Three types of reprojection error on spherical epipolar geometry

Abstract : To compute an epipolar geometry for spherical images, error evaluation function, which is define as the sum of squares of reprojection errors, is generally minimized. For pin-hole camera, it is natural to measure the reprojection error as Euclidean distance, which is the quantities defined on image plane. The same as this, for spherical camera, it is natural to measure the reprojection error as the quantities defined on image sphere, not the quantities defined on plane. In this paper, three types of distance are defined as the reprojection error for spherical image. The distances are distance along geodesic, difference of longitude and arc length along colatitude. For three types of distances, the essential matrices for epipolar geometry are computed and the performances evaluated by comparing to the eight-point algorithm under three-dimensional reconstruction error of synthetic data.
Type de document :
Communication dans un congrès
The 8th Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras - OMNIVIS, Oct 2008, Marseille, France. 2008
Liste complète des métadonnées

https://hal.inria.fr/inria-00325398
Contributeur : Peter Sturm <>
Soumis le : lundi 29 septembre 2008 - 11:21:40
Dernière modification le : lundi 29 septembre 2008 - 11:22:38
Document(s) archivé(s) le : vendredi 4 juin 2010 - 11:54:06

Fichier

A28CR.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00325398, version 1

Collections

Citation

Jun Fujiki. Three types of reprojection error on spherical epipolar geometry. The 8th Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras - OMNIVIS, Oct 2008, Marseille, France. 2008. 〈inria-00325398〉

Partager

Métriques

Consultations de la notice

120

Téléchargements de fichiers

722