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Abstract. To compute an epipolar geometry for spherical images, error
evaluation function, which is defined as the sum of squares of reprojec-
tion errors, is generally minimized. For pin-hole camera, it is natural to
measure the reprojection error as Euclidean distance, which is the quan-
tities defined on image plane. The same as this, for spherical camera, it
is natural to measure the reprojection error as the quantities defined on
image sphere, not the quantities defined on plane. In this paper, three
types of distance are defined as the reprojection error for spherical im-
age. The distances are distance along geodesic, difference of longitude
and arc length along colatitude. For three types of distances, the essen-
tial matrices for epipolar geometry are computed and the performances
are evaluated by comparing to the eight-point algorithm under three-
dimensional reconstruction error of synthetic data.

1 Introduction

In computer vision, epipolar geometry for pin-hole camera images[5, 10] is stud-
ied as a fundamental and important problem. On the other hand, the computer
vision of omnidirectional camera is getting more significant and the epipolar ge-
ometry for omnidirectional camera such as large field-of-view camera[3], central-
catadioptric[l, 2] and central-dioptric[19] have been investigated. The reason why
the omnidirectional cameras are used more and more is that the omnidirectional
cameras have wide view of scene compared to pin-hole camera. This means two
omnidirectional camera images should have wide common region and many cor-
respondences compare to two pin-hole camera images. Then, the computer vision
of the omnidirectional cameras is getting very important.

Among omnidirectional cameras, the camera which has camera center is
called central-omnidirectional camera, and the epipolar geometry for central-
omnidirectional camera is proposed[7,17,19]. There are many kinds of central-
omnidirectional cameras are exist, and each kind of central-omnidirectional cam-
era has different way of projection because the central-omnidirectional cameras
are constructed with many kinds of mirrors and refractors. Then each kind of
central-omnidirectional camera has different kind of image coordinate system.
However, all kinds of central-omnidirectional cameras are universally resolved



into spherical camera with spherical perspective projection[19, 7]. Then the anal-
ysis of spherical camera is enough to analyse all kinds of central-omnidirectional
camera images.

Theoretically, the pin-hole camera is also a kind of the central-omnidirectional
camera because the pin-hole camera has camera center. The difference between
pin-hole camera and spherical camera is how to fix the freedom of homogeneous
image coordinate of image coordinate system. On pin-hole camera, homogeneous
image coordinate is fixed by the third component of homogeneous image coor-
dinate is equal to focal length, and on spherical camera, homogeneous image
coordinate is fixed by the norm of homogeneous image coordinate is equal to
one. Then the pin-hole camera is also resolved into spherical camera, and the
analysis of pin-hole camera is instructive for the analysis of spherical camera and
vica versa. Especially, the geometrical feature of pin-hole camera represented by
homogeneous coordinate is easy to apply to the spherical camera.

In this paper, estimation of epipolar geometry, that is, estimation of essential
matrix is highlighted as the useful example of the geometrical feature. Because
the epopolar equation for pin-hole camera images is based on the homogeneous
coordinate, the epipolar equation for spherical camera has the same representa-
tion as the representation of epipolar equation for pin-hole camera[4]. Then any
estimation method of essential matrix for calibrated pin-hole camera, including
eight-point algorithm[9] , can be basically used for calibrated spherical camera.

Although any estimation method for pin-hole camera is applicable to spheri-
cal camera, reprojection error, which is the distance between observed data and
its estimation, should be measured differently. The reason why reprojection er-
ror should be measured differently is that pin-hole camera image is lying on the
plane and spherical camera image is lying on the sphere. For the pin-hole camera
images, the reprojection error should be measured by the quantities on the plane
such as Euclidean destance because the pin-hole camera image is lying on the
plane. The same as this, for the spherical camera images, the reprojection error
should be measured by the quantities on the sphere because the spherical camera
image is lying on the sphere. Then, three types of distances are considered for
the spherical camera images in this paper.

