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Abstract. Camera networks are complex vision systems difficult to con-
trol if the number of sensors is getting higher. With classic approaches,
each camera has to be calibrated and synchronized individually. These
tasks are often troublesome because of spatial constraints, and mostly
due to the amount of information that need to be processed. Cameras
generally observe overlapping areas, leading to redundant information
that are then acquired, transmitted, stored and then processed. We pro-
pose in this paper a method to segment, cluster and codify images ac-
quired by cameras of a network. The images are decomposed sequentially
into layers where redundant information are discarded. Without need of
any calibration operation, each sensor contributes to build a global rep-
resentation of the entire network environment. The information sent by
the network is then represented by a reduced and compact amount of
data using a codification process. This framework allows structures to be
retrieved and also the topology of the network. It can also provide the
localization and trajectories of mobile objects. Experiments will present
practical results in the case of a network containing 20 cameras observing
a common scene.

1 Introduction

As cameras are becoming common in public areas they are a powerful informa-
tion source. Camera networks have been intensively used in tracking or surveil-
lance tasks [1, 2]. Most multi-camera systems assume that the calibration and
the pose of the cameras are known, standard networks applications also imply
other highly constraining tasks such as : 3D reconstruction, frames synchroniza-
tion, etc... Baker and Aloimonos [3], Han and Kanade [4] introduced pioneering
approaches of calibration and 3D reconstruction from multiple views. The reader
may refer to [5–7] for interesting works on camera networks.Most of applications
implying the use of a set of cameras are processing information by increment-
ing acquired data. Every single camera acts as an individual entity that does
not necessarily interact with the other ones. Usually the camera transfers its
information regardless to the behavior of the other ones. Thus, if the network



2 Richard Chang et al.

is dense enough, obvious redundancies are unavoidable and resources like band-
width, mass storage system are simply wasted. One can expect to overcome these
problems by coordinating smartly the efforts of each camera relying on the main
idea that they are forming a unique vision sensor. Data compression methods
preserving relevant information should then be used. Scenes can be described
using their contents relying on lines and edges to build geometric models from
images [8]. In other cases, visual features can be merged with other modali-
ties such as ultrasound sensors [9] to introduce robustness. Several aspects of
the environment can also be extracted from images like walls, doors and vacant
spaces [10]. Recent works on bag-of-features [11] representations have become
popular, as they introduce geometry free features to characterize local subimage
using statistical tools.
The aim of this paper is to introduce a geometry-free method that allows cam-
era networks systems to estimate their topology and auto-organize their own
activities according to the content of the scene and the task to be achieved. The
estimation of the topology is retrieved using statistical approach as in [12] but
without any correspondence between the images.

The paper introduces a common description visual language used by all cam-
eras to exchange information about scenes. A sampling method of acquired im-
ages into subimages combined with bag-of-feature allowing their codification is
presented. In a second stage, a multilayer data reduction architecture is intro-
duced, it is inspired by the statistical organization of the human retina [13].
This convergent structure as will be seen allows to remove redundancies. Finally
a functional layer gathers cameras as single visual entities performing identified
tasks.
This paper is organized as follows : in the next section, the multi-layer coding is
presented. Each transition from the lowest stage to the higher one is detailed. In
the third section we show that geometric structures can be recovered from such
coded camera network : scene object localization can be estimated up to some
metric properties. In the last section, experiments are tested on real images and
results are provided.

2 Multi-layer image coding

Camera networks are usually represented by a concatenation of single cameras.
The cameras act individually and does not interact with the others which leads
to resources’ wastage as computational load. We propose in this section a hierar-
chical representation where each layer encodes information about the preceding
one. The network is then seen as a combination of items which represent an in-
formation provided by the cameras. Figure. 1 summarizes the whole codification
process.

To allow an easier handling of the camera network and the location of cam-
eras, a planar topology of the network is introduced. As shown in Figure. 2 the
3D locations of cameras are orthographically projected onto a plane ν0 set as
the first layer.



Auto-Organized Visual Perception Using Distributed Camera Network 3

Fig. 1. General overview of the method: (1) layer ν0 Original images, (2) layer ν1

Images coded in patches, (3) GMM Decomposition of the codified images, (4) Ex-
traction of the main histograms (5) The network is divided into clusters according to
information data.

C1

C16

Ci

C1

C7

ν0

Fig. 2. Orthographic projection of the cameras location in 3D onto a plane representing
the first layer ν0.

In what follows νj is a plane at level j and νj
i will represent its ith element.

