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Abstract. Traditionally, images distortions have been regarded as a
flaw that needed to be corrected. Much effort has been focused on “undis-
tortion” methods to remedy this shortcoming. However, we see distor-
tions as encoding crucial information about scene structure.
In this paper we describe how scene depth is encoded in the distortions
of images acquired with non-single viewpoint cameras or by mosaic con-
struction. We present our framework to exploit these distortions for 3D
euclidean reconstruction of scene features from a single image or view.
We present methods specifically designed for features such as straight
lines, circles or conics and show how it applies to general planar curves
as well. Rigorous experimentation using simulations and synthetic images
from catadioptric sensors and mosaics are presented.

1 Introduction

Historically, distortions have been considered as an unwanted artifact. As a re-
sult, various attempts have been made to calibrate for and remove these distor-
tions. In contrast, this paper presents a framework to exploit images distortions
to estimate 3D depth of the scene. Furthermore, we also use distortion for partial
camera calibration.

Distortions in images stem from various factors related to the underlying
imaging geometry. We specifically refer to imaging geometry, as this includes
not only the optical components such as lenses and mirrors of the camera but
also the method of image capture such as mosaicing. A complete taxonomy of
distortions, based on imaging geometries, has already been studied [1]. This work
specifically studied the class of distortions called caustic distortions, present in
multi-viewpoint images. While distortions in single viewpoint images depend on
the imaging geometry alone and can be removed, caustic distortions depend also
on scene depth making it impossible to remove unless scene depth is known [1].
In this paper we focus on depth dependant caustic distortions and methods to
exploit them for 3D reconstruction.

1.1 Multi-Viewpoint Imagery and Depth.

As the name suggests, non-single viewpoint cameras do not possess a single view-
point but rather a locus of viewpoints. These viewpoint loci are usually modeled
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using caustics [2, 3]. The simplest way to acquire an MVI is by mosaicing [4].
In this case we can model the viewpoint locus simply as the camera trajec-
tory. Another common source of MVIs are catadioptric systems built using lens
based cameras and curved mirrors. In general, any curved mirror and lens based
camera yields a non-single viewpoint imaging system (see [5–11]for examples).
Only specific combinations of mirror shapes, lenses and positioning lead to a
single-viewpoint systems [12].

A consequence of viewpoint loci, is that every pixel observes the scene from
a different viewpoint. As a result one cannot compute perspective views from
MVIs without also knowing scene depth at every image point in the MVI. Any
attempt to compute a “near perspective” view leads to distortions called caustic
distortions [1]. These distortions therefore encode scene depth that we exploit
for 3D reconstruction.

In our framework, the user identifies contours in the image as correspond-
ing to scene lines, circles, or a general curve of known functional form. This is
sufficient to compute the Euclidean structure of the selected contours as well as
perform partial camera calibration. Note that, unlike in the case of single-view-
metrology [13], we do not require metric information nor the existence of parallel
lines nor planes for reconstruction.

While the reconstruction of lines using non-single viewpoint catadioptric sys-
tems has been demonstrated in the past [14, 15], the full extent of the problem
and its scope to general curves and surfaces has not been fully explored be-
yond its initial proposal in [16]. In fact, the problem applies to more than just
catadioptric cameras. Image mosaics, general multi-viewpoint imaging and the
study of monocular moving observer and target based trajectory triangulation
and tracking [17, 18] all share the same geometric property that we exploit.

We begin by introducing our framework to reconstruct scene structures form
one multi-viewpoint image. We present the general framework for planar curves
including conics and then present special cases for circles and lines. In general,
any scene curve with known functional form can be reconstructed using our
approach. We then provide extensive experimental analysis of our reconstruction
approach using catadioptric systems. We study the various factors influencing
robust reconstruction including imaging system parameters. Finally we provide
ground truth verification of our approach on rendered images.

2 Caustic Distortions and Reconstruction

We now present the general theory of 3D reconstruction from one multi-viewpoint
image. As mentioned before, the lack of a single viewpoint in MVIs causes im-
age distortions called caustic distortions [1] that depend not only on the imaging
geometry but also on scene depth. It is impossible to estimate depth at every
pixel from one MVI for arbitrary scenes. However, most urban scenes are rather
structured [13] and contain features including lines and curves providing added
constraints that we exploit.
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Fig. 1. Distortions in non-single viewpoint images encode scene depth. (a) The skewed
viewing rays constrain the shape of the curve formed on the intersection with any plane
Π ′. Only the real scene plane Π would intersect to form the known scene curve C. (b)
An axially non-single viewpoint system imaging a scene line. Proper parameterization
of the scene line enables its estimation by solving linear equations in four unknowns.

