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Abstract

We present a new algorithm for detecting foreground and

moving shadows in surveillance videos. For each pixel, we

use the Gaussian Mixture Model (GMM) to learn the be-

havior of cast shadows on background surfaces. The pixel-

based model has the advantages over regional or global

model for their adaptability to local lighting conditions,

particularly for scenes under complex illumination condi-

tions. However, it would take a long time for convergence

if motion is rare on that pixel. We hence build a global

shadow model that uses global-level information to over-

come this drawback. The local shadow models are up-

dated through confidence-rated GMM learning, in which

the learning rate depends on the confidence predicted by the

global shadow model. For foreground modeling, we use a

nonparametric density estimation method to model the com-

plex characteristics of the spatial and color information. Fi-

nally, the background, shadow, and foreground models are

built into a Markov random field energy function that can

be efficiently minimized by the graph cut algorithm. Ex-

perimental results on various scene types demonstrate the

effectiveness of the proposed method.

1. Introduction

Moving object detection is at the core of many com-

puter vision applications, including video conference, vi-

sual surveillance, and intelligent transportation system.

However, moving cast shadow points are often falsely la-

beled as foreground objects. This may severely degrade the

accuracy of object localization and detection. Therefore, an

effective shadow detection method is necessary for accurate

foreground segmentation.

Moving shadows in the scene are caused by the occlu-

sion of light sources. Shadows reduce the total energy in-

cident at the background surfaces where the light sources

are partially or totally blocked by the foreground objects.

Hence, shadow points have lower luminance values but sim-

ilar chromaticity values. Also, the texture characteristic

around the shadow points remains unchanged since shad-

ows do not alter the background surfaces.

Much research has been devoted to moving cast shadow

detection. Some methods are based on the observation that

the luminance values of shadowed pixels decrease respect

to the corresponding background while maintaining chro-

maticity values. For examples, Horprasert et al. [6] used

a computational color model which separates the bright-

ness from chromaticity component and define brightness

and chromaticity distortion. Cucchiara et al. [3] and Schreer

et al. [15] addressed the shadow detection problem in HSV

and YUV color space respectively and detected shadows by

exploiting the color differences between shadow and back-

ground. Nadimi et al. [10] proposed a spatial-temporal

albedo test and a dichromatic reflection model to separate

cast shadows for moving objects.

Texture features extracted from spatial domain had also

been used to detect shadows. Zhang et al. [20] proved that

ratio edge is illumination invariant and the distribution of

normalized ratio edge difference is a chi-square distribu-

tion. A significance test was then used to detect shadows.

Fung et al. [4] computed a confidence score for shadow

detection based on the characteristics of shadows in lumi-

nance, chrominance, gradient density, and geometry do-

mains. However, the above-mentioned methods require to

set parameters for different scenes and can not handle com-

plex and time-varying lighting conditions. A comprehen-

sive survey of moving shadow detection approaches was

presented in [13].

Recently, the statistical prevalence of cast shadows had

been exploited to learn shadows in the scenes. In [9],

Martel-Brisson et al. used the Gaussian mixture model

(GMM) to describe moving cast shadows. Proikli et al. [11]

proposed a recursive method to learn cast shadows. Liu et

al. [8] presented to remove shadow using multi-level infor-

mation in HSV color space. The major drawback in [9]

and [11] is that their shadow models need a long time to

converge while the lighting conditions should remain sta-

ble. Moreover, in [9], the shadow model is merged into the

background model. The Gaussian states for shadows will

be discarded in the background model when there are no



shadows for a long period. Therefore, these two approaches

are less effective in a real-world environment. Liu et al. [8]

attempted to improve the convergence speed of pixel-based

shadow model by using multi-level information. They used

region-level information to get more samples and global-

level information to update a pre-classifier. However, the

method still suffers from the slow learning of the conven-

tional GMM [17], and the pre-classifier will become less

discriminative in scenes having different types of shadows,

e.g. light or heavy.

Another foreground and shadow segmentation ap-

proaches are through Bayesian methods, which construct

background, shadow, and foreground model to evaluate the

data likelihood of the observed values [19], [1]. These two

approaches used global parameters to characterize shadows

in an image, which are constant in [19] and probabilistic

in [1]. Although the global models are free from the con-

vergence speed problem, they lose the adaptability to lo-

cal characteristics and cannot handle scenes with complex

lightings.

In this paper, we propose a Bayesian approach to mov-

ing shadow and object detection. We learn the behav-

ior of cast shadows on surfaces by GMM for each pixel.

A global shadow model (GSM) is maintained to improve

the convergence speed of the local shadow model (LSM).

