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Abstract

This work puts forth a probabilistic graphical framework
to track unoccluded objects undergoing large out of image
plane rotations and/or presenting large scale variations in
video sequences. The proposed scheme incorporates mea-
surements from an ensemble of local patch trackers and
inter-patch geometric layout to arrive at a sample based
approximation of the state posterior. Following this, the ge-
ometric layout is updated online using the Iterative Condi-
tional Estimation technique. These steps are iterated until
convergence to arrive at the �nal state posterior.
In contrast to of�ine training based schemes the proposed
framework imposes no prior on the geometric layout and
instead relies on online update of the geometric layout, thus
broadening the scope of usage. Amongst other advantages,
the scheme implicitly estimates the scale of the target and
also adapts to varying target appearances to enable track-
ing under a fair degree of out of the image plane rotations.
The tracking abilities of this scheme is put to test on sev-
eral challenging videos with scale changes, out of the im-
age plane rotations, illumination changes and motion jerks.
Whereever possible qualitative comparisons are facilitated
using videos from standard databases.

1. Introduction

The motivation for this contribution arises from the fol-
lowing two problems: In case an object (say face) under-
goes large rotations in depth, then, the geometry intercon-
necting a set of patches on this object (say a polygon),
termed geometric layout, is distorted. For visual tracking,
this distortion is a cue to detect rotations in depth from
monocular sequences. Thereby any changes in the geo-
metric layout prior must be kept minimal. On the other
hand when the target undergoes scaling, due to camera fo-
cal length changes or its own motion relative to the camera,
this prior must adapt quickly to capture the right scale. Thus

two problems need to be tackled;

1. How to differentiate between situations when the target
object is undergoing 3D rotations or scaling.

2. How and how much should the prior be changed in
each situation.

(a). Frame 1 (b). Frame 34 (c). Frame 62

(a). Frame 107 (b). Frame 172 (c). Frame 204

Figure 1. Illustration of results on the challengingChil-
dren of Mensequence. The little blue patches represent the
centres of the local patch trackers, the rhombus represents
the estimated geometric layout and the rectangle is a semi-
precise bound.

Before proceeding to the main content of this paper, a brief
review into the state of art is provided below.

Visual tracking algorithms vary in their degree of robust-
ness against distractive measurements [8] and their ability
to precisely outline the boundaries of the target object [10].
The state of art can be broadly classi�ed into two categories
possessing one of the above two qualities. Trackers work-
ing in state spaces of small dimensionslike [2, 21] per-
form well under drastic illumination changes, short occlu-
sions and small out of image plane (depth) rotations of the



target. Their appearance model updates range from com-
plex holistic updates using foreground-background analysis
[21], linear subspace or manifold based modeling [6, 12] to
feature point resampling [2] with no regard to spatial ge-
ometry. Both of these categories lead to tracking drift over
time. In addition, target scale is commonly approximated
to one of a few discrete scales, as in [4, 6] or estimated
using a parametric motion model which is often oversim-
pli�ed. Thus techniques in this category are usually em-
ployed for imprecise trackingof a target over a lengthy
duration of time. On the other handcontour trackers[10]
accurately delineate the target boundary but need frequent
user interaction to steer the unstable parts of the contour.
Such trackers are usually employed over time periods of a
few seconds. Another differentiating factor is that trackers
in the �rst category rely on appearance models like color
histograms/templates of the target to infer thestate(loca-
tion and scale) of the target at each new frame, whereas, the
contour tracker is mainly driven by geometric cues and gra-
dients at the occluding contours of the object.

The scheme presented in this paper relies upon local
patch trackers [2] and their interconnecting geometry to out-
put ageometric layoutat each new frame from which the
location, scale and semi-precise bounds (derived more for-
mally than based on afew searches for the target position,
scale in state space) of the target can be inferred directly.
An illustration is provided in Fig.1. The proposed scheme
must not be misconstrued as a contender for shape/contour
tracking. It is based on rough geometric layouts as opposed
to precise contour based tracking as in [23]. As the scheme
is designed to work with unconstrained sequences, it does
not rely on of�ine background modeling as used by Sullivan
et al [19].

