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Running on Optical Rails.

Theory, Implementation and Testing of Omnidirectional
View-based Point-To-Point Navigation

David Dederscheck**, Holger Friedrich, Christine Lenhart, Joachim Penc,
Eduard Rosert, Maximilian Scherer, and Rudolf Mester

Visual Sensorics and Information Processing Lab
Goethe University, Frankfurt, Germany
http://www.vsi.cs.uni-frankfurt.de

Abstract. Optical Rails is a purely view-based method for steering a
robot through a network of positions in a known environment. Navigation
is based on images aquired by an upward-looking omnidirectional cam-
era; even a very modest quality of the optical system is sufficient, since
all views are represented in terms of low-order basis functions (spher-
ical harmonics). The theoretical concept of Optical Rails and a first
preliminary validation using simulations have been presented very re-
cently [5]; the present paper provides substantial advances in terms of
the efficient computation of the spherical harmonics representation, con-
siders the necessary processing particularly for inexpensive cameras, and
describes how the link between view-based navigation information and
the actual steering of a real robot is achieved. We present strategies for
navigation along a prerecorded path that also allow for arbitrary move-
ment of the robot between adjacent positions in the network.

1 Introduction

In this work, we present a method for guiding a mobile robot through a known
environment, only relying on omnidirectional vision, and without use of any
geometric information. Animals as well as humans use visual perception to a
very large extent to orient themselves in their surroundings. When using visual
information for guidance and navigation, most processing is related to recog-
nition, association, and observing changes of similarity; it seems less plausible
that geometry, e.g. triangulation, plays an explicit role in finding and follow-
ing a known path. Our method is designed according to these principles. It has
been very recently introduced in [5] as Optical Rails and tested using simulated
data. In this article, we show the extension of our approach for successful im-
plementation on a real robot vehicle. The method shares certain characteristics
with landmark-based robot homing approaches [6,11,1, 3], view based homing
[12], and with those methods that use epipolar geometry [2, 8]. It does, however,
not require the use of artificial markers, laser scanners, SLAM, etc. In terms
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of utilizing spherical harmonics, it is founded upon previous work of Makadia
and Daniilidis [8,9]; the expansion into orthonormal basis functions for image
signal representation leads to the essential innovation in Optical Rails: efficient
differential pose change estimation and differential track following.

The representation of images in spherical harmonics (SH) is the key to the
particular efficiency of Optical Rails: To control the motion of the robot, the
gradient of a dissimilarity measure with respect to the motion parameters of the
robot (translation, rotation) is obtained by comparing omnidirectional views.
The computation of derivatives in image space is avoided by expanding the
spherical image signals in basis functions; all further processing occurs only us-
ing the resulting low-dimensional coefficient vectors. Thus, with Optical Rails,
pose derivatives can be obtained in a computationally inexpensive way using
precomputed expressions. Another positive aspect is that by using a truncated
SH expansion Optical Rails works well even without high resolution images or
precision optics.

2 Optical Rails Concept

Imagine the desired course of the robot as a sequence of discrete waypoints, i.e.
subsequent locations in the environment. Each of these waypoints is associated
with an individual omnidirectional view. The position of the waypoints in space
is neither determined nor necessary for steering the robot. Merely by comparing
the view at its current location with the target view, the robot is able to drive
towards the target waypoint. As soon as it gets close enough to its current
target, the robot proceeds with the next waypoint in the sequence (waypoint
handover). In this way, the robot visits one waypoint after the other and thus
follows the prerecorded path. Multiple paths can be interconnected and extended
to a network in which the robot can move freely.

In our approach, all views are represented as an expansion into spherical har-
monics (SH), analogously to the Fourier representation in the plane [8,5]. The
sets of coefficients ay,, of this expansion form view descriptors a. The dissimi-
larity @ between the current view and the target view can be computed from
the difference of the two corresponding view descriptors.

Svoboda and Pajdla [13] perform motion estimation on panoramic images
using correspondences of randomly scattered points. In our case, the differential
change of the dissimilarity measure ) — for infinitesimal pose changes of the
robot — corresponds to the desired robot motion to decrease dissimilarity. For the
task of robot navigation, we may then assume that minimizing dissimilarity also
reduces the distance between the positions. This incremental differential process
is analogous to classical differential matching processes (a.k.a. ‘differential image
registration’) as used by Lucas and Kanade [7].