This is achieved by updating the LSM through confidence-

rated GMM learning, in which the learning rates are di-

rectly proportional to the confidence values predicted by the

GSM. The convergence speed of LSM is thus significantly

improved. We also present a novel description for fore-

ground modeling, which uses local kernel density estima-

tion to model the spatial color information instead of tem-

poral statistics. The background, shadow, and foreground

are then segmented by the graph cut algorithm, which min-

imizes a Markov Random Field (MRF) energy. A flow dia-

gram of the proposed algorithm is illustrated in Fig. 1.

The remainder of this paper is organized as follows. The

formulation of the MRF energy function is presented in

Section 2. In Section 3, we describe the background and

shadow model, primarily focusing on how to learn cast

shadows. Section 4 presents a nonparametric method for

estimating foreground probability. Experimental results are

presented in Section 5. Section 6 concludes the paper.

2. Energy Minimization Formulation

We pose the foreground/background/shadow segmenta-

tion as an energy minimization problem. Given an input

video sequence, a frame at time t is represented as an array

zt = (zt(1), zt(2), ...zt(p), ...zt(N)) in RGB color space,

where N is the number of pixels in each frame. The seg-

mentation is to assign a label lp to each pixel p ∈ P ,

where P is the set of pixels in the image and the label

Figure 1. Flow chart of the proposed algo-
rithm

lp ∈ {BG, SD, FG} corresponds to three classes: back-

ground, shadow, and foreground, respectively.

The global labeling field L = {lp|p ∈ P} is modeled as

MRF [5]. The first order energy function of MRF can be

decomposed as a sum of two terms:

E(L) = Edata(L) + Esmooth(L), (1)

=
∑

p∈P

[Dp(lp) +
∑

q∈Np

Vp,q(lp, lq)]

in which the first term Edata(L) evaluates the likelihood of

each pixel belonging to one of the three classes, the sec-

ond term Esmooth(L) imposes a spatial consistency of la-

bels through a pairwise interaction MRF prior, Dp(lp) and

Vp,q(lp, lq) are the data and smoothness energy terms re-

spectively, and the set Np denotes the 4-connected neigh-

boring pixels of point p. The energy function in (1) can be

efficiently minimized by the graph cut algorithm [2], so that

an approximating maximum a posteriori (MAP) estimation

of the labeling field can be obtained.

The Potts model [12] is used as a MRF prior to stress

spatial context and the data cost Edata(L) is defined as

Edata(L) =
∑

p∈P

Dp(lp) =
∑

p∈P

− log p(zp|lp), (2)

where p(zp|lp) is the likelihood of a pixel p belonging to

background, shadow, or foreground. In the following sec-

tions, we will show how to learn and compute these likeli-

hoods.



3. Background and Shadow Model

3.1. Modeling the Background

For each pixel, we model the background color infor-

mation by the well-known GMM [17] with KBG states in

RGB color space. The first B states with higher weights

and smaller variances in the mixture of KBG distributions

are considered as background model. The index B is deter-

mined by

B = argminb

b
∑

k=1

ωBG,k > TBG, (3)

where TBG is the pre-defined weight threshold, and ωBG,k

is the weight of the kth Gaussian state in the mixture model.

The likelihood of a given pixel p belonging to the back-

ground can be written as (the subscript time t is ignored):

p(z(p)|lp = BG) =
1

WBG

B
∑

k=1

ωBG,kG(z(p), µBG,k,ΣBG,k),

(4)

where WBG =
∑B

j=1
ωBG,j is a normalization con-

stant, and G(z(p), µBG,k, ΣBG,k) is the probability den-

sity function of the kth Gaussian with parameters θBG,k =
{µBG,k, ΣBG,k}, in which µBG,k is the mean vector and

ΣBG,k is the covariance matrix.

3.2. Learning Moving Cast Shadow

This subsection presents how to construct the shadow

models from the background model. Since different fore-

ground objects often block the light sources in a similar

way, cast shadows on background surfaces are thus similar

and independent of foreground objects. The ratio of shad-

owed and illuminated value of a given surface point is con-

sidered to be nearly constant. We exploit this regularity of

shadows to describe the color ratio of a pixel under shadow

and normal illumination. We first use the background model

to detect moving pixels, which might consist of real fore-

grounds and cast shadows. The weak shadow detector in

Section 3.2.1 is then employed as a pre-filter to decide pos-

sible shadow points. These samples are used to train the

LSM in Section 3.2.2 and a GSM in Section 3.2.3 over time.