The use of spatial geometry information has been ex-
ploited earlier in conjunction with learning, in contributions
such as [18] where the problem is to locate several features
on a face when some are occluded. A tracking example us-
ing rigid geometric cues in combination with color is found
in [15]. Other examples in recent literature using distributed
set of trackers include the work by Yang et al. [22], where
auxiliary objects are tracked to infer the location of the prin-
cipal target. Harini et al. [20] use a set of templates linked in
a geometric fashion to track moving vehicles of very small
dimension. Pilet et al [16] aim at deformable object detec-
tion using mesh models and feature point correspondences.
They, however, deal with a detection problem and tests are
made on laboratory sequences. Problems like face align-
ment only consider minor rotations in depth of mug-shot
faces and approaches like the one proposed by Liu [13] re-
quires extensive training of weak classi�ers for computing
mesh alignment. Tracking in unconstrained sequences can-
not rely largely on of�ine learning. Finally, none of the pre-
ceeding techniques attempt to deal speci�cally with the dif-

�cult issue of rotations in depth in unconstrained sequences.
A second issue is target scale estimation. The most com-
mon technique is approximation to one of a few discrete
scales as in [5, 6]. Other techniques include imposing a
simple af�ne motion constraint on the object and estimat-
ing the model parameters by tracking/matching a few fea-
ture points. To achieve meaningful results the features must
bewell distributedover the target and even so, when there is
combined depth rotation and scaling such a model is over-
simpli�ed. Beyond this it is also necessary to adapt the ap-
pearance model of the target during scaling.
The aim of this work is to develop a tracking scheme that
implicitly accomodates changing object appearances due to
rotations in depth (measuring rotations in depth in arbitrary
sequences with no known camera parameters is a dif�cult
problem) and follows scale changes of the object without
explicit motion model estimation (the accuracy of model es-
timates is controlled by unknown measurement noise). Mo-
tivated by these aims a concerted participation of anensem-
ble of local patch trackersusing their individual measure-
ments/observations and geometric layout is investigated. A
probabilistic graphical framework is formulated to analyse
thesedistributed measurementsand the important problem
of geometric layout update.
The following Section2 describes the probabilistic graphi-
cal modeling of the problem. Section3 delineates the char-
acteristics of the local observations using patch trackers and
elaborates the proposed algorithm. Section4 details the
experimental setup. The results of the experiments, qual-
itative comparisons and discussions regarding the strengths
and drawbacks of the approach form Section5. Pointers
to extension and prospective work are given in Section6.
Conclusions are drawn in Section7.

Figure 2. Graphical model. f x i ; i = 1 : 4g are the
hidden state variables andf yi ; i = 1 : 4 g are their corre-
sponding observations.

2 Problem Description

Consider the fully connected graphical model shown
in Fig. 2. The joint hidden state variable is denoted as



X = f x i ; i� Vg and the corresponding set of observations
denoted asY = f yi ; i� Vg, whereV is the set of nodes (ver-
tices) in the graph. The joint posterior of the hidden state
and the observation, parameterized by�; PR , is taken to
have the following form.

p
�
X jY ; �; PR

�
/ l t

�
Y jX

�
lP

�
X jPR

� Y

( i;j ) � �

	
�
x i ; x j j�

�
;

(1)
where l t

�
Y jX

�
is a joint likelihood function; the prior

is factored into a geometric layout similarity function
lP

�
X jPR

�
with �xed parameterPR and pairwise potential

(or compatibility) functions
�

	
�
x i ; x j j�

�
; (i; j ) � �

	
with

� denoting the set of all edges in the graph. It is to be noted
that the set of pairwise potential functions represent the ge-
ometric layout and from here on the term geometric poten-
tials will be used interchangeably with geometric layout.
Given the dataY = y at some instant in the video se-
quence, the objective is to infer the marginal posteriors�

p
�
x i jY = y; �; PR

�
; i� V

	
or beliefsat each node in the

set V, of the graph. Some interesting algorithms includ-
ing Belief/Loopy-Belief Propagation have been introduced
in recent literature by [18, 7] for such inferences. The as-
sumption underlying these algorithms is that aprior (po-
tential function) on the joint state variable has been learnt
of�ine via extensive training. In an unconstrained tracking
context such priors are dif�cult to obtain and even so, they
are not suitable when there is largescalingandrotationsin
depth of the object. Therefore these priors must be updated
onlinein conjunction with the likelihood.
A direct application of the iterative Expectation Maximi-
sation (EM) algorithm is not suitable as the normalization
factor or partition function of the joint posterior in Eqn.1 is
dif�cult to obtain in closed form in general cases. A Monte-
Carlo sampling based alternative is then sought after to ap-
proximate the posterior given an estimate of� . The parame-
ter � is then updated using the Iterative Conditional Estima-
tion (ICE) technique proposed by [17]. This non-sequential
iterative algorithm is detailed in the following section.