We begin with the general case of planar curves including conics and then
focus on special formulations for circles and lines. However, the method applies
directly to non-planar curves and surfaces as well.

2.1 Reconstructing Planar Curves.

Considering the multi-viewpoint image in Fig.1(a), a curve C in the scene on
plane Π is imaged as the distorted curve c. We assume the imaging geometry
is known for example by calibration [3, 2, 19]. Thus, for any pixel p on c, the
viewpoint Sc(p), and view direction Vi(p) are known. Conversely, we can define
the curve C as the intersection of the viewing rays Vi with the scene plane Π .
Furthermore, any other plane Π ′ intersecting the ray bundle Vi results in a
curve other than C. Thus, determining C is equivalent to determining Π .3

We assume that we know the functional form F of the curve C, such that for
any point P on C, F(P ) = 0. This implies we only know the family to which the
curve belongs such as a circle, hyperbola, etc and not its exact curve parameters.
Reconstruction of C is then posed as a search for the plane parameters Π =
[A, B, C, D] for which the points of intersection with viewing rays Vi satisfies
the functional form F . The objective function is then:

argmin
{A,B,C,D}

(

∑

N

(

F(P )
)

)

, (1)

where P denotes the point of intersection of viewing ray Vi(p) with plane Π .

3 It should be noted that this approach works only when the viewing rays Vi(p) form a
set of skewed rays in 3D space. If the rays are coplanar, reconstruction is impossible.
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Fig. 2. Reconstructing circles using two steps. (a) Assume the system to be single
viewpoint and hallucinate a perspective image. (b) Fit an ellipse to this hallucinated
image and thereof determine orientation of the scene circle. (c) Perform full non-linear
search using orientation estimate to determine circle in scene.

We apply this approach to conic curves in the experiments to follow. Fur-
thermore, the method directly applies to curves and surfaces in 3D as well.

2.2 Reconstructing Circles.

Robust reconstruction of planar curves, requires a good starting estimate for
the four plane parameters Π = [A, B, C, D]. Circles are special within the space
planar curves as they allow for an analytic estimate of three (the plane normal)
out of the four parameters, making search faster and more robust.

We first observe that under perspective projection the image of a circle is
an ellipse. Also, one can determine the orientation of the circle plane given the
elliptic image. We use this property to analytically derive the orientation of the
scene plane (3 parameters) to start the non-linear search. Referring to Fig.2(a)
we ignore the viewpoint locus and project the rays Vi(p) from a single point
onto a virtual plane to hallucinate a near perspective image of the circle (see
Fig.2(b)).4 We then use the near elliptic image to estimate the orientation of the
plane containing the circle (see [20] for details). Using the orientation estimate as
a starting point for non-linear search, we optimize for the plane Π that results
in a circular intersection with the viewing rays (see Fig.2(c)). This two stage
approach performs more robustly and faster than a complete non-linear search.

2.3 Reconstructing Lines.

Lines represent a very special and simple case for reconstruction. It has been
shown that: given four distinct lines in 3D, there exist zero, one, two, or various

infinities of lines intersecting the given lines [21]. In the case of multi-viewpoint
images, the skewed viewing rays pass through two lines in theory. One line with
positive depth is the scene line and the other, it’s geometric complement. In
[21], the authors derived a linear solution for the 3D line using a six parameter
plücker coordinates. This was later used for catadioptric systems [14, 15].

4 Note that since the imaging system is non-central, the image produced will not be
elliptical. However, this provides a good starting estimate for the non-linear search.
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We now present a four parameter linear solution to uniquely estimate the
scene line for the case of axially non-central imaging systems. By axially non-
central we mean that the viewing rays of the multi-viewpoint image pass through
a central axis. Most catadioptric systems are axially non-central because they
utilize rotationally symmetric mirrors whose axis is aligned with the optical axis
of the lens. Fig.1(b), shows such an imaging system where the axis is conveniently
chosen to be the Z−Axis. Any line L (other than the axis) can be defined as the
intersection between plane Π0 = [A0 B0 1 0], passing through the origin but not
parallel to the Z−Axis, and plane Πz = [Az Bz 0 1], parallel to the Z−Axis but
not passing through the origin.

