysis of light source placement. This work was extended
by Sakane and Niepold [8]. For camera placement, the main task constraint
considered is edge visibility. The sensor is positioned to minimize the occlusion of
selected feature edges. The evaluation of this criteria is based on an aspect graph
representation of the object. Other works have adopted a synthetic approach.
Work by Cown et al. [9] optimizes the camera locations from which a specified
set of object features can be viewed. The machine vision planning (MVP) system
developed by Tarabanis et al. [10] determines the optimal location and camera
parameters such as focal length, focus setting and aperture for viewing a set of
surfaces and avoiding occlusion.

Work has been done in past in the area of multiple camera systems also.
Cowan et al. [11] have experimented methods to place multiple sensors overcom-
ing the occlusion problems associated with 3D objects. Fritsch and Crosilla [12]
have investigated the potential of optimizing multi-camera configurations using
an analytical first order design (FOD) approach by iteratively shifting the cam-
eras until the covariance matrix of the estimated object feature coordinates was
better than a criterion matrix. In [13], a subset of horizontal camera sensors are
selected to minimize the visual hull of all the objects in the scene. This problem
is solved using heuristics. These works use numerical techniques or heuristics to
compute the viewpoint scores. In [14, 15], a metric is defined for the next best
view based on most faces seen (given a 3-D geometric model of the scene), most
voxels seen or overall coverage. The solution requires searching through all cam-
era positions to find the highest scoring viewpoints. Recently, Cerfontaine et al.
[16] have proposed a method to determine the optimal camera alignment for a
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tracking system with multiple cameras by specifying the volume to be tracked
and an initial camera setup.

In photogrammetry [17, 6, 18], the goal is to place the cameras so as to mini-
mize the 3D measurement error. The error propagation is analyzed to derive an
error metric that is used to rank camera placements. The best camera placement
is then solved numerically. The computational complexity of this approach only
allows solutions involving only a few cameras.

3 Problem Formulation

3.1 Problem Statement

We formulate the problem as an optimization problem. The input to the opti-
mization problem are following:

1. Number and type of cameras

– Horizontal and vertical field of view

– Focal length

– Minimum and maximum cutoff length

– Minimum and maximum camera placement heights

2. Room dimensions

– Minimum and maximum X, Y, Z for room

3. Working volume

– Coordinates of the vertices of working volume

In our problem formulation, the cameras could all be of different kinds. We
assume that the working volume is an arbitrary 3D shape and user just needs to
input the vertices of the 3D shape. The working volume is quantized into grid
points by the program as shown in figure 1 and for our purposes, we just use the
grid points.

The output is to find the camera placement for all the cameras. This includes
finding the position and rotational orientation for the cameras.

3.2 Formulation of Objective Function

Here we describe the formulation of objective function for the problem of opti-
mal camera placement. We have two objectives to be fulfilled. The first one is
to minimize stereo localization error which is obtained from stereo localization
geometry. The second is to maximize the pixel resolution for each of the stereo
cameras. As previously mentioned, although each 3D camera consists of four
2D cameras, only two are used for stereo reconstruction, one for verification of
reconstruction and the last, which is a color camera, for adding color.
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Fig. 1. Division of working volume into
grid. Fig. 2. Stereo localization geometry

Stereo Localization Error We study both the down-range error as well as the
cross-range error and use both of them for minimization. Localization error in the
direction of viewing from a camera is called down-range error and localization
error normal to that is called cross-range error. The two errors are shown in
figure 2 as ∆R and ∆C respectively.

Kim et al.[19] have derived the relationship of the disparity error to the stereo
3D localization error. For a general case when both ∆pl and ∆pr are non-zero,
the expression for down-range error that they derived is,

∆R = −(R2 cos θ/fB)(∆pl − ∆pr), (1)

where, B is stereo baseline, f is the focal length, θ is the angle made with normal
to the camera axis and R is the distance of the feature from the camera. Since
we are interested in the magnitude of down-range error only, we just take the
magnitude and use it as,

|∆R| = |(R2 cos θ/fB)(∆pl − ∆pr)|. (2)

This provides an expression for down-range error. For the cross-range error,
which is perpendicular to the line of sight, they found it to be,

∆C = (R cos2 θ/f)(∆pl + ∆pr)/2, (3)