3 Proposed Algorithm

A set of local patches are tracked from one frame to
the next using some convenient patch tracker (the details of
patch tracking are presented in Sec.4). The measurement
or observation model associated to this patch tracking is as
given below.

yi = argmin
x i

D
�
f

�
x i

�
; f � �

+ �; (2)

where D is a distance function, typically template/patch
cross-correlation or distances between color histograms.
f

�
x i

�
is the extracted local patch andf � is a reference

model for the tracked patch and� is the corrupting noise
whose statistics are unknown. The non-linearity of the
above model and the unknown characteristics of the noise
makes it impossible to de�ne an analytical form for the
measurement density conditional on the state. The standard
alternative then is to de�ne a measurement likelihood func-
tion. In the proposed scheme the following Gaussian form
of measurement likelihood is de�ned and utilised.

l t
�
Y jX

�
=

1
Z

Y

i� V

N
�
x i ; argmin

x i

D
�
f

�
x i

�
; f � �

; � i
�
; (3)

where the subscriptt emphasizes the fact that it is derived
from patch trackers,Z , the normalization is known and� i

is an empirically determined variance. The pairwise po-
tential functions describing the relationship between the lo-
cal state variables are assumed Gaussian as shown below;

	
�
x i ; x j

�
= N

�
jx i � x j j; � ij ; � ij

�
; (i; j ) � � ; (4)

by which the parameter� = f � ij ; � ij ; (i; j ) � � g. A
note of interest here: theform of the potential is not a
multi-variate Gaussian, as it is based on the absolute
difference of state variables. This clearly brings out the
inadequacy of attempting to learn this type of prior of�ine;
as even a simple scaling of the target would affect the learnt
potential considerably. Interestingly most algorithms in the
tracking literature based on graphical models [18, 3, 11]
do not attempt to deal with situations were the potentials
undergoes scaling.

3.1 Importance Sampling Approximation
of the Joint Posterior

Given a new frame in the sequence and an initial
estimate of the parameter� k � 1, at iterationk � 1, the joint
posterior in Eqn.1 is approximated using samples drawn
from a suitable importance sampling density constructed
usingl t as described below.

Developing a proposal density:
Letting aside the geometric layout based prior which makes
sampling unpractical, consider the following model of the
joint posterior parameterized by the estimate� k � 1;

g
�
X jY ; � k � 1

�
= l t

�
Y jX

� Y

( i;j ) � �

	
�
x i ; x j j�

�
: (5)

Probabilistic inference on this model using stan-
dard Belief propagation results in marginal poste-
riors

�
g
�
x i jY ; � k � 1

�
; i� V

	
or beliefs, denoted as�

bk � 1
�
x i

�
; i� V

	
. It is to be emphasized that Belief

propagation is necessary since the priors are not multi-
variate Gaussian. A proposal density is then developed



using these beliefs as;

q
�
X jY ; � k � 1

�
=

Y

i� V

bk � 1
�
x i

�
: (6)

Samples
�

X s � q
�
X jY ; � k � 1

�
; s = 1 : M

	
are drawn

and the unnormalized importance sampling weightsws

computed as shown below:

ws =
l t

�
Y jX s

�
lP

�
X s jPR

� Q
( i;j ) � � 	

�
xs

i ; xs
j j�

�

Q
i� V b (xs

i )
: (7)

Following the above computation, the joint posterior param-
eterized by estimate� k � 1 can be approximated as,

p
�
X jY ; � k � 1; PR

�
�

X

s=1: M

ews � X s

�
X

�
; (8)

where ews = w s
P

s =1: M w s is the normalized importance
weight.
In Eqn. 8 it is assumed that the geometric layout simi-
larity function in the prior,lP

�
X jPR

�
, can be evaluated

pointwise. Apart from this fact this function merits special
attention.