For a point p on the distorted image l, the viewpoint Sc(p) = [0 0 Sz
c ] on the

Z−axis, and viewing directionVi(p) = [V x
i , V

y
i , V z

i ] are computed. Now, scene
points along these viewing rays can be parameterized as: P = Sc(p) + d ·Vi(p).
The point P lies on the scene line iff it lies on both planes Π0 and Πz giving:

[

d · V x
i , d · V

y
i , Sz

c + d · V z
i , 1

]

·

[

A0, B0, 1, 0
]′

= 0 (2)
[

d · V x
i , d · V

y
i , Sz

c + d · V z
i , 1

]

·

[

Az , Bz, 0, 1
]′

= 0 (3)

Now eliminating d from Eqs.(2,3) gives the constraint:

[

V x
i , V

y
i ,−V x

i Sz
c ,−V

y
i Sz

c

]

·

[

A0, B0, Az, Bz

]′

= −V z
i (4)

Thus, solving for the 3D position of the scene line reduces to a linear problem
of estimating the four parameters of the intersecting planes.

3 Reconstruction Using Catadioptric Cameras

We now present exhaustive experimental evaluation and analysis of reconstruc-
tion using non-single viewpoint catadioptric cameras. We focus on catadioptric
cameras using commonly used quadric (spherical, parabolic or hyperbolic) mir-
rors. We begin with numerous simulations with noise and study the effect of
various imaging and scene parameters on reconstruction. Next, we present a real
working experiment with rendered images. A rendered scene is used to com-
pare the quality of reconstruction, using the entire pipeline including the user
interaction, against known ground truth.

A complete understanding of how noise affects reconstruction also involves
understanding the effects of mirror shape, size as well as the position of the re-
constructed structure in the scene. We present these dimensions of error analysis
in the subsequent sections.

3.1 Reconstruction of Conics.

We begin with the reconstruction of general conic shaped objects in the scene.
These include elliptic, parabolic and hyperbolic curves in the scene. We consider
circles and lines subsequently as special cases of conics.
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Fig.3(a) shows a typical catadioptric image of a scene containing an ellipse
(in blue), parabola(green) and a hyperbola(black), acquired using a perspective
lens and a spherical reflector. The images with other quadric mirrors are simi-
lar. Under zero noise conditions all catadioptric systems reconstruct the conics
perfectly as seen in Fig.3(b). With increase in noise in pixels along the image
contour, reconstruction errors predictably increase. We present two sample noise
level of 0.5 and 1.0 pixels in Figs.3(c,d).

3.2 Reconstruction of Circles.

Circles as mentioned earlier represent a special case of conics due to their sym-
metry. We use the two stage method described in Section 2.2 to reconstruct
scene circles.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

-40

-20

0

20

40

60

-20 -10 0 10 20 30 40 50

-10

-5

0

5

10

15

20

25

Y

x

z

-30
-20
-10
0
10
20
30
40
50
60

-20 -10 0 10 20 30 40 50

-10

-5

0

5

10

15

20

25

Y

x

z

-30
-20
-10
0
10
20
30
40
50
60

-20 -10 0 10 20 30 40 50

-10

-5

0

5

10

15

20

25

Y

x

z

(a) (b)

(c) (d)

Ellipse
Parabola
Hyperbola
Camera

Fig. 3. Reconstruction results of conics in the scene using quadric mirror based non-
single viewpoint catadioptric cameras. (a) Catadioptric image using a perspective lens
and a spherical mirror shows the distorted image of these scene conics. (b) We harness
exploit the depth encoded due to caustic distortions to reconstruct the conics in 3D
accurately (noiseless case). Reconstruction degrades gracefully with increasing noise as
shown under simulations of uniform noise distributions of (c) 0.5 and (d) 1.0 pixels.
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Figs.4(a-h) show results of reconstructing multiple circles in the scene using
various types of catadioptric imaging systems. In Fig.4(a) the typically distorted
image of the circles acquired with a spherical mirror based system is shown.
The images due to the other mirror shapes are similar in nature and hence not
presented. Under zero noise conditions, every catadioptric systems obviously
perform perfect reconstruction as seen in Fig.4(b). Subsequent reconstructions
using a spherical (c,d), parabolic (e,f) and hyperbolic (g,h) mirrors with uniform
distributions of 0.5 and 1.0 pixels respectively are also presented.

A careful observation shows that the spherical mirror based catadioptric
camera outperforms both, the parabolic and hyperbolic mirror based systems.
A more complete comparison of these mirror shapes is provided after studying
reconstructions of lines.

3.3 Line reconstruction with noise.

We now present results of the simplest form case of reconstructing scene struc-
tures that of reconstructing scene lines from a single non-single viewpoint image.