For pin-hole camera, algebraic distance, geometric distance and Sampson
error is mainly considered. The algebraic distance is the norm of residual vector
of the DLT algorithm and this distance is used for eight-point algorithm. The
geometric distance is the Euclidean distance between observed and estimated
image coordinate on the image plane but it is difficult to treat directly. The
Sampson error is an approximation of the geometric distance and this is used for
Gold Standard algorithm[10, 13]. The error based on maximum a posterior when
the Gauss noise is add to the image coordinate, is also proposed[18]. Note that
these problems are unified as the problem of minimizing the distance between
observation and estimation under some constraints such as epipolar constraints,
like optimal triangulation of image coordinates[12,14].

For the spherical camera, the most popular reprojection error is a distance
along geodesic[11], which is the same as arc length along great circle. In spherical



geometry, geodesic is regarded as line and geodesic is the shortest path between
two points on the sphere. Then distance along geodesic for spherical camera
image is correspond to the geometric distance for pin-hole camera image. In
addition to the distance, two kinds of different distances (reprojection error) are
considered in this paper. The one is difference of longitude[6] and another is arc
length along colatitude. These two distances are derived from rectification of
spherical images. The rectification of spherical image is regarding the epipole as
north pole (or south pole) of sphere. By the regarding, the geometrical meaning
of epipolar constraint is that corresponding points have the same longitude.
From this geometrical feature, two types of reprojection errors based on the
rectification are defined. The one is difference of longitude[6] and another is arc
length along colatitude. The arc length along colatitude is the weighted difference
of longitude of its weights is sine of the colatitude.

In the paper, comparing these three types of reprojection errors through
three-dimensional reconstruction computed from the essential matrix. From the
experiment by synthetic data, the characteristics of the two types of rectification-
based reprojection errors and the distance along geodesic are clarified. Through
the paper, least squares criterion is used to define the energy (error) function to
compare with eight-point algorithm easily. Of course, there are many works are
proposed to derive better estimation than least squares criterion, and it is easy
to extend the three types of reprojection errors from least squares criterion to
others criterion such as M-estimator criterion, L.,-norm criterion etc. However,
the least squares criterion is the most appropriate energy function to clarify the
difference among reprojection errors because least squares criterion is sensitive
to errors and this sensitiveness makes the difference among reprojection errors
clear.

As mentioned above, the least squares criterion, which minimizing the sum of
squares of distance, is commonly used for error function. But generally, the least
squares criterion is easily effected by outliers. Then poor estimation is often ob-
tained from least squares criterion. To overcome the problem, robust estimation
against outlier is proposed such as least median of squares (LMedS)[16] or many
kinds of M-estimators. but robust estimator sometimes gives local minimum of
energy function. Then L..-norm[12] (minimax criterion) estimator, which has
no local minimum is also proposed.

2 Epipolar geometry on spherical camera

Calibrated unit spherical camera is used through this paper. In the situation, the
spherical camera is the mapping from three-dimensional point X ,, which is the
p-th feature point on spherical camera coordinate system, to two-dimensional
unit sphere of its three-dimensional Euclidean coordinate is z, = mX s

which is the p-th feature point on spherical image coordinate system (Fig.1).
On spherical camera coordinate system, the points on unit sphere is represented
by two parameters which are called colatitude ¢, € [0, 7] and longitude ¢, €
(—m, w]. The origin of the coordinate system (¢,,,) = (0, 0) is correspond to the



Fig. 1. Spherical camera coordinate system: longitude (left) and colatitude (right) of
spherical image z,

intersection between unit sphere and optical axis. Then the three-dimensional
Euclidean coordinate of the origin of spherical camera coordinate system is N =
(0,0,1) T, which is called north pole.

Generally, the three-dimensional Euclidean coordinate of the point on unit
sphere z,, is represented by the colatitude ¢, and the longitude ), of z, as

z, = (sin ¢, cos ¢y, sin ¢, sineh,, cos¢,) " . (1)

From Eq.(1), the colatitude ¢, and the longitude v, of z, = (z,,y,2,) " is
represented as

bp = cos™! Zp,  Yp = arg(wp +iyp) (2)

where 4 represents imaginary unit.