The Geometric Layout Similarity Function:
In this paper geometric layouts are in the form ofpoly-
gons. At the initialization frame for the tracking sequence
the polygon connecting the patch trackers is stored as aref-
erence polygonPR for the target. A polygon represented by
sampleX s, denoted asP (X s) is compared with this refer-
ence to derive a measure of similarity for this sample. This
matching is done using the standard polygon matching algo-
rithm prescribed by Arkin et al [1], using polygon turning
angle based polygon coding; which outputs aL 2 distance
between therepresentational codesof PR andP (X s). The
matching is in practice invariant to rotation to a reasonable
extent. The geometric layout similarityfunctionis then de-
�ned as shown below:

lP
�
X s jPR

�
,

1:0
kPR � P (X s) k

: (9)

The sample based joint posterior approximation can be
visualized in Fig.3. The joint state samples shown are true
samples drawn from the sample based approximate. There-
fore their spatial spread provides an insight into the uncer-
tainty of the posterior at that frame.
The following step is to update the potential functions given
the new data.

3.2 Parameter Update

The Iterative Conditional Estimation (ICE) technique
prescribes parameter estimation given known stateX and

(a). Frame 1 (b). Frame 11 (c). Frame 189

(e). Frame 306 (f). Frame 363 (g). Frame 438

(h). Frame 547 (i). Frame 572 (j). Frame 589

Figure 3. Tracking theJepson and Fleetsequence. 30
joint state samples from the approximated joint posterior
are displayed to give an insight into the uncertainty of the
posterior. The red polygon is the unscaled reference model
superimposed on each frame.

an instance of the observationY = y. The essence of this
technique lies in the following iteration;

� k = E
p
�

X jY ;� k � 1 ;P R

� �
�
X; Y

�
; (10)

where�
�
X; Y

�
is a statistical estimator of� givenX and

Y . Substituting the MonteCarlo (MC) approximation from
Eqn. 8 in Eqn.10 leads to a sample based approximation as
shown below:

� k �
X

s=1: M

ews �
�
X s; Y

�
: (11)

In the experiments reported in this paper,�
�
X; Y

�
is taken

to be the Maximum Likelihood Estimator (MLE);

~� = argmax
�

p
�
X jY ; �; PR

�
: (12)

In the Gaussian case experimented with here, Eqn.10 leads
to parameter estimation of the form,

� ij =
X

s=1: M

ews jxs
i � xs

j j (i; j ) � � : (13a)

� ij =
X

s=1: M

ews �
jxs

i � xs
j j� � ij

� T �
jxs

i � xs
j j� � ij

�
; (i; j ) � � :

(13b)
The steps described in Sections3.1 and3.2 can be iter-

ated until convergence. Fig.4 provides the implementation
of this algorithm used in the experiments reported in this
paper. The next section focuses on the experiments to test
this algorithm.



Algorithm : At frame n;

1. Initialization:

� 0 =
�

� n � 1
ij ; � ij = Q; (i; j ) � �

�
.

l t
�
Y jX

�
= 1

Z

Q
i� V N

�
x i ; argminx i

D
�
f

�
x i

�
; f � �

; � i
�
.

where, the diagonal covariances Q;
�

� i ; i� V
	

are
empirically set (See Section 4).
k  � k � 1 :

2. Importance Sampling Approximation of Posterior

Beliefs derived from Belief Propagation

� e� i
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�
� i
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P

j� V� i
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� j + Q
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Proposal Density and Samples
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�
X
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where ews = w s
P

s =1: M w s .

3. Parameter Update :
� ij =

P
s=1: M ews jx i � x j j; (i; j ) � �

� ij =
P

s=1: M ews �
jx i � x j j � � ij

� T ��
jx i � x j j � � ij

�
; (i; j ) � � .

Set� n
ij = � ij .

Figure 4. Implemented verison of the proposed algorithm

4 Experiments

The video sequences used in all the experiments had tar-
gets undergoing signi�cant rotations in depth and/or large
scale changes. In addition poor recording quality, rapid
changes in illumination and motion jerks are also found in
some sequences (See8). Occlusion handling is currently
beyond the scope of this paper and therefore thetargets are
unoccludedin all the sequences.
Quantitative comparisons are dif�cult to perform for the
proposed approach as their are no direct contenders speci�-
cally dealing with tackling the issue of rotations in depth in
unconstrained sequences. Further, due to non-availability