The slow convergence speed of LSM is refined by the su-

pervision of the GSM through confidence-rated learning in

Section 3.3.

3.2.1 Weak Shadow Detector

The weak shadow detector evaluates every moving pixels

detected by the background model to filter out some im-

possible shadow points. The design principle of the weak

shadow classifier is not to detect moving shadows accu-

rately, but to determine whether a pixel value fits with the

property of cast shadows. For simplicity, we pose our prob-

lem in RGB color space. Since cast shadows on a surface

reduce luminance values and change the saturation, we de-

fine the potential shadow values fall into the conic volume

around the corresponding background color [11], as illus-

trated in Fig. 2. For a moving pixel p, we evaluate the rela-

tionship of the observation pixel values zt(p) and the corre-

sponding background model bt(p). The relationship can be

characterized by two parameters: luminance ratio rl(p) and

angle variation θ(p), and can be written as:

rl(p) =
‖bt(p)‖

‖zt(p)‖ cos(θ(p))
, (5)

θ(p) = arccos
( 〈zt(p), bt(p)〉

‖zt(p)‖‖bt(p)‖

)

, (6)

where 〈·, ·〉 is the inner product operator, and ‖ · ‖ is the

norm of a vector. A pixel p is considered as a potential cast

shadow point if it satisfies the following criteria:

rmin < rl(p) < rmax, θ(p) < θmax, (7)

where rmax < 1 and rmin > 0 define the maximum bright-

ness and darkness respectively, and θmax is the allowed

maximum angle variation.

Figure 2. The weak shadow detector. The ob-
servation value zt(p) will be considered as
shadow candidate if it falls into the shaded
area

3.2.2 Local Shadow Model (LSM)

The color ratio between shadowed and illuminated intensity

values of a given pixel p is represented as a vector of random

variables:

rt(p) = (
zr
t (p)

br
t (p)

,
zg
t (p)

bg
t (p)

,
zb
t (p)

bb
t(p)

), (8)



where bi
t(p), i = r, g, b are the means of the most proba-

ble Gaussian distributions (with the highest ω/||Σ|| value)

of the background model in three channels, and zi
t(p), i =

r, g, b are the observed pixel values. The weak shadow de-

tector is applied to moving regions detected by background

model to obtain possible shadow points. We call these pos-

sible shadow points as ”shadow candidates”, which form

the set Q. At the pixel level, we model rt(p), p ∈ Q using

the GMM as the LSM to learn and describe the color feature

of shadows.

Once the LSM is constructed at pixel p, it can serve as

the shadow model to evaluate the likelihood of a local ob-

servation zt(p). Since we describe shadow by its color ra-

tio of the pixel intensity values between shadow and back-

ground, the likelihood of an observation z(p) can be de-

rived by the transformation from ”color ratio” to ”color”.

Let s(p) be a random variable describing the intensity val-

ues of a pixel p when the pixel is shadowed. Then, s(p) can

be characterized by the multiplication of two random vari-

ables: s(p) = r(p)b(p), where b(p) is the most probable

Gaussian distribution with parameter {µBG,1,ΣBG,1}, and

r(p) is the color ratio modeled as GMM with parameter set-

tings {ωCR,k, µCR,k,ΣCR,k}, in which CR denotes ”color

ratio”. When the pixel p is shadowed, the likelihood can be

written as:

p(z(p)|lp = SD) =
1

WSD

S
∑

k=1

ωSD,kG(z(p), µSD,k,ΣSD,k),

(9)

where normalization constant WSD and S are determined

in similar ways as in (3) with threshold TSD; the weight

ωSD,k, mean vector µSD,k and the diagonal covariance ma-

trix ΣSD,k of the kth are:

ωSD,k = ωCR,k (10)

µSD,k = µBG,1 ∗ µCR,k (11)

ΣSD,k = µ2

BG,1ΣCR,k + µ2

CR,kΣBG,1+ (12)

ΣCR,kΣBG,1

Benedek et al. [1] also defined color features in CIELuv

color space in a similar form and performed a background-

shadow color value transformation. However, they did not

take the uncertainty of the background model into consider-

ation. Thus, the parameter estimation of the shadow model

might become inaccurate for scenes with high noise level.

As gathering more samples, the precision of the LSM

will become more accurate. With the online learning abil-

ity, the LSM can not only adapt to local characteristics of

the background, but also to global time-varying illumina-

tion conditions. However, the LSM requires several train-

ing samples for the estimated parameters to converge. In

other words, a single pixel should be shadowed many times

while under the same illuminating condition. This assump-

tion is not always fulfilled, particularly on the regions where

motion is rare. Thus, the LSM on its own is not effective

enough to capture the characteristics of shadows.