For computing the differential change of the dissimilarity with respect to
pose changes, we require a model for the effect of a pose change on the spherical
image signal. An exact prediction can be made only for the trivial case of a pure
rotation; for exactly predicting the effects of a 2D translation, we would require
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the depth structure of the scene. The changes w.r.t. translation and rotation are
modeled by reprojecting the spherical signal on a virtual ceiling plane parallel
to the ground plane (gnomonic projection) on which the robot moves.

3 A Model for Differential Pose Change Estimation

A natural choice for the dissimilarity measure () between two views is the mean
squared image signal difference obtained by integration across the hemisphere.
Let s(0, ¢) be the view at the current — yet unknown — robot position p., and a
the associated view descriptor; §(6, ¢) is the view at the destination pose pg with
the corresponding view descriptor a. Due to the fact that the basis functions
used here are orthonormal, the dissimilarity @ between the two views s(6, ¢)
and 5(6, ¢) can be directly computed from their view descriptors a and a:

/2

2m
Q= [ [ (:(0.0)~50.0)2 5o 08 = la-all} (1)
6=0 J¢=0

where sin 6 is the Jacobian of integration in spherical coordinates 8, ¢.

As we wish to minimize @, we require the gradient —g = —9Q/0p. which
represents the direction in which the robot should move (including rotation) to
reduce the dissimilarity @Q). Because s(0, ¢) is dependent on the current robot pose
Ppc, but the exact relation is inaccessible due to the unknown depth structure,
we need a model that approximates the effects of a pose change.

To that purpose, we project the spherical image signal onto a ceiling plane.
Then differential translations and rotations of the projected signal correspond to
motions of the robot underneath the ceiling plane. This way we coarsely approxi-
mate the underlying geometry to benefit from the now analytically determinable
effects of the motion.

Using this model, we compute the partial derivatives of () with respect to the
components of the current pose vector p. and steer the robot in the direction of
the destination.

Gnomonic Projection of a Hemispherical Signal. We project an image
signal s(0, ¢) defined on a hemisphere onto a ceiling plane by using the gnomonic
projection. Thus we obtain spherical coordinates from Cartesian coordinates on
the projection plane by

G (z,y) = (0(z,y); d(z,y))" 0(z,y) = arctan(1, /22 + y2) @

¢(z,y) = arctan(x,y)

The inverse mapping from spherical coordinates to Cartesian coordinates on the
projection plane is obtained by

_ B ) - ) -
G ! (97 ¢) - (x(&, d))ay(aa ¢))T y(e’ ¢) — tan(@) . sm(¢) (3)
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Integral of a Planar Projection of a Hemispherical Function. Since we
aim to compute the derivative of ) in coordinates of the projection plane, we
require the planar equivalent of our dissimilarity measure (1). Thus we substi-
tute 6, ¢,d¢p,df in (1) according to (2) and adjust the integration boundaries
appropriately. The combined Jacobian w(z,y) for this transform is

w(zx,y) = det |J| - sin(arctan(1, /22 + y2)) = (1 + 2 + y2)_% (4)

where det |J| is the Jacobian for the gnomonic transform G (z,y). We obtain the
planar equivalent of () for the projection:

©- /Z /Z w(z,y) - [s(0(.y), oz, ) = 5(0(z,y), d(a,y)))* de dy  (5)

Differential Pose Change Estimation for 3 DoF Motion. Let b(x) and
b(x) be the planar image signals acquired at the current pose p. and the des-
tination pose pg of the robot, respectively. We define f(x,d) as an isometric
Euclidean transform which represents the pose translation and rotation with

the displacement parameter vector d:

cos ¢ —sinp vy [ T
f(q:,d) = A(d) - &, A(d) = (sim,o cos ¢ 1,‘2), d = <v2), T = (xg) (6)

0o 0 1 ¢ 1
We now regard the dissimilarity () between the view at the destination pose B(a:)

and the transformed view at the current pose of the robot b( f(x, d)), i.e. to the
latter the Euclidean transform f has been applied:

Q= [ wl@): [pf@.d) ~ba)] do @

The partial derivative of () with respect to the parameter vector d at d = 0 is:

0Q _ ; ob(f(w,d))  Ob(x)
o= [ 2u@ preay @) | ZERD T 4
d=0
As b(z) does not depend on d, ag((if) is 0. The derivative %dfd)) is obtained

by applying the generalized chain rule:

ab(f(mad))_<0f1(w,d) Ofa(z,d) Ofs(a,d) )( ob(y) 9b(y) c%(y))T’
ad,; - od; ' 0d; > 0d; Oy1 7 Oyz2 7 Oys y=F(z,d)

where f;(x,d) are three individual components of the vector function f(x,d).
We perform the differentiation and substitute the results in (8).