of executables for related state of art, to the extent possi-
ble, standard sequences are used to aid visual judgement.
Standard video sequences like the Fleet sequence [9], the
Behzad sequence and the de�ating Balloon sequence were
used for testing the scheme. The sources for these se-
quences andcomparable resultsfor a few of them, which
include techniques like adaptive template matching, are
pointed to below the appropriate results. Further challeng-
ing video sequences like in Figs.1, 8 have also been exper-
imented with to test the ef�cacy of the approach. Relevant
supplementary materialin the form of videos are also pro-
vided for review.
Nature of a Patch and Patch Tracking:
A patch is constructed by a set of,possibly overlapping,
feature point templates. It is emphasized that a patch can
be of anyarbitrary shapeand is seldom rectangular. An
example patch constructed using4 feature point templates
is shown in Fig. 5. Patch tracking involves tracking each
feature point in its set and using these tracking results to ar-
rive at the estimated location of the whole patch. A subset
of these points (thereby their templates) are replaced online
as the need arises and therefore the patch is said toevolve
over time. An illustrative procedural detail of patch track-
ing is provided in Fig.5 alongwith additional explanations.
The initial variance of the potentials is empirically �xed as,

Figure 5. Patches and Patch Tracking. A patch, see top
right hand corner, is constructed usingF = 4 feature points
each with templates of size21 � 21. Templates are marked
as small rectangles. Normalized Cross-Correlation is used
for point tracking and translation space clustering for out-
lier detection. The empirical likelihood parameters are in-
dicated inside the diagram, withr = 13 :0.

Q = � I 2� 2 (See Fig.4) with � = 26:0 for numerical com-
patibility with the likelihood variances (See Fig.5). At each
frame the algorithm was run for1 iteration as the qualitative
result was seen to be suf�cient.
Patch Selection:
Patches are manually selected at the periphery of the tracked



object in a way that the layout of the patches are isomorphic
to the general shape of the object, for instance, an elliptical
layout for human faces. The number of patches are varied
depending on the shape of the layout and the computational
power at ones disposal.

5 Results and Discussions

(a). Frame 1 (b). Frame 284 (c). Frame 468

(e). Frame 683 (f). Frame 732 (g). Frame 848

(h). Frame 956 (i). Frame 1000 (j). Frame 1080

Figure 6. Results on theDe�ating Balloon(Mouse) se-
quence. The white polygon represents the estimate of the
geometric layout derived as the mean of the joint pos-
terior. Newly sampled feature points are displayed in
small yellow rectangles. Source video can be found at
http://esm.gforge.inria.fr/ESMdownloads.html

The results presented in this section are roughly arranged
in an increasing order of dif�culty, starting from contrived
lab videos to outdoor cinema sequences. The �rst sequence
shown in Fig.6 is a de�ating and deforming balloon se-
quence presenting large scale change but with little rotation
in depth. See Malis [14] for comparable results.
Feature Point Rejection and Resampling:
In several frames in Fig.6 feature points at some patch
need to be eliminated and replaced in order to adapt to de-
formations or rotations in depth. This is an important is-
sue which controls the ef�cacy of the proposed scheme to
adapt to changing appearances. In this scheme the outlier
feature points (See Fig.5 for an explanation of how out-
liers are marked) in each patch are eliminated from theF
points and a new subset of replacement feature points, de-
noted

�
F R
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are sampled/resampled from correspond-
ing densities:
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(a). Frame 1 (b). Frame 29 (c). Frame 47

(d). Frame 53 (e). Frame 64 (f). Frame 77

(g). Frame 85 (h). Frame 91 (i). Frame 107

(j). Frame 113 (k). Frame 128 (l). Frame 135

(m). Frame 154 (n). Frame 169 (o). Frame 178

Figure 7. Results on the Honda/UCSD Database
Behzad1test sequence. Source video can be found at
http://vision.ucsd.edu/leekc/HondaUCSDVideoDatabase/
HondaUCSD.html.

where the expectation is evaluated using the MC approxi-
mation of the belief andS is a �xed sampling covariance
(diagonal) matrix (It is set to3:0I 2� 2 in the experiments).

Patch Evolution:
An important point arises in this context of feature point
resampling. When new feature points are sampled, new
templates centered on these points are associated to them;
as a consequence of which the patch composition changes.
Thesenew templatescorrespond tonew partsof the tar-
get. Therefore, in a patch, some templates could possibly
be from distant past (if a particular point in the patch has
been consistently tracked for a long duration), some rela-
tively new and others new. Clearly, as this set of templates
also form the reference model for the patch, resampling fea-
ture points (thereby their templates) means changing this
reference model. This change is is essential to capture ap-
pearing parts of the target to offset tracker drift to an extent.