2.1 From acquired images to codified images (ν0 to ν1)

The goal of this section is to sample acquired images into representative patches.
Each patch as will be seen will be compared to a codebook, and a codified image
is produced. It is important to notice that the codebook is the same for all
cameras, allowing further comparisons.

Decomposition of images An efficient decomposition must produce a possibly
unique partitioning of images. In addition it would be interesting to produce less
patches, but of variable size so that they can cover homogeneous texture zones.

In order to achieve the generation of patches, a quadtree-like algorithm is
set up. The quadtree algorithm cuts recursively images into subimages. Starting
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Original Image

Codified Image

Step Step
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Fig. 3. Example of codification of a scene using the optimal entropic method. The
codebook has a maximal size of 32 patches.

from the initial image, each subimage is cut into four equal subimages. The idea
is to use the same principle, but at the contrary of the regular quadtree approach,
the division of subimage will be driven by an entropy measure. The idea is to
cut a subimage at the location were the difference of the quantity of information
between possible subimages is minimal. This quantity of information is given for
an subimage m by :

H(m) = −
c=255∑
c=0

P (m = c) log P (m = c) (1)

with P (m = c) the number of times the pixel value c appears in m, P (c) is
the probability of appearance of the grey value c within m.

An illustration of the algorithm is given in Figure. 3. It appears clearly that
the image is decomposed more coherently, a complete overview of the method
can be found in [11].

Characterizing texture In order to make the comparison with the codebook,
each patch of the image has to be characterize according its texture. Texture
can be measured using different approaches. In what follows we choose to use
a measure similar to [14]. It relies on the computation of a histogram of the
difference between the value of pixels of images. Given a subimage m, each value
of its histogram of differences hm is given by :

hm(i) =
x6=x′∨y 6=y′∑
x,y,x′,y′∈m

diff(m,x, y, x′, y′, i), i ∈ [0, 255] (2)

with

diff(m,x, y, x′, y′, i) =
{

1 if |m(x, y)−m(x′, y′)| = i
0 else
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In a second stage, the histogram hm is normalized, to ensure an invariance ac-
cording to the size of I.

Let T = {hz0 , hz1 , ...hzn} be the set containing all texture descriptors of
patches zi of I. The idea is to sample T to reduce the number of descriptors to
m ≤ n. We then add to T a metric function expressed by dist(hzi

, hzj
) and a

reference texture patch href . The reference patch is set to a patch containing a
single color, corresponding to a uniform area. In a second stage all the represen-
tation of patches contained in T are compared to href and sorted, from the less
to the more textured. The set Ts corresponding to the ordered set T becomes :

Ts = {href , h′z0
, h′z1

, ...h′zn
} with dist(href , h′zi

) ≤ dist(href , h′zj
) if i < j (3)

The mahalanobis distance is used as a metric function and is set so for the
rest of the paper. At this point, Ts is then sampled into m areas. For each area,
only the median patch is selected. The resulting selection gives the codebook V
:

V = {href , h′z0
, h′z1

, ...h′zm
}, V ⊂ Ts (4)

that corresponds to the most representative patches. The whole codebook is
computed offline from a subset of images of the sequence.

Let Iacq be an acquired image, Iacq is decomposed into zacqi patches. Each
computed patch must be compared to the content of V .

In case a new patch is detected, it is added to the codebook as a new entry.
The acquired image Iacq is then codified using the patches of the codebook, the
resulting image Icodi given by a set of vocabulary patches.

2.2 From patches to GMM-histograms (ν1 to ν2)

Each element ν1
i represents an image ν0

i coded into patches using the common
vocabulary. It is then possible to express the statistical content of ν1

i using an
histogram giving the distribution of patches within ν1

i . The size of the codebook
is set to 32 elementary words, and can be adjusted according to the complexity of
scenes. To lower the data load, histograms are then decomposed as a combination
of gaussians using Gaussian Mixture Models (GMM) [15, 16]. This decomposition
models a signal as a sum of normal distribution (ND). The content of an element
ν2

i of the next layer ν2 is the GMM decomposition of the histogram of the content
of an image ν1

i of ν1, it is defined as an histogram Hν1
i
(x):

Hν1
i
(x) '

Nbg∑
n=1

mnN(µn,σn)(x) (5)

where N(µn,σn)(x) is the normal distribution whose standard deviation is σ
and whose mean is µ.

In Eq. 5, mn is the corresponding weight of the normal distribution n, and
Hν1

i
(x) is composed by Nbg distributions. It is obvious that 0 ≤ µ ≤ 31 due
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to the size of the codebook that contains 32 words. One ND fits with one class
of pixels existing in the neighborhood V . Therefore it is important to put to-
gether the similar classes (i.e., distribution with close means) and to keep aside
distributions which are not representative (i.e., distributions whose weight are
insignificant). Finally, the most representative NDs are sorted according to their
weights.