Figs.5(a-h), show the reconstruction of various lines in the scene at different
positions using various types of catadioptric cameras. Similar to the results with
circle reconstruction, in Fig.5(a) we present a typical distorted image of the scene
line in a spherical mirror based system. In Fig.5(b), we present the reconstruc-
tion of these lines from the image points under no noise conditions. Again, all
mirror based systems reconstruct the lines precisely. Figs.5(c,d),(e,f),(g,h) now
present reconstructions of the same scene lines using a spherical, parabolic, and
hyperbolic mirror and under two noise conditions (0.5, 1.0 pixels) respectively.

Again, it can be observed that the spherical mirror based systems Figs.5(c,d)
outperform both the parabolic and hyperbolic mirror based systems.

3.4 Reconstruction and Mirror Shapes.

In the last two sections we noticed that the spherical mirror seemed to outper-
form the other mirror shapes in reconstruction. This observation behoved us to
verify this hypothesis experimentally.

We chose lines for these experiments as their reconstruction is linear and thus
faster to compute. As seen in Fig.6(a), after tens of thousands of simulations of
line reconstructions under various noise conditions, it is clear that the spherical
mirror based system consistently has lower reconstruction error (black curve),
than any other mirror based catadioptric system. The tests were conducted under
comparable conditions such as scene structure depth and field of view of the
cameras. Moreover, the hyperbolic mirror is actually far worse than any other
mirror based system. Another intriguing phenomenon, was the linear relationship
between reconstruction error and noise.

3.5 Reconstruction and Mirror Size.

Robustness of reconstruction from non-single viewpoint images depends heavily
on the size of the underlying viewpoint locus or caustic. The bigger the mirror,
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Fig. 4. Reconstruction of circles in the scene. (a) The distorted image of circles in
the scene acquired using a perspective lens and a spherical mirror based catadioptric
camera. (b) Under noiseless conditions all catadioptric systems produce accurate 3D
reconstructions. Reconstructions using a spherical (c,d), parabolic (e,f), and hyperbolic
(g,h) mirror degrade gracefully with increasing noise in the uniform interval (0.5,1.0)
pixels.
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Fig. 5. Reconstruction of scene lines using non-single viewpoint catadioptric cameras.
(a) An example of distortions in the images of scene lines acquired using a spherical
mirror based system. (b) Under noiseless conditions all catadioptric systems produce ac-
curate 3D reconstructions. Reconstructions using a spherical (c,d), parabolic (e,f), and
hyperbolic (g,h) mirror degrade gracefully with increasing noise in the uniform interval
(0.5,1.0) pixels. Spherical mirror based system seems to outperform other catadioptric
systems.



10 Rahul Swaminathan and Ao Wu and Haoyuan Dong

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

1

2

3

4

5

6

7

8

9

10

Hyperbola

Parabola

Sphere

E
rr

o
r 

(c
m

)`

Noise (pixels)

5cm

7.5cm

10cm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

E
rr

o
r 

(c
m

)`

Noise (pixels)

Fig. 6. (a)Comparison of mirror shape and reconstruction error of scene lines. Thou-
sands of simulations at various simulated noise conditions show that the spherical
mirror based system (black curve) definitely outperforms both the parabolic (green)
and hyperbolic (red) mirror based systems. (b) Comparison of mirror size and recon-
struction error of scene lines. The thousands of simulations at various simulated noise
conditions for three spherical mirror radii show that mirror size does matter. The largest
mirror (black curve) also has the largest viewpoint locus aiding robust reconstruction.

the larger the caustic is likely to be. This means, for a given scene structure, its
image would undergo greater caustic distortion. A consequence of this is higher
robustness to noise during reconstruction.

We studied this hypothesis for the case of spherical mirror as they were
experimentally shown to be the best of the three mirror shapes studied. Fig.6(b)
shows a comparison of reconstruction error against mirror radius. Note that the
mirror was appropriately located below the entrance pupil at increasing distances
so as to ensure the system had the same effective field of view. As can be seen
from the plots, the larger the radius, the better the reconstruction.

3.6 Reconstruction and Target Position.

The above analysis of mirror shape and size assumed arbitrary scene structure
(line) positions. The error presented was the average across multiple line posi-
tions and orientations. However, the position of the scene structure is also criti-
cal to robust reconstruction. This again has close relationship to the underlying
caustic or viewpoint locus surface’s shape and size.