As already explained, all kinds of central-omnidirectional cameras are uni-
versally modeled as the spherical camera[7,19]. And pin-hole camera is also a
kind of central-omnidirectional cameras. Then pin-hole camera is also modeled
as the spherical camera. The image coordinate of calibrated pin-hole camera is
the gnomonic projection of hemispherical image coordinate (Fig.2). Then, the

M optical axis
) image plane

image sphere
Fig. 2. Spherical image coordinate and pin-hole camera coordinate

mapping from the hemispherical point z, = (sin ¢, cos ), sin ¢, sin ¢, cos ¢,) "
onto its gnomonic projection y, = (tan ¢, cos ¢, tan ¢, sin ¥,) " is one-to-one
mapping from spherical image onto pin-hole camera image.
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Fig. 3. Epipolar geometry on spherical image

Let 9, = (y,,1)" be a homogeneous coordinate of y,,, the relation between
zp and y,, is represented as

1 _ _ 1
Zp = 17=Y, Y,—=
Pl T |

mzp . (3)

where (zp)3 is the third component of z,.

Let z1, and zs, be the first and the second spherical image coordinates
of the p-th feature points X, respectively. Let y;, and y,, be the first and
the second pin-hole camera image coordinates corresponding to z1, and 22, as
Eq.(3), respectively. Let y;, and y,, be homogeneous coordinates of y;, and
Yoy, respectively. And let €y and Cs represent the camera coordinate matrices
of the first and the second cameras, which are arraying the basis of the camera
coordinate of each camera.

For pin-hole camera, there holds the epipolar equation

Ay/lTpEIZQQP =0 where E12 = Cl [t12]><02T . (4)
The same as the pin-hole camera, there holds the equation
lepE12Z2p = 0 Where E12 = Cl [t12]><cv2T (5)

from Eq.(3) (Fig.3). As the same manner as pin-hole camera, E;» and Eq.(5)
is called essential matrix and epipolar equation for spherical camera, respec-
tively[4]. When a point 21, is selected from the first spherical image, the equa-
tion (lepElg)z = 0 represents a great circle on the second spherical image. The
great circle is called epipolar great circle. Of course, the epipolar great circle is
correspond to the epipolar line for pin-hole camera image.

The epipolar great circle pass through the two points on the second spherical
image which satisfy Elgegl) = 0. These points are called epipoles. One of the
epipoles is the image of the first spherical camera center on the second spherical
image and another is the antipode of the image of the camera center. As the
same manner, the epipoles of the second spherical camera on the first image
e?)TEH = 0 are defined, which are the image of the second spherical camera
center on the first spherical image and its antipode.



Note that the representation of these epipoles are

1 1
652) = i—Cltlg, eél) = :F—02t12 .
|[E12]] [[E12]]

3 Rectification and spherical epipolar geometry

For pin-hole camera images, the geometrical meaning of rectification is getting
the frontal images by changing the optical axis without changing the camera
centers. When two pin-hole camera images are obtained, the rectification is the
parallelization of two optical axes, and it is realized by projective transformation
of pin-hole camera images[10]. After rectification (Fig.4(left)), All epipolar lines
are mapped to horizontal lines, and each of the corresponding points lies on the
same height.

image 1 image 2

image 1 image 2

— , Center | center
rectified image
\ i
| center; L center

C rectified image -
Fig. 4. Rectification of pin-hole camera (left) and spherical camera (right)

For spherical camera image, changing optical axis without changing camera
center is equivalent to the rotation of the spherical camera image. Then the rec-
tification of spherical image is realized by rotating spherical image[6]. Of course
the rectification of the spherical image can be defined as same as the rectification
of the pin-hole camera image as mentioned above, but another rectification can
be defined for the spherical image. The concept is very similar to Pollefeys et
al.[15], which is the other way of rectification method for pin-hole camera.

The definition of new spherical rectification is rotating the first and the sec-
ond spherical images to transform epipoles to the north pole N' = (0,0,1)T or
south pole —A/. After rectification(Fig.4(right) and Fig.5), All epipolar great
circles are mapped to meridian, and each of the corresponding points lies on the
same longitude[6].

By the rectification, the representation of epipolar equation become very
simple. Let R; be a rotation matrix which transforms one of the epipoles of
the second spherical camera e§2) to the north pole N on the first spherical
image. And the rotation matrix R; also rotate some specific feature point zi.
on O-longitude (longitude pass through Greenwich). Let @1, be the rectified
image (rotated image) of the p-th feature point on the first image zi,, there
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Fig. 5. Epipolar geometry based on longitude

holds ¢1, = Ri1z1,. As the same manner, the rotation matrix R, the rectified
image of the p-th feature point on the second image x2, = Ra22, are defined !
respectively.