2.3 From the GMM-histograms layer to the gathering layer (ν2 to
ν3)

In order to lower the data load, redundant information stored in ν2 must be
merged. Elements of ν2 are gathered according to spatially neighborhood areas
defined by the orthographic projection (see Figure. 2). Each area contains a col-
lection of ν2

i , the common normal distributions are transmitted to ν3 while the
others are eliminated. An element ν3

i contains the common information of a set
of ν2

i , in what follows the elements are gathered according to windows of size
4× 4. It is important that spatial gathering windows overlap, as eliminated mi-
nor information within a gathering window might be of major interest to a close
one. Thus, an element ν3

i contains main information data computed from four
cells ν2

i , and allows a wide area coverage with reduced amount of information.

Let X and Y be two distributions of same size, Bhattacharyya proximity is
introduced as

PB(X, Y ) =
∑

i

√
X(i) · Y (i) (6)

To illustrate the principle, four cameras are considered (C1, C2, C3, C4)
observing a common scene (Fig. 4). The corresponding histogram is then given
to the next layer as a main information. Layer ν0 represents the original images.
The codified images are shown in ν1, while the GMM decomposition is computed
in ν2. Layer ν3 contains the most common information data collected from all
cameras.

2.4 From the gathering layer to the clustering layer (ν3 to ν4)

It is now important to gather the elements of ν3 according to their content.
Similar ν3

i must be merged into a single ν4
i corresponding to a set of cameras

observing a scene or an object from different view points not necessarily close to
each other. In order to represent efficiently information provided by the cameras,
a clustering layer is set up. This layer deals with an agglomeration of different
elements ν3

i according to the correlation of their values, spatial neighborhood has
no effect on this process. Correlated cells of ν3 will be clustered into a new cell
ν4

i representing their content data. Thus, each element ν4
i represents an unique

information about the scene. The correlation between two elements ν3
i and ν3

j is
defined as:
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Fig. 4. Extraction of main visual features of four cameras of the network (1) Original
image (2) Decomposition into patches, (3) GMM Decomposition (4) Gathering step,
the main information is extracted.

Corr(ν3
i , ν3

j ) =

∑
(ν3

i − ν̄3
i ) · (ν3

j − ν̄3
j )√∑

(ν3
i − ν̄3

i )2 ·
√∑

(ν3
j − ν̄3

j )2
(7)

Layer ν4 is then a clustering of the elements of ν3 according to their content,
the definition of an element ν4

i is then given by ν4
i =

{
ν3

j / Corr(ν3
i , ν3

j ) < ε
}

At this stage, the network is organized as a set of sorted information and not as
a concatenation of single cameras. Redundant information have been gathered
providing the main information extracted from cameras.

3 Structures retrieval

In the following section we will set the relative positions of the cameras as un-
known. The hypothesis of calibrated camera is also a highly constraining con-
dition, in what follows it is released. In case of dynamic networks, each camera
can move and be active through time. If each camera is taken individually and
assumed not calibrated, one cannot easily expect to be able to estimate its po-
sition, hence the global structure is not recoverable. On the other hand, if the
contribution of each camera is combined with others as shown by the previous
model, it becomes then possible to provide an estimation of the global topology
with no need of a precise calibration of the network and the knowledge of the
exact positions of cameras. We will show that it is possible to retrieve the global
topology of the whole network using the lowest stages of the codification process.



8 Richard Chang et al.

3.1 Estimating network topology

Let C = {Ci} i ∈ N be the set of N uncalibrated cameras. A camera Ci produces
an image ν0

i that is coded by a common vocabulary to ν1
i (as shown in section 2).

In this subsection, the network topology is estimated by analyzing the objects
of the scene. The whole codification chain is not necessary, the process is carried
out from segmented images ν0

i up to layer ν1. Each image ν1
i is characterized

by its histogram of patches Hν1
i
. A cross-correlation score Corr(Hν1

i
,Hν1

j
) is

computed between two images coming from two cameras Ci and Cj (eq. 7). The
correlation score depends on the viewpoint of the two cameras. The score will
be high for close viewpoints, and low for two farther cameras.

The amount of details of objects in the scene increases as the distance between
the camera and the objects decreases. In this case the entropy of the segmented
images of layer ν0 is a relevant measure to provide an estimation of this distance.
By analyzing the entropy for a given position of the object, the distances to
all the cameras can be estimated. The relative positions of the cameras are
then determined from the distances. Given the acquired images, the object is
segmented from the background. Then, the entropy Qi of each segmented image
(of ν0) is computed.