3.2.3 Global Shadow Model (GSM)

To increase the convergence rate, we propose to update

the LSM using samples along with their confidence values.

This is achieved by maintaining a global shadow model,

which adds all shadow candidates in an image (rt(p), p ∈
Q) into the model. In contrast to the LSM, the GSM ob-

tains much more samples (every pixel p ∈ Q), and thus

does not suffer from slow learning. We characterize shad-

ows of GSM in an image also by GMM.

To evaluate the confidence value of a pixel p ∈ Q,

we first compute the color feature rt(p) by (8) and check

against every states in the GSM. If rt(p) is associated with

the mth state in the mixture of GSM, described as Gm, the

confidence value can be approximated by the probability of

Gm being considered as shadows:

C(rt(p)) = p(lp = SD|rt(p)) = p(lp = SD|Gm). (13)

In GMM, Gaussian states with higher prior probabilities and

smaller variances would be considered as shadows. There-

fore, we approximate p(SD|Gm) using logistic regression

similar to that in [7] for background subtraction. On the

other hand, if there are no states in GSM associated with

the input color feature value rt(p), the confidence value is

set to zero.

For each pixel p ∈ Q, we evaluate the confidence

value C(rt(p)) predicted by the GSM and then update the

LSM through confidence-rated learning (presented in Sec-

tion 3.3). With the proposed learning approach, the model

needs not to obtain numerous samples to converge, but a few

samples having high confidence value are sufficient. The

convergence rate is thus significantly improved.

3.3. Confidence-rated Gaussian Mixture
Learning

We present an effective Gaussian mixture learning algo-

rithm to overcome some drawbacks in conventional GMM

learning approach [17]. Let αω and αg be the learning rates

for the weight and the Gaussian parameters (means and

variances) in the LSM, respectively. The updating scheme

follows the the formulation of the combination of incremen-

tal EM learning and recursive filter:

αω = C(rt) ∗ (
1 − αdefault

ΣK
j=1

cj,t
) + αdefault, (14)

αg = C(rt) ∗ (
1 − αdefault

ck,t
) + αdefault, (15)



where ck,t is the number of match of the kth Gaussian state,

and αdefault is a small constant, which is 0.005 in this pa-

per. In the initial learning stage, the total number of match

of the pixel ΣK
j=1

cj,t is small and thus the learning rate for

weight is relatively large. As time goes on, the pixel be-

comes stable and the learning rate approaches to the type

of recursive filter. Similarly, the learning rate for Gaussian

parameters αg is relatively large for newly-generated states.

Instead of blind update scheme, which treats each sample

in the same way, we propose to update a sample with its

confidence value. The two learning rates are controlled by a

confidence value C(rt), which indicates how confident the

sample belongs to the class. Observations with higher con-

fidence values will converge faster than those with low ones.

The confidence-rated learning procedure in one dimension

is described in Algorithm 1.

Here, we describe the drawbacks of the conventional

GMM learning [17] for background modeling and how does

the proposed learning approach overcome these disadvan-

tages. Firstly, the method suffers from slow learning in the

initial stage. If the first value of a pixel is a foreground

object, the background model will have only one Gaussian

state with weight equaling to unity. It will take a long time

for the true pixel values to be considered as part of back-

ground. In the initial learning stage, our method will follow

the incremental EM learning and approaches to recursive

filter over time. Therefore, we do not suffer from the slow

learning in the initial stage. Secondly, the method faces

the trade-off problem between model convergence speed

and stability. In order to maintain the system stability, a

very small learning rate will be chosen to preserve a long

learning history. However, a small learning rate results in

slow convergence speed. While larger learning rate im-

proves the convergence speed, the model becomes unsta-

ble. In the proposed method, the adaptability of the learn-

ing rate for Gaussian parameters allows fast convergence

for the newly-generated states without degrading the stabil-

ity. Lastly, there are tradeoffs regarding where to update

in the image. Typically, there are two ways to update the

model: selective update and blind update Selective update

only adds samples being considered as background and thus

enhances the detection of foreground. Unfortunately, this

approach would fall into a deadlock situation whenever the

incorrect update decision was made. On the other hand, the

blind update adds all samples into the model, thus it might

result in more false negatives. By updating all samples with

corresponding confidence, the trade-off regarding how to

update in the image can be avoid.