After rectification, the longitudes of x, and x5, should be the same. In this
situation, x1,, @2, and north pole N are coplanar (Fig. 5), then there holds

1

0 0
det (z1p @2p N) = @[, [N]x@o, =2, | 1 0 0] @, =0. (6)
0 0

ool

This is the epipolar equation after rectification, and the representation of the
epipolar equation become very simple.
From Eq.(5) and Eq.(6), the representation of the essential matrix is

Ei» = R [N]«R;. (7)

4 Reprojection error

As already explained, the pin-hole camera can be resolved into spherical camera,
and the same kind of epipolar equation is hold[4]. This means that any estimation
method of essential matrix for calibrated pin-hole camera, including eight-point
algorithm[9], can be basically used for calibrated spherical camera. However,
the suitable reprojection error, which is the reprojection error is the distance
between observed data and its estimation, for spherical camera is different from
that for pin-hole camera.

Shortly speaking, the suitable reprojection error for spherical image should
be defined by the distance defined on a sphere, as the same as the suitable
reprojection error for pin-hole camera should be defined by the distance defined
on a plane such as Euclidean distance.

! There are two possibilities in computing R» when epipole egw is transformed to the

north pole or south pole. In the two possibilities, the one satisfies the same longitude
constraint and another does not satisfy the constraint.



For pin-hole camera, eight-point algorithm is a well-known algorithm. How-
ever, the reprojection error for eight-point algorithm is not a geometric distance
but an algebraic distance, which is the norm of residual vector of the DLT algo-
rithm. This means the eight-point algorithm is not optimal under the assump-
tion that the image errors are Gaussian. That is, the optimal algorithm should
be based on the geometric distance. Because the geometric distance is difficult
to treat, the Sampson error is proposed as an approximation of the geometric
distance, and the algorithm which minimizes the Sampson error, called Gold
Standard algorithm[10, 13] is proposed.

The same as this, For the spherical camera images, the reprojection error
should be measured by the quantities on the sphere. Then, three types of dis-
tances are considered for the spherical camera images. The first one is the dis-
tance along geodesic[11], which is the most popular reprojection error on the
sphere. The distance along geodesic is the same as arc length along great cir-
cle. In spherical geometry, geodesic is regarded as line because geodesic is the
shortest path between two points on the sphere. Then distance along geodesic
for spherical camera image is correspond to the geometric distance for pin-hole
camera image.

In addition to the distance along geodesic, two kinds of different distances
(reprojection error) are considered in this paper. The one is difference of lon-
gitude[6] and another is arc length along colatitude. These two distances are
derived from rectification of spherical images. As explained in previous section,
the corresponding points in two sperical images are lying on the same longitude
after rectification. Then it is natural to measure the distance between two cor-
responding points by the difference of longitude. However, when some point is
lying near the north or south pole of the sphere, small noise on the point makes
large difference of longitude. To deduce this, adding small weight to the point
near the north or south pole of the sphere. When the weight is computed as the
sine of the colatitude, the weighted difference of longitude is equivalent to the
arc length along colatitude. Therefore, these three types of reprojection error,
which are defined by the quantities on the sphere, is used in this paper.

Let e be the epipole and z, be the some feature point on the spherical image.
And let R be a rotation matrix which transforms epipole e to north pole A and
specific image coordinate z, onto O-longitude meridian. In this situation, the
relationship between the point z, on the spherical image and the point x, on
the rectified image is represented as x, = Rz,.

Let ¢, and 1, be the colatitude and the longitude of x, which is a point
on the one image, respectively. And let «, be a longitude of meridian (epipolar
great circle) on another image corresponding to x,.

In this situation, the three types of “error”s of each datum are defined as
follows:

— Distance along geodesic: Err, = sin™'{sin ¢, sin(¢, — a;)}.
— Difference of longitude: Err, =1, — a.
— Arc length along colatitude: Err, = sin ¢, (1, — ayp).