With & :=—2x1 - sinp+x5 - cosp and £3:=—x1 - cos p—T2 - sin ¢ we obtain:
oQ ~ T
o =2 /A w(@) [b(f (2, d))-b(w)] (20,20 ¢ L)1, 20) ) o
=r=z, d=0
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For these derivative terms depending on the parameter vector, we may now
perform the transition to d = 0. As f(x,0) is the identity transform, we obtain:

90 b ob(z) ob(x) . db(x) ab() \
g = A2.w(m).[b(w)—b(w)}.( Tt Bt T2 et — 1 ) dz  (11)

which represents the gradient g for continuous planar image signals.

Exploiting the Spherical Harmonic Representation. We represent image
signals by linear combination of basis functions, which allows for drastic simpli-
fications in the computation of gradient g. Let }7] be the gnomonically projected
basis functions on the ceiling plane, i. e.

ba) =Y a;-Yi@),  He) =34 Vi) (12)

where a; are the coefficients of the linear combination, corresponding to the j-th
entry of the view descriptor a. Substituting an image signal b(z) by > a; }u/] (x)
in (11) and correspondingly for b(z), results in

Y, Sy — @)Y (w)ar S
=2 w@ 5, Lila; — )Y (@)an ) de (13)
5, Slas = a5)Vi(@)ar (w2 T — oy Pl
Using the linearity of the integral operator, we obtain

>0, 2klag —ag)ax [, w(@)Yi(

z)Y; %(f)dw
2 Zj Zk(aj —aj)ak wa(w)YJ

9Q _

x)
od z)

() @) g (14)
5, Sl = ag)an [, w(@)Vi (@) (22252 — 21 250 ) da

Since the integrals in the sums do not depend on any of the coefficients a;, we

may precompute them. We obtain the precomputed coefficients u;(j, k):

w (k) = [ o w(@) - V() T day day (15)
us(j, k) = [ [ w(@) - V() T day day (16)
us(j, k) = f;;_oo f:;_oo w(z) - Yj(x) (962 82’;(193) — T 5‘5’;‘5)) dxy dxy (17)

With these integrals, the components of the gradient are computed using the
following expression:

~ 8Q Zj Zk(ajiélj)'ak'ul(j:?k)
gla,a) = d = > 2wlay —aj) - ak - ua(j, k) (18)
> 2onlay — aj) - ag - us(j, k)
Note that the negative gradient —g represents a pose change of the camera, and

this vector has to be transformed into the robot coordinate frame in order to
provide steering information.
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a5, ' as [as
T o '

Fig. 1. From left to right: Yo,0, Y3,1, Ya,2 (upper row) and their weighted planar pro-
jection for our calibrated fisheye camera. The circle outline consists of the weights
obtained by the integrative equivalent of interpolation.

4 Spherical Expansion on a Plane

In the experiments performed here, image acquisition takes place with a wide
angle lens; we obtain planar fisheye images with a field of view of approxi-
mately 160°. For calibration of the lens and modeling the projection from spher-
ical coordinates to the planar image coordinates, we employ the unified projection
model as described in [10], which can be applied to all single-viewpoint omni-
directional cameras. To obtain the calibration parameters, we use the MATLAB
calibration toolbox supplied by [10].

Instead of projecting the image onto the unit sphere, we perform the SH-
expansion directly in the image coordinates. To that end, we project the spherical
basis functions onto a plane corresponding to the imaging process of the fisheye
camera in order to obtain projected basis functions. The computation of these
basis functions is time-consuming, but this needs to be done only once.

Let b(&, ) be the discrete image signal of the camera. Using the calibrated
model of the camera and the lens, we obtain discrete basis functions Y/}zm(;ﬁ, 9)
defined in discrete image coordinates &, ¢, which conform to the property

aom =3 Vem(2,9) - b(2.9) (19)

2,9

and thus are the planar equivalent of the SH expansion on the sphere. Inverting
the projection function of the camera model enables us to precompute Y, (2, §)
by sampling the spherical basis functions for each discrete image coordinate
(pixel) and weighting them appropriately.