The correlation and the entropy are computed for a video sequence acquired
by the cameras. By combining these values between the cameras, spatial coher-
ence can be determined. Cameras are then aggregated in order to satisfy the
coherence and the correlation values. It is not necessary that all the cameras
observe the same area. The method only requires an overlap between pairs of
adjacent cameras to determine their correlation.

3.2 Localizing a new camera in the network

Once the global topology of the network known, the whole codification chain is
processed. The network is then represented by different sets of cameras grouped
according to their information content. The configuration of these sets are not
necessarily the same as the spatial configuration.

Let Cp be a new camera viewing the same scene, its image ν0
p is then coded

by the common vocabulary to ν1
p . In order to compare the information given

by Cp and the one of the network, the element ν2
p is computed. To localize Cp

in the network, a top-bottom search is performed on the codification structure.
At each layer νi of the structure, a correlation value (eq. 7) is computed with
ν2

p . The highest correlation score gives the closest camera or group of cameras
closest to Cp.

3.3 Localizing scene objects

It is possible to provide an estimation of the position of objects in the scene
according to the cameras. We assume in this section that the positions of the
cameras are known. The goal is to determine the localization of the objects
without any calibration method. The position of the object can then be set as
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the linear combination of the positions of these cameras according to the values
of the entropy computed :

Pi =
N∑
i

αiPos(Ci) (8)

where αi is a decreasing function of the distance object to camera and the
Pos(Ci) is the position of camera Ci. As the cameras are uncalibrated, the
function αi cannot be determined precisely. The object is then localized up to
this scale.

4 Experimentation

Experiments are carried out on a camera network containing 20 uncalibrated
cameras regularly placed around the scene. They all acquire images at the fre-
quency of 30Hz. The whole calibration process relies on image sequences taken
by all cameras of a person moving freely and randomly inside the observed area.
No assumptions are made on the metric or appearance of the walking person.
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Fig. 5. (a) Correlation score between the camera C18 and the other cameras. The score
is similar for the cameras of the same side (closest cameras) and is very different for
the others cameras. (b) Different correlation scores for three consecutive positions of
the walking person. The score is related to the position of the walking person in the
scene. The correlation score between the cameras depends on the position of the object
in the scene. By analyzing different positions in the scene, the neighborhood can be
retrieved from a more robust correlation score.

4.1 Topology estimation

The whole codification process is performed on all images provided by the net-
work. The estimation of the topology of the camera network relies on the compu-
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tation of two quantities from each camera : the correlation of its ν2 codifications
values with all other cameras, and the computation of its entropy and compari-
son with all others. The cross-correlation score can be computed for every pair of
images taken by the camera network. The highest scores give a high probability
for two cameras to be close. The entropy measure is computed to confirm the
results given by the correlation score. Figure. 5(a) presents the mean correlation
results between camera C18 and the rest of the cameras during the whole image
sequence. The result is normalized with respect to the highest value correspond-
ing to C18 correlated with itself. As expected, nearer cameras to C18 give the
highest scores. Two cameras are set as ’neighbours’ if their correlation is at least
equal to 80% (set up using experimental measurements). The correlation value
is computed by each camera for all the positions of the walking person inside
the scene. The results are then averaged providing a mean value of all the scores
for each camera. Figure. 5(b) shows the evolution of the correlation results for
three different consecutive positions of the walking person.

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

10
x 10

4

# Camera

E
nt

ro
py

(a)

0 5 10 15 20
0

5

10

15

20

25

30

35

40

# Camera

# 
H

its

(b)

Fig. 6. (a) Entropy value for a given position of the walking person inside the scene.
The similar values indicates the close cameras. (b) The hit graph of entropy values of
camera 18, cameras 17 and 19 are again the closest cameras.

The computation of the entropy value of each segmented image at ν0 of the
sequence is also of great importance as it provides complementary information
for establishing the topology. As explained in section 3.1, the distance from the
camera to the object in the scene is also related to the value of the entropy.
Figure. 6(a) shows the entropy computed for all the cameras at a given position
of the walking person The entropy is set to zero for the cameras which do not
see the walking person. Different groups of cameras can then be set: 1−4, 6−7,
11 − 12, and 13 − 14. One can notice that the similar values indicate that the
distance camera-object is similar but the cameras are not necessarily neighbours
as for 1 − 4. By combining the results of the image sequence in which the man
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is moving in the scene, close cameras will statistically in time produce the same
entropies.