Referring to Fig.7(a), we consider a spherical mirror and its associated caustic
or viewpoint locus. Considering the vertical cross sectional plane, we consider
scene lines equidistant from the spherical mirror centre orthogonal to this plane.
We know from theory that any structure corresponding to the plane passing
through the axis or the horizon (shown in red) cannot be reconstructed because
the viewing rays are coplanar. Thus close to these ray direction, reconstruction
errors should be large. For other viewing direction along the mirror the errors
should be minimal.
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Fig. 7. Experimental study of line position and reconstruction errors. (a) Setup showing
the axis and the horizon rays where the viewing rays are coplanar making reconstruction
impossible. Scene lines were synthesized and tested for reconstruction errors across the
vertical field of view. (b) Errors are as expected high at these singular points and
become lower elsewhere.

Results from our experiment (see Fig.7(b)) in fact verify our prediction. Er-
rors starting at θ = 0 along the axis are high and then decrease initially before
rising again towards the horizon. Beyond the horizon, reconstruction errors de-
crease once again only to increase towards end of the field of view. Moreover,
reconstruction error below the horizon (where the caustic is large and spread
out) seems to be lower than in the section between the apex and the horizon
where the caustic is compact).

The effect of mirror shape, size and location in fact are all closely tied to the
local caustic size and extent. Analogous to stereo baseline, the larger the caustic
the better the reconstruction (see [20, 22] for details).

3.7 Experiment on Rendered Image.

We finally present experimental results on rendered images of typical urban
interiors. We use rendered images because while we still have ground truth, we can
still test the entire pipeline used for reconstruction including the user interaction
and automatic gradient based contour detection. The details of the user interface
and tools for semi-automatic detection of edge contours in the distorted image
is beyond the scope of this paper (see [22] for details). We present results under
two scenarios: (1) a non-central catadioptric imaging system and (2) a centre
strip mosaic.

Fig.8 (a) shows a catadioptric image acquired with a spherical mirror of ra-
dius 7.5cm and a perspective lens based camera rendered using PovRay. The
room is roughly 5×5m in size. We assume the catadioptric system is calibrated.
Using our semi-automatic tool, edge contours in the image are identified as be-
ing lines, or circles respectively as in Fig.8 (b). We then reconstruct the various
scene structures using the proposed methods. The reconstructed features (shown
in red) are then rendered in the original scene for visualization from two per-
spectives as seen in Fig.8 (c,d).
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(a) (b)

(c) (d)

Fig. 8. Reconstruction of a rendered scene using the depth from distortions framework.
(a) The original catadioptric image of a room 5 × 5m in size. (b) Points along con-
tours in the image are semi-automatically extracted and reconstructed. (c,d) With the
knowledge of which contour is a line or circle in the scene, we perform Euclidean recon-
struction of these structures using the proposed methods. The reconstructed structures
(in red) are superimposed on the ground truth views of the scene.

Fig.9 (a) shows a centre-strip mosaic computed by rotating a camera off axis
along a known circular trajectory. Again the user identifies edges in the mosaic
using the semi-automatic tool as belonging to scene features such as lines or
circles respectively. Figs.9 (b,c) show the reconstructed features (solid red and
blue lines) in the room using the proposed methods. We show two views to avoid
perspective ambiguities in visualizing the reconstruction.

As seen in both cases of the catadioptric imaging system as well as the
mosaic, accurate reconstruction is possible from a single multi-viewpoint image
given identifiable structures in the scene.
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Fig. 9. Reconstruction of a room from a single centre-strip mosaic. (a) The original
mosaic image computed by collating the centre column of pixels of an off-axis rotating
camera. Marked edge contours semi-automatically detected are then reconstructed.
(b,c) Two views from within and outside the room of the reconstructed features overlaid
(solid lines) on the ground truth scene structure.

4 Conclusion

In this paper we presented a general framework for 3D reconstruction from a
single image acquired either as mosaics or using non-single viewpoint cameras. In
general any curve in the scene of known functional form can be reconstructed in
this manner. We presented a detailed noise analysis by reconstructing numerous
scene curves and lines using various catadioptric systems. We also analyzed the
factors affecting reconstruction quality such as imaging system design and the
scene itself. We find that reconstruction robustness depends on various aspects
that effectively measure the size of the underlying caustic or viewpoint locus. In
some sense this is similar to the baseline in stereo.

Reconstruction of rendered scenes simulating a catadioptric sensor and mo-
saic image was performed for comparison with ground truth. While distortions
have been historically regarded as an unwanted artifact, we showed how they
can be exploited to our advantage for reconstruction.
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