4. Foreground Model and Segmentation

The foreground model has been described as a uniform

distribution [19], providing a weak description of the fore-

Algorithm 1: Confidence-Rated Learning Proce-

dure in One Dimension
User-defined Variables : K, ωinit, σinit, αdefault

Initialization : ∀j=1...K ωj = 0 , µj = Inf ,

σj = σinitial , cj = 0

while new observed data rt with confidence C(rt) do

αω = C(rt) ∗ (
1−αdefault

ΣK
j=1

cj,t
) + αdefault

if rt is associated with the kth Gaussian then

for j ← 1to K do
if j=k then Mj,t=1 else Mj,t = 0
ωj,t = (1 − αω) · ωj,t−1 + αω · Mj,t

end

ck,t = ck,t−1 + 1

αg = C(rt) ∗ (
1−αdefault

ck,t
) + αdefault

µk,t = (1 − αg) · µk,t−1 + αg · rt

σ2

k,t = (1 − αg) · σ
2

k,t−1
+ αg · (rt − µk,t−1)

2

else

for j ← 1to K do
ωj,t = (1 − αω) · ωj,t−1

µj,t = µj,t−1 , σ2

j,t = σ2

j,t−1

end

k = argminj {
ωj,t

σj,t
}

ck,t = 1
ω,t = C(zt) ∗ ( 1−ωinit

ΣK
j=1

cj,t
) + ωinit

µk,t = rt , σ2

k,t = σ2

initial

end

end

ground. In [16], they exploited the temporal persistence as

a property to model foreground using joint domain-range

nonparametric density function. However, the foreground

model in the previous frame cannot provide an accurate de-

scription for foreground in the current frame when large

motion occurs or new moving objects enter into the scene.

Therefore, instead of exploring temporal statistics, we turn

to spatial color information in the current frame. We use the

background and shadow model to generate a partial fore-

ground mask, i.e. a set of pixels that can be confidently

labeled as foreground. Nonparametric method is used to

estimate the foreground probability because the spatial aug-

mented GMM might face the problem of choosing the cor-

rect number of modes. Details are introduced below.

In the partial foreground generation stage, we aim not

to find all foreground pixels, but some samples from fore-

ground. This is achieved by finding pixels whose inten-

sity values are impossible to be generated from the existing

background and shadow model. In other words, the partial

foreground mask F can be generated by simple threshold-

ing:



F = {p|EBG(zt(p)) > κ, ESD(zt(p)) > κ}, (16)

where E(.) is the minus log of the likelihood of a pixel be-

longing to background or shadow, κ is a threshold.

We can now estimate the foreground probability of

a query pixel p using samples from foreground. We

use the neighborhood pixels around a query point p to

gather M relevant samples, which forms the set Gp =
{g1, g2, · · · , gM}.

When a pixel p is in the foreground, the probability can

be estimated using kernel density estimation method [18]:

p(zp|lp = FG) =
1

M

M
∑

i=1

KH(zp − gi), (17)

where KH(x) = |H|−1/2K(H1/2x). The kernel, K, is

taken to be a 3-variate density function with
∫

K(w)dw =
1,

∫

wK(w)dw = 0, and
∫

wwT K(w)dw = I3, and H

is a symmetric positive definite 3x3 bandwidth matrix. We

choose a common Gaussian density as our kernel K,

KH(x) = |H|−1/2(2π)−d/2exp(−
1

2
xTH−1x). (18)

Although variable bandwidth kernel density estimators

can lead to improvement over kernel density estimators

using global bandwidth [14], the computational cost of

choosing an optimal bandwidth is expensive for a real-time

surveillance system. Hence, the bandwidth matrix H is as-

sumed to be diagonal, in which only two parameters are

defined: variances in spatial σs, and in color domain σc.

After computing the data likelihood of the local obser-

vation zt(p) of three classes, we can perform maximum a

posteriori (MAP) estimator for the label field L. The en-

ergy function of Eq. 1 can be efficiently minimized by the

graph cut algorithms.

A concrete description of the learning process and detec-

tion process are shown in Algorithms 2 and 3, respectively.

5. Experimental Results

We have implemented and test the proposed approach

on various scene types. In the LSM and GSM, three and

five Gaussian states are assigned, respectively. The initial

variance of both LSM and GSM are set as 0.0025. We use

three Gaussian models for the background, and the covari-

ance matrix is assumed diagonal.

Here, we describe the test sequences we used in this pa-

per.

• ”Highway” video is a sequence from the benchmark

set [13] . This sequence shows a traffic environment.

Algorithm 2: Learning Process

At time t, with segmentation fields St from the

detection process

for each pixel p ∈ P do
Update the background model

if St(p) 6= BG then
if pixel p satisfies shadow