As the images acquired by the camera have a limited field of view, whereas
our view descriptors represent a hemisphere of 180°, we wish to interpolate the
missing signal using a radial nearest-neighbor interpolation. However, instead of
performing this interpolation as a preprocessing step, we include it in the process
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Fig. 2. Original (cropped) image signal (left) and its approximation using planar SH
basis functions up to order 7 (right).

of image expansion by increasing the weight of the border pixels. We integrate
over the area each interpolated border pixel would occupy on the sphere and
obtain the integrative equivalent of interpolation. Hence, the relatively tedious
interpolation of the input images is avoided.

5 Pose Tracking and Model-Based Motion Control

The navigation process in Optical Rails consists of a sequence of motions of the
robot which are each governed by feedback control based on the gradient —g. We
obtain —g by acquiring an image from the camera, performing an expansion into
SH to obtain the view descriptor a of this image, and then using (18) to compute
the gradient. We refer to this process as differential pose tracking. The extension
to following an Optical Rail composed of multiple waypoints is achieved by
performing a waypoint handover upon reaching the current destination.

Recall that —g gives a camera pose change direction to approach the des-
tination based on the view taken at the current pose. We obtain the steering
direction of the robot vehicle towards the destination pose by transforming the
gradient —g into the vehicle coordinate system. We define the coordinate sys-
tem transform M and the steering vector gs, which denotes the proper motion
direction of the robot:

gs ‘= (gs,w s gsy 9s,0 )T7 gs=M- (_g) (20)
~—~ ~—~ ~—~
lateral forward rotation

Tracking and Steering Control for a Non-Holonomic Robot. If the
robot follows a track under ideal conditions, it should constantly approach the
next target in the forward driving direction while exactly locking to the track
in lateral direction. This is particularly important for a non-holonomic vehicle,
which can only move in two degrees of freedom. The motion of these vehicles
(differential drive, car, tricycle) can be described by a translation rate uforward
and a rotation rate uUsieering. 1f a trajectory of such a vehicle is subsequently
followed using Optical Rails, we may assume that at each time the bearing
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(rotation) to the next waypoint is small, and that the lateral spacing to the next
waypoint is close to zero.

Thus, in principle it would be sufficient to determine the proper ratio of
rotation and forward translation rate to follow the track. However, due to the
varying visual structure in different areas of a real environment, the response
of the gradient is not uniform in its individual components. Hence, such a ratio
will be largely distorted, leading to a cumulative error of the trajectory and
oscillations.

We use PI control to determine the steering rate while driving at a fixed
forward speed. This is less susceptible to the influences of the changing sensitivity
of the individual components of the steering gradient gs; we obtain the rotational
control value uyor by

t

urot(t) = Krot,p . gs,¢(t) + Krot,i Z gs,qb(k) (21)
k=t— At

where Kio,p and Kio; are weights for the proportional and integral control
components, respectively.

A typical issue when approaching a view is a deviation perpendicular to
the driving direction, often experienced as a lateral divergence after passing
through a curve. A continuous response of the lateral gradient component g ,
is indicative of this problem. Although the non-holonomic vehicle model does
not allow direct lateral motions, a steering motion to the right while driving
forward also moves the vehicle laterally to the right; we determine the lateral
correction control value Uy by

t

() = Koty Gow() + Kiari Y, gon(k) (22)
k=t— At

with the weighting factors K¢, and Kiag,; as above.

Finally, a weighted sum of the lateral correction and rotational control values
determines the steering rate of the robot, whereas a constant forward velocity is
used:

Uforward = Sign(gs,y) - Ktorward, Usteering = Q1 * Ulat T Q2 - Urot (23)

To determine the motor control output for the robot drive system, the differential
drive vehicle model is employed in connection with a calibration lookup table
for motor speed linearization.

6 Recording a Track and Waypoint Selection

To record a track, greyscale images are acquired at a rate of approximately
5 images per second. For each image, the corresponding approximation in SH
coefficients is stored in a list representing the raw data for Optical Rails.
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Then, a waypoint selection scheme is applied to this sequence of view descrip-
tors, which drastically reduces the number of reference views in the sequence. For
the subsequent task of track following, the set of descriptors is reduced in such
a way that subsequent waypoints have a minimum dissimilarity Qmin. As views
are typically recorded in rapid succession, we obtain a track T of approximately
equi-dissimilar view descriptors a;.