The distance along geodesic is computed by the spherical trigonometry for right
spherical triangle.
For each “error”s, error function is defined as J = % Ep Errz, and the error

function J is minimized by changing Euler angles ? of two rotation matrix R;
and R» defined in previous section (6 parameters) under Levenburg-Marquardt
algorithm provided by Optimization Toolbox on MATLAB.

Let R™Y be the updated quantity of the rotation matrix computed by LM
algorithm, the representation of the updated epipole and points on the spherical
image are

ellEW — (RHGW)TN’ :I:new — Rnewzp A (8)

p

5 Algorithms

5.1 Initial estimation

(1) Estimate the essential matrix F15 by eight-point algorithm.

(2) Compute the epipoles ﬁ:egQ) and ﬁ:egl).

(3) Compute the rotation matrix R;.

(4) Compute the rotation matrix Rjzv or R, N or which transforms egl) to north
pole N or south pole —N/, respectively, and compute energy function J for
both matrix to select the pair of Ry and egl) which minimize the energy
function J.

5.2 Estimation of epipoles based on rectification

(1) Compute x;, = R;z;, (i = 1,2) from initial estimation.
(2) Compute infinitesimal rotation matrix which decrease J for R; and R»
simultaneously by LM algorithm.

(a) Compute the longitude ay, of z1,, and compute the colatitude ¢,), and
longitude v, of x3,. And compute energy function J». And compute
the longitude ay, of x»,, and compute the colatitude ¢1, and longitude
t1p of x1,. And compute energy function J;. And make a sum of J; and
Ja. (@ip = Pip).

(b) Compute R™™ by LM algorithm, and update the epipoles e;, and rec-
tified spherical image x;p,.

(3) After convergence, the estimations of the rotation matrix Ry and Ry are
obtained, and the estimation of the essential matrix is Fi2 = R [N]x Ro.

2 When parameter manifold is not flat, tangent vector of the manifold is generally
going outside of the manifold. Then by using tangent vector on rotation matrix
manifold to update estimation, updated value is no longer rotation matrix. So, the
updated value should be projected to the rotation matrix manifold. To avoid this, the
Euler angle representation of rotation matrix is used to compute rotation matrix in
the paper. Other method to avoid this, Riemannian Newton’s Algorithm[14], which
is the Newton’s method on manifold by using exponential map, is proposed. Note
that the exponential map of the rotation matrix is represented by Rodrigues’ formula
of rotation matrix. Then the steepest gradient method by using Rodrigues’s formula
of rotation matrix[6] is the minimization problem on Riemannian space.
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6 Numerical experiments by synthetic data

To clarify the characteristics of the three types of reprojection errors, the nu-
merical experiment by synthetic data is investigated 3.

The three-dimensional feature points and its spherical images for numerical
experiments are generated as follows:

— The three-dimensional feature points are randomly selected by uniform dis-
tribution on three-dimensional cube whose center of gravity is at the origin
of the world coordinate system.

— The points in three-dimensional space are projected onto points z, and zs,
on the spherical images of the cameras of camera centers are ¢; and ¢,
respectively.

— Add noise from uniform distribution of a disk of center z, and radius e for
each point 21, and 2za,. The € is called noise variance in the paper.

The reconstruction error is evaluated by the sum of square distance between the
estimated three-dimensional points and the corresponding points of the ground
truth. Generally, the three-dimensional reconstruction of the object has 7 de-
gree of freedom (DOF). Therefore, these degree of freedom should be fixed to
compare the estimation with the ground truth. Among the 7 DOF, 3 DOFs is
for translation, 3 DOFs is for rotation and the rest 1 DOF is for global scale
parameter. By giving the camera center of the ground truth, 3 DOFs for trans-
lation, 2 DOFs is for rotation and 1 DOF is for global scale parameter can be
fixed and the only 1 DOF is remaind. The rest 1 DOF is rotation around the
line connecting two camera centers. The rest 1 DOF is fixed by estimating the
rotation to minimize the sum of square distance between the estimated three-
dimensional points and corresponding points of the ground truth. Then, all 7
DOFs are fixed. After 7 DOFs are fixed, the reconstruction error is computed
by the sum of square distance between the estimated three-dimensional points
and the corresponding points of the ground truth.