And as we are interested in its magnitude only, this gives us an expression for
cross-range error as,

|∆C| = |(R cos2 θ/f)(∆pl + ∆pr)/2|. (4)
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Pixel Resolution Considering the pixel resolution, we need to ensure that a
pair of points in space at distance l apart from one another should be spaced
apart in the camera plane also. Tarabanis et al.[20] analyzed the size of a linear
feature in the image plane. They found out that the equation defining the size
of a linear feature of size l in the image plane is:

PRab =
dl|[(ra − ro) × u] × v|

((ra − ro) · v)((rb − ro) · v)
(5)

where l is the length of the linear feature to be viewed having ra and rb as its
end points, u is the unit vector along the linear feature (from ra to rb), PRab is
the size of that feature in the image plane, d is the distance from the back nodal
point of the lens to the image plane, ro is the position vector of the frontal nodal
point of the lens, and v is the unit vector along the optical axis in the viewing
direction.

3.3 Formulation of Constraints

Here, we discuss the constraints that are applicable to camera placement. The fol-
lowing constraints are enforced: room constraint, camera placement constraint,
field of view constraint, cutoff length and 360◦ visibility constraint. We describe
and formulate each of these constraints now.

Room Dimensions Constraint This constraint specifies the dimensions of
space where the cameras can be placed. The user specifies minimum and maxi-
mum values of the x, y dimensions. Therefore, the constraint can be formulated
as

xmin ≤ xi ≤ xmax (6)

ymin ≤ yi ≤ ymax (7)

∀i ∈ Cameras

where, xi, yi are the coordinates of the camera placement of ith camera.

Camera Placement Constraint This constraint corresponds to the height of
the camera placement. We assume that the cameras are placed on the tripods and
the camera placement height is constrained by a minimum and maximum value.
Therefore, minimum and maximum camera placement heights are provided as
input and the constraint is formulated as following

zmin placement ≤ zi ≤ zmax placement (8)

∀i ∈ Cameras

where, zi is the height coordinate of ith camera.
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Fig. 3. The field of view pyramid

Field of View Constraint The field of view constraint is concerned with de-
termining viewpoints from which the features of interest can be seen. If the field
of view constraint is violated, then certain features will not be seen at all. Con-
sequently, the field of view constitutes a hard constraint in camera placement.

The field of view of a general optical system is described by the region in
object space that is bounded by the field of view pyramid of the system. This
pyramid is described in figure 3. In practice, the field of view is specified in terms
of the angle that the extreme rays make while entering the optical system. There
are two field of view angles, viz. horizontal field of view angle denoted as α and
the vertical field of view angle denoted as β. These two angles are the angles
subtended at the entrance pupil by the entrance window of the system.

Intuitively, this constraint can be decomposed into two constraints, i.e. the
desired point must lie between two planes for both the sets of planes. Mathe-
matically, this constraint can be formulated as follows

((Pi − [xi yi zi]
T ) · (ai × bi)).((Pi − [xi yi zi]

T ) · (ci × di)) < 0 (9)

((Pi − [xi yi zi]
T ) · (ai × di)).((Pi − [xi yi zi]

T ) · (bi × ci)) < 0 (10)

where, Pi is a point that we want to determine whether it lies inside pyramid,
[xi yi zi]

T are the coordinates of camera placement, ai, bi, ci, di are the four unit
vectors along the edges of pyramid as shown in figure 3. These four unit vectors
can be written as

{ai, bi, ci, di} =
±wi.lα/2 ± ui.lβ/2

|| ± wi.lα/2 ± ui.lβ/2||
(11)
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where, wi, ui are the vectors parallel to the camera plane and lα, lβ are the
horizontal and vertical widths between the planes at a unit distance from the
end plane. They can be written as

lα = 2 tan(α/2) (12)

lβ = 2 tan(β/2) (13)

Cutoff Length Constraint This constraint corresponds to the minimum and
maximum cutoff length in stereo cameras. In the case of stereo cameras, if the
object to be viewed is too near or too far from the camera, then the recon-
struction quality is bad. As a result of this, a minimum and maximum cutoff
length is defined for the stereo cameras and only the features lying within the
cutoff lengths are taken into account. Mathematically, this constraint can be
formulated as follows

CLimin ≤ ||([xi yi zi]
T − Pj) · vi|| ≤ CLimax (14)

∀i ∈ Cameras,∀j ∈ Grid points

where, || · || represents norm of the vector, CLimin, CLimax are the minimum
and maximum cutoff lengths of the ith camera, [xi yi zi]

T are the coordinates of
its placement, vi is the unit vector along the optical axis in the viewing direction
of the camera and Pj are the coordinates of the jth grid point.