T:[a'076’1a"'a6’N] (24>

Recall that in an area of convergence, closing in on a waypoint in terms of visual
dissimilarity corresponds to approaching this waypoint geometrically; This is,
however, on a different scale also depending on the structure of the environment.
The waypoint selection scheme ensures that waypoints which are recorded
while the robot only moves on a very small scale are discarded. Therefore only
distinct waypoints are kept, which is important for successfully following a track.
Waypoints too similar lead to ambiguous handover; if the waypoints are too
coarsely spaced, the radius of convergence of the gradient g can be exceeded.

7 Waypoint Handover

The task of waypoint handover in Optical Rails is to detect when the robot
has reached its current destination and should steer towards the next waypoint.
Without geometry, this decision has to be made based merely on visual infor-
mation.

Let Q. be the dissimilarity between the view at the current position and view
at the current destination. An intuitive criterion for handover is the dissimilarity
measure Q. falling below a threshold T, (denoted here as condition I).

Qe <T¢ (25)

Even if we assume that all successive reference views on a prerecorded track have
an equal dissimilarity @, already minute (lateral or rotational) deviations from

1 / steps

100

80

Fig. 3. Behavior of dissimilarity measures @, (previous waypoint, dashed), Q. (current
waypoint, solid), and Q. (next waypoint, dotted) for a course along a track leading
through a door (experimental results). Vertical bars indicate waypoint handovers.
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the prerecorded track can lead to handover problems. In a real environment the
effect of small pose deviations on the dissimilarity measure can be very different.
There are regions where pose changes have little influence on ., whereas in
other regions the same pose changes cause substantial changes in dissimilarity.
This is caused by the different visual structure of the corresponding views in
those regions. Therefore, relying only on a constant threshold is an insufficient
condition, as it leads to premature handover in regions where the distance mea-
sure is insensitive to motions and causes the robot to diverge from the track.
Conversely, if the threshold is chosen too restrictive, in motion sensitive regions
no handover will occur at all and the robot will halt.

We can, however, augment this criterion with additional conditions for han-
dover in these motion sensitive areas. Let @), be the dissimilarity between the
view at the current position and the previous waypoint and @),, be the dissimilar-
ity between the view at the current position and the next waypoint. We observe:
While approaching the current destination, (), increases while (). and @, de-
crease. At the current destination Q). is small; @, and @, are approximately
equal (see Fig.3). This is due to the utilized waypoint selection scheme (see
Sec. 6), which provides approximately equal visual distance Qnin between suc-
cessive waypoints. We use the equal visual distance assumption as an additional
condition (condition II) for waypoint handover, since it is less dependent on the
visual structure of the environment. Therefore we set a small threshold T; on the
difference of @, and @Q,, yet allow waypoint handover only if the dissimilarity
Q. is not greater than Tt max-

|Qn — Qpl <T; N Qe < Tpmax (26)

However, if the visual appearance of the environment quickly changes from one
waypoint to the next, equal visual distance between @, and @, cannot be as-
sumed. In this case condition II would fail and handover would be missed. Be-
yond the destination, Q),, decreases and @), increases. Yet our waypoint selection
scheme ensures densely spaced waypoints in these areas. Thus, if the robot is
about as close to the current destination as it is to the next, handover can also
be performed. We set an additional threshold T; on the difference between @,
and (). and obtain condition III.

|Qn — Qc| < Tu (27)

These three conditions lead to combined handover criterion, which can handle
all typical situations.

H: QC<TC \ (|Qn_Qp| <Ti A Qc<Tc,max) \ |Qn_Qc| <Td (28)
——

condition I condition IT condition III

8 Putting Optical Rails on a Real Robot

The theoretical concept of Optical Rails has already been extensively discussed
[5]. This prior work uses a simulated robot moving in an artificial environment.
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Fig. 4. Door peephole camera system (left) and raw omnidirectional image (right)

While the theory governing the pose-change gradient g is a common founda-
tion for the Optical Rails concept, the extension of the method to an application
for a real vehicle — performing maneuvers in a laboratory environment — com-
prises substantial differences. This applies in particular to the task of obtaining
the view descriptors in an efficient way; we use the Frobenius inner product
of planar precomputed basis images and the raw camera image (Sec.4). This
new core concept — in concert with the efficient computation of g — has brought
Optical Rails to full real-time capabilities.

8.1 Mobile Robot Platform

For the implementation of Optical Rails on a real robot, we use a proprietary
robot platform based upon standard PC components with a six wheel belt-
driven differential drive. The robot is equipped with a variety of different sensors
connected via CAN-Bus (IR, accelerometer, ultrasonic), and stereo vision to
serve as a multi purpose development platform in our labs. For Optical Rails,
however, all these standard sensors are neither required nor used.