Entropy is computed for each camera at each frame, each camera stores
the amount of times another camera reaches its level of information beyond a
threshold, it is then considered as a hit. Figure. 6(b) presents the combined
results for camera 18. The number of hits is the highest for the cameras 19 and
17 which are its actual neighbours. From the correlation scores and the entropy
values, a graph representation of the neighborhoods of each camera can be built.
This score is computed as a weighted sum between the two normalized values.
Figure. 7 shows the groups of cameras marked as neighbours via this summation
score. In case the value is low between a camera and the others, this camera is
rejected out the structure.
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16
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19

18
16

191817

Fig. 7. The connection between the cameras can be retrieved using the correlation
score and the entropy values. The neighbors cameras have been connected each other.
The correlation values is shown above the connections. The bold connections show the
results of the entropy analysis with the corresponding correlation values between the
cameras.

Finally, using an iterative process the whole topology of the network can
then be estimated. Figure. 8 shows the trajectory of the walking person inside
the scene and the cameras layout. The method is not limited to grid topologies.
The only constraint on the cameras is to have an overlap between two adjacent
cameras.

4.2 Localizing a new camera in the network

Let Cp be a new camera added to the network at a location to be determined.
The images provided by Cp are coded up to layer ν2. The whole codification
process is performed on all images provided by the network up to layer ν4.
The most representative information within the network at a certain time are
expressed.
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Fig. 8. Retrieved global topology of the network from cross-correlation and entropy.
These values have been computed from the image sequences of the man following the
shown trajectory.

(a) (b)

Fig. 9. (a) Layer ν4 for the camera network, cameras expressing the same content are
merged into a single node. (b) Cross-correlation value between the camera Cp and the
other cameras C1 to C4 determined as the closest ones. Cp is then located between C2

and C3 according to the correlation.

As shown in figure.9(a) cameras expressing the same content are merged
into a single node. The presented representation shows that the whole scene
is expressed by four representative nodes. Given the new camera Cp, a cross-
correlation value is computed between ν2

p and the different sets of nodes of ν4.
The highest correlated node in time includes the set of the closest camera to
Cp. The same process is the recursively applied at the previous layers ν3 and
ν2 following a top-bottom search model. The camera Cp is finally localized as
neighbour of four elements of layer ν2. Figure. 9(b) shows the correlation score
between Cp and the four cameras ν2

k given by the closest element in ν3 and their
corresponding images. Cp is finally inserted at its corresponding location.
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Instead of comparing Cp with all the cameras of the network, this top-bottom
process acts as a graph analysis to find the closest elements to Cp. The compu-
tational load is reduced significantly. Time remains an important factor of the
process. This architecture introduces a simplified and efficient camera manage-
ment and eases the control of dynamic camera network.

4.3 Trajectory estimation

The topology and the position of the cameras are now assumed being known. The
data reduction and the clustering from raw images to top levels are performed
as explained in section 2.4.
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Fig. 10. (a) Quantity of information computed from the cameras for a given position of
the man. These values are high when the man is close to camera and decrease according
to the distance to the cameras. (b) The trajectory of the man is retrieved using the
quantity of information given by all the cameras. The ground truth is drawn in green.

With the clustering technique, each camera contributes to provide a repre-
sentation of the global perception of the entire network. We are also able to
estimate trajectories. The positions of the walking person are estimated as a
linear combination of the active cameras position as previously presented, with
the αi set proportionally to the entropy Qi computed at each camera location.
Figure. 10(a) shows the entropy of the cameras for a given position of the walking
person. The entropy is maximal when the man is close to the camera (C18, C1)
and decreases according to the distance (C6, C7). The trajectory can be globally
retrieved by concatenating the positions of the image sequence. Figure. 10(b)
shows the ground truth trajectory superimposed with the estimated one up to
a scale. Because of the choice of the αi and the avoidance of camera calibration,
the metric is not available but can be added if assumptions on the height of the
object are added.
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5 Conclusion

Most of multi-camera systems deal with single cameras acting as individual en-
tities. Each camera provides information to the system without interaction with
the other ones and the network is only viewed as a concatenation of sensors. Many
constraints on the cameras or on the scene make it difficult to achieve standard
tasks due to the huge amount of collected information that are unavoidably re-
dundant leading to a resources’ wastage. An approach considering each camera
as a part of a unique entity is presented to overcome these problems. This paper
presented a model which allows a system to retrieve and adapt its own structure
and sort acquired signals according to a given task. Time is an important factor
as iterative processes are the fundaments of the whole procedure.
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