360◦ Visibility Constraint Finally, the last constraint that we dealt with is
360◦ visibility constraint. This constraint deals with the fact that each of the
points in the working volume must be visible from 360◦ by at least one camera.
This constraint ensures 360◦ visibility of the entire working volume. We define a
point to be visible from two cameras if the angle between those cameras is less
than 90◦. Mathematically, this constraint can be formulated as

min(θi,j) < 90◦ ∀j ∈ Cameras, j 6= i (15)

∀i ∈ Cameras

where, θi,j is the angle subtended between camera i and camera j for a grid
point. The subtended angle can be calculated as

θi,j = arccos
([xi yi zi]

T − Pk) · ([xj yj zj ]
T − Pk)

||[xi yi zi]T − Pk|| ||[xj yj zj ]T − Pk||
(16)

where, [xi yi zi]
T and [xj yj zj ]

T are the coordinates of ith and jth camera
placement, Pk is the point where the subtended angle is calculated and || · ||
denotes the norm of the vector.
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3.4 Solution Methodology

Upon combining the objective functions and the constraints, the optimization
problem can be written as follows

minimize:

γ

γ + δ

∑

i

∑

j

((∆Rij)
2 + (∆Cij)

2) −
δ

γ + δ

∑

i

∑

j

(PRij)

∀i ∈ Cameras,∀j ∈ Grid points

Subjected to:

(1) Room Dimensions Constraint

xmin ≤ xi ≤ xmax

ymin ≤ yi ≤ ymax

(2) Camera Placement Constraint

zmin placement ≤ zi ≤ zmax placement

(3) Field of View Constraint

((Pi − [xi yi zi]
T ) · (ai × bi)).((Pi − [xi yi zi]

T ) · (ci × di)) < 0

((Pi − [xi yi zi]
T ) · (ai × di)).((Pi − [xi yi zi]

T ) · (bi × ci)) < 0

(4) Cutoff Length Constraint

CLimin ≤ ||([xi yi zi]
T − Pj) · vi|| ≤ CLimax

(5) 360◦ Visibility Constraint

min(θi,j) < 90◦

(17)

where, ∆Rij denotes down-range error and ∆Cij denotes cross-range error of ith
camera at jth grid point and PRij represents pixel resolution. The negative sign
in front of expression for pixel resolution denotes that it needs to be maximized
instead of being minimized.

In order to solve the optimization problem, we used Genetic Algorithms [21]
to develop an initial solution to the optimization problem. Genetic algorithms are
a category of global search heuristics. Genetic algorithms are a particular class
of evolutionary algorithms that use techniques inspired by evolutionary biology
such as inheritance, mutation, selection, and crossover. The main advantage of
using genetic algorithms to get an initial solution is that they are global search
techniques and thus do not get stuck at a local optimum easily.

In order to further refine the solution, we used the Gradient Descent Algo-

rithm [22]. Gradient descent is a local optimization algorithm. To find a local
minimum of a function using gradient descent, one takes steps proportional to
the negative of the gradient (or the approximate gradient) of the function at the
current point. We used the initial solution obtained from genetic algorithm as a
starting point for gradient descent. This helps to further refine the solution and
get better results.
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4 Experiments and Results

We compared our algorithm for camera placement with three other heuristic
placement techniques. These heuristic placements are:

1. Random Placement: Place the cameras randomly in space. Only take care
that they follow all the constraints.

2. Nearest Placement: Place the cameras as close to the working volume as
possible, still following the constraints.

3. Farthest Placement: Same as nearest, instead place the cameras as far as
possible from the working volume.

For the purpose of our experiments, we selected a 125” × 105” room. The
working volume was a cube with dimensions 20”×20”×20” and it was located in
the center of the room. We implemented the algorithm using Matlab1 and C++.
We used the Genetic Algorithms and Gradient descent implementations from
Matlab and Open CASCADE2 was used for visualizing the camera placements.
In order to test the algorithm, we compared it against the heuristics by actual
camera placement as well as by simulations. We describe both of these in detail
now.