This procedure is repeated 7' times, and results are statistically evaluated.
The error of three-dimensional reconstruction is measured by median of T times
trial. Through the experiments, the ground truth of two rotation matrix R;
and R, is identity matrix I, and the three-dimensional Euclidean coordinate
of two camera center is ¢; = (4,0,0)" and ¢» = (—4,0,0)T, the edge of the
data-generateing cube is 40, and the trial times is 7" = 1000.

6.1 Evaluation w.r.t. changes of numbers of correspondences

Figure 6 shows the results of the numerical experiments in which the number of
three-dimensional points P is increased from 20 to 200 with the interval 10. The
noise variance of a point on a spherical image is fixed to e = 0.01. In Fig.6, the
horizontal axis is the number of points and the vertical axis is the median of the

% The program by MATLAB is provided at
http://cmp.felk.cvut.cz/~torii/public/release/s2lopt.zip
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Fig. 6. Evaluation w.r.t. changes of numbers of correspondences

three-dimensional reconstruction error. The error by the eight-point algorithm
and the rectification-based methods are plotted as follows:

Eight-point algorithm: Red lines and bullet“e”.

— Difference of longitude: Blue lines and circular“o”.

— Arc length along colatitude: Green lines and cross“x”.
— Distance along geodesic: Magenta lines and triangle“A”.

From the experiments, all of rectification-based methods show positive results
compare to the eight-point algorithm. When the number of corresponding points
are less, distance along geodesic and arc length along colatitude is better to
measure the distance from the image points to epipolar great circle. And when
the number of corresponding points are many, difference of longitude is better
to measure the distance from the image points to epipolar great circle.

6.2 Evaluation w.r.t. changes of noise variance

Figure 7 shows the results of the numerical experiments in which the noise
variance € is increased from 0.2 to 2.0 with the interval 0.2. The number of cor-
responding points is fixed to P = 100. In Fig.7, the horizontal axis is the noise
variance and the vertical axis is the median of the three-dimensional reconstruc-
tion error. The error by the eight-point algorithm and the rectification-based
methods are plotted as same manner as previous experiment.
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Fig. 7. Evaluation w.r.t. changes of noise variance

From the experiments, arc length along colatitude gives positive result com-
pare to the eight-point algorithm, distance along geodesic gives not negative
result compare to the eight-point algorithm and difference of longitude gives
negative result compare to the eight-point algorithm. This tendency is notable
when the error variance is large. When the error variance is small, all method
makes little difference, but when the error variance is large, arc length along
colatitude is the most appropriate distance to measure the error.

6.3 View of three-dimensional reconstruction

Figure 8 shows the three-dimensional reconstruction of a cube for the reference.
The data of the ground truth is plotted with black lines and square “C0”. The rest
of data are plotted as the same manner as previous experiments. The result of
experiment shows the rectification-based methods derives better reconstruction
than eight-point algorithm.

7 Conclusion and discussion

In the spherical camera model, the rectification is the transforming the epipole
of each image to the north and/or south pole by rotation. In the sense, the mean-
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Fig. 8. three-dimensional reconstruction of cube

ings of epipolar constraint is the corresponding points should lie on the same
longitude, and two types of reprojection error can be defined as the difference
of longitude and the arc length along colatitude.

In the paper, these two types of reprojection error and the distance along
geodesic are compared with eight-point algorithm. From the experiment by syn-
thetic data, the characteristics of the two types of rectification-based reprojection
error and the distance along geodesic are clarified. The mathematical and/or ge-
ometrical meanings of the result is not clear, but some qualitative discussion can
be done. When noisy data are distributed around epipole, difference of longitude
is not suitable to measure errors. However, the number of data is increasing, the
rate of data around epipole is decreasing. Then difference of longitude is suitable
to measure errors. To estimate epipolar geometry robustly, the arc length along
colatitude is suitable to measure errors. When errors are measured by the differ-
ence of longitude and/or the arc length along colatitude, the epipole may be well
estimated because the errors are computed based on the longitude. This means
the estimation based on these errors are appropriate for robust estimation of
epipole. This robustness may be closely related to the behavior of experiments
for longitude based error.
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