(a). Frame 1 (b). Frame 3 (c). Frame 16

(d). Frame 42 (e). Frame 66 (f). Frame 86

(g). Frame 117 (h). Frame 121 (i). Frame 125

(j). Frame 141 (k). Frame 143 (l). Frame 146

Figure 8. Results on theChildren of Mensequence. This
video has poor recording quality. Large motion jerks even-
tually cause tracking failure.

The Behzad1 test sequence from the Honda/UCSD
database in Fig.7 presents a greater challenge to the pro-
posed algorithm with frequent in-plane and out of plane ro-
tations, scale changes and fast motions. Frequent resam-
pling of feature points can be observed in several frames,
which supports intuition. The proposed tracker is able to
follow the key part of the face for the most part of the se-
quence. The scale of the target is also assessed reasonably
well (See Figs. 7 (f) and 7(h)). In Figs. 7(f) and 7(m)
new features are sampled at the threshold between the tar-
get and the background, but the tracker does not drift due
to these feature points thanks to the geometric layout con-
text built into the system. In spite of the foregoing advan-
tages the tracking quality detoriates after several rotations,
primarily due to a poor proposal density warranted by a
non-sequential (static) approach and dependence only on
the likelihood at that frame. This leads to unwarranted new
feature points causing imperfections (See Fig.7(p)). The al-

(a). Frame 1 (b). Frame 17 (c). Frame 53

(d). Frame 86 (e). Frame 101 (f). Frame 121

(g). Frame 146 (h). Frame 160 (i). Frame 169

Figure 9. Qualitative comparison with a color based par-
ticle �lter of [ 15]. The frequent sliding of the estimated
position is clearly noticeable.

gorithm also lacks an estimate of the orientation of the sub-
ject.

The ability of the tracker to perform on poor quality
videos is tested in Fig.8. The tracker stays focused on the
target despite large illuminations changes caused by shad-
owing permitted by normalized cross-correlation based fea-
ture point tracking and feature resampling. A 200 particle
color based �lter of [15] with no color model adaptation is
distracted by this frequent change in illumination as seen in
Fig. 9. The problem ofholisticcolor model adaptation is in-
deed a dif�cult one; contrast that with the proposed scheme
where the feature point resampling aidspartial adaptation
implicitly. The tracker also performs well in presence of
some out of plane rotations due to target pose changes and
ego-motion of the camera. The implicit following of scale
changes is brought out in this sequence. In comparison
scale estimation is generallydecoupledfrom position es-
timation in particle �lters due to dimensionality problems.
Between 30-50 joint state samples were used in the experi-
ments and the computational time for the tracker on a 2GHz
CPU machine was estimated to be in the order of 10-12
frames/sec.



6 Prospective Work

The proposed algorithm has several future prospects. It
is free from any topological constraints on the graphical
model that can be imposed; therefore other graphs model-
ing a different conditional independency structure may be
experimented with. The Gaussian nature of the geomet-
ric potentials can also be relaxed to include non-Gaussian
potentials. The algorithm can also be extended to sequen-
tial estimation which can include predictive priors for the
geometric layout. The experimentalist is also at liberty to
choose different likelihoods to develop a better proposal
density, in particular, including the geometric layout sim-
ilarity should enhance performance. Although most results
shown in this paper are on human faces, the algorithm in-
herently is free from any prior on the kind of object it can
track.
The algorithm's use in arbitrary environments is still re-
stricted due to the absence of occlusion handling capabili-
ties. An immediate extension which can be envisaged is the
introduction of color based holistic observations to recover
from occlusions.

7 Conclusion

The key formalism presented in this paper is a proba-
bilistic graphical framework for fusion of geometric layout
contexts and local patch tracking. The fusion is performed
in a two step manner. Firstly the results of patch track-
ing, con�gured as likelihoods, aid the approximation of the
joint posterior of all the state variables, which is otherwise
a dif�cult problem. In the second step this approximate is
used to estimate online the potential functions describing
the inter-patch geometric relationships. It is demonstrated
with various examples that such a scheme is ef�cient in
tracking under large out of plane rotations and scale changes
of the target. In this setup, the dif�cult problem of target
appearance model adaptation is dealt using local patch evo-
lutions bearing upon the approximation of the joint poste-
rior. The prior free nature of the algorithm makes it ide-
ally suited for scenarios where priors on the graphical mod-
els cannot be easily learnt via training, as in unconstrained
tracking problems, and therefore need to be updated on-
line. A sequential extension to this approach holds future
prospects.
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