4.1 Actual Camera Placement

In order to do this, we actually placed the cameras according to the three place-
ment techniques described above and the results obtained from the developed
algorithm. Figure 4 shows the camera placements achieved by different placement
techniques. In the figure, the blue circles represent the cameras. As described
earlier, one 3D camera consisted of four 2D cameras. Therefore, each 3D camera
is shown as a cluster of four cameras. The blue line in the figure shows the central
camera axis and the red circles show the points in the volume of space that was
used for our experiments.

For the purpose of our experiments, we had three identical 3D cameras and
we placed them according to different placement techniques. In order to com-
pare different placements, we moved a spherical ball in the working volume. We
measured the average reprojection error in terms of number of pixels and the
average size of the object in terms of number of pixels. The results are shown
in table 1. The reprojection error is a geometric error corresponding to the im-
age distance between a projected point and a measured one. This was measured
during calibration using the algorithm developed by Svoboda et al. [23]. This
corresponds to our first objective function and better the camera placement, the
lower the reprojection error should be. The average object size is a measure of
resolution and higher the resolution, higher the average object size. So, better
the camera placement, higher the object size. Therefore, for a good placement,
we want the reprojection error to be minimum and object size to be maximum.

1 http://www.mathworks.com/products/matlab/
2 http://www.opencascade.org/
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Fig. 4. Actual camera placements in space for different techniques.

As can be seen from the results of table 1, in terms of reprojection error,
the camera placement generated from our algorithm gives the lowest error. The
error is much lower than any other technique. For average object size, the nearest
placement technique gives slightly better results than our placement technique.
This is logical since closer we place the cameras, the higher the resolution will
be achieved. Overall, we can see that the camera placement generated from our
algorithm gives the best results.

4.2 Camera Placement Simulations

In this, instead of actually placing the cameras, we looked at the variation of the
objective function per camera cluster as a function of number of camera clusters
for different placement techniques. The objective function per camera cluster is
the objective function divided by the number of camera clusters and gives an
average value of objective function per cluster. The results are shown in figure
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Table 1. Reprojection error and average object size for different actual camera place-
ments.

Placement Reprojection Avg. obj.
techniques error (pixels) size (pixels)

Nearest 0.27 112.5
Random 0.21 94.3
Farthest 0.35 57.4

Our algorithm 0.15 97.6

5 . As the objective function is a minimization function, so lower the value of
objective function for a placement technique, the better is the placement. The
aim of these experiments is to look at the results for larger number of camera
clusters and to look at a combined objective function so that it is easy for
comparing different techniques.

Fig. 5. Variation of objective function per cluster as a function of number of camera
clusters for different placement techniques.

For the figure 5, we can observe that the placement of cameras achieved from
our algorithm gives the best overall value of objective function as compared
to other techniques. The results of farthest camera placement are the worst.
This is because as the cameras are placed farther away, the reconstruction error
increases and the resolution also decreases. As a result, it gives the worst results.
Nearest and random placements give almost same kind of results. Another thing
to notice from the graph is that as the number of camera clusters is increased, the
value of objective function per cluster increases. This is because the optimization
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function that we use is a global minimization function and the average value for
each cluster gets less optimized as the number of clusters increases.

5 Conclusions and Future Work

In this paper, we have presented an algorithm for the placement of multiple stereo
cameras in space in order to minimize reconstruction error and to maximize the
resolution of features at all the cameras. The problem was posed as a constrained
optimization problem and solved using genetic algorithm and gradient descent.
The problem of camera placement is centrally important for object identification,
tracking and searching in 3D tele-immersion systems. This work also eliminates
ad-hoc experimentations of camera placements for each end application and
therefore there is a significant time saving and better system performance. We
have tested the algorithm and compared it against other heuristic placements.
The experimental results show the goodness of our technique.

In the future, we would like to extend this work to identify subspaces of
camera placement. This is because slight movement of the cameras in the space
does not make a great difference to the results. So, instead of identifying the exact
position of camera placement, we would like to identify the region of space where
a camera can be placed. We would also like to perform more detailed analysis
of the camera placement by other techniques such as perturbation theory. This
would help in validating the algorithm theoretically as well.
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