The robot runs a distributed software framework on the GNU/LINUX op-
erating system. Using a network interface server, the robot is controlled and
transmits omnidirectional image data to a PC running MATLAB where the Op-
tical Rails algorithm (Sec. 8.2) operates.

Omnidirectional Camera System. For omnidirectional image acquisition,
we added a hemispherical camera system to the robot, which is based upon a
standard Firewire IIDC camera in connection with a door peephole lens (Fig. 4).
We use automatic exposure mode to provide a basic level of robustness to global
illumination changes. This relatively cheap imaging setup provides more than
sufficient image quality for the vision task using SH, since high-frequency signals
are disregarded.

Vehicle Model / Drive System. During track following, we perform motions
with a rotational and translational rate governed by the PI control approach
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Fig. 5. Experimental result of Optical Rails: following a prerecorded track. The ap-
proximate trajectory of the robot has been superimposed

from Sec.5 to attain minimal tracking and steering deviation. Since we use a
differential drive vehicle, we have to translate the values from (23) to motor
control values. This is performed using the inverse kinematics for the vehicle
model in connection with a calibration of the drive characteristics.

8.2 The Optical Rails Algorithm.

Let T be a prerecorded sequence of reference views a; as introduced in Sec. 6.
The robot is initially located at the pose of the first view ag in T'. Track following
takes place as follows:

1.:=1
set the coeflicient vector a; as the destination view a
grab the current image and calculate the coefficient vector a
compute the gradient g from a to @ and the dissimilarities @, Q., @»
transform the gradient g to the steering vector g,
issue the PI controller subroutine with g5 as input value
translate the resulting rotation and translation rate into motor control values
if the combined handover criterion H is true, advance the destination to the
next reference view in T (set i =14+ 1)
9. If i > N, the final destination is reached and the robot stops.
10. Else (¢ < N) start over at 2.

NSOt W

Note that for the case of approaching the last waypoint ap, the dissimilarity
measure @, cannot be computed, which requires special treatment.

9 Results

We have tested Optical Rails by a number of experiments in our laboratory with
different tracks to be followed. Here we present one of the most difficult tracks,
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Fig. 6. Comparison of the originally recorded teach-in sequence (upper images) with
autonomous track-following using Optical Rails (lower images).

in which the robot has to pass through a door (very rapidly changing views) and
has to perform rather sharp turns. The result of this drive can be seen in Fig. 8.2
and is also supplied as a video, which shows the track as it is being recorded and
as the robot drives this track autonomously. Even though the implementation
includes transmission of the images via WLAN to a workstation performing
the bulk of the computation in MATLAB, we can process up to 5 input images
per second. For the experiments, the processing of only one image per second
(and thus issuing only one command to the robot per second) has proven to be
sufficient. The utilized constants and thresholds for the Optical Rails algorithm
were learned and fine tuned on a track from inside our laboratory, through
the door, into the corridor. Without changing the parameters, the robot was
able to follow different subsequently recorded tracks. Although we currently use
precomputed coefficients u;(j, k) only up to SH order 4 and planar basis functions
up to order 7, the results acquired so far are quite satisfactory and prove the
Optical Rails concept to be applicable to a real robot.

10 Outlook

Our experimental results show that Optical Rails can be applied to a real robot
in an office environment. To robustify the gradient in situations where the planar
projection model is largely violated, we plan to incorporate the depth structure of
the environment computed of consecutive snapshots. With such an extension, we
expect Optical Rails to perform very well even in very challenging environments.

The present implementation allows for one way track following from the
beginning of a track. However, for applications in a network of interconnected
tracks it is not only important to reverse the direction: To begin driving from an
arbitrary point, an ad hoc localization step and path planning have to be added.

To obtain a smoother driving behavior, we plan to use model-based trajectory
planning in combination with the existing calibration of our robot vehicle.

In addition, it is important to provide illumination invariance to the system,
since illumination changes also affect the dissimilarity between views. Corre-
sponding procedures have been proposed in a paper on spherical harmonics [4].

For universal applicability of the system an important task is to provide tol-
erance against occlusions. Suitable concepts based on statistical models and local
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change detection already exist; the implementation still has to be performed. Yet,
due to the holistic approach of Optical Rails, minor occlusions do not disturb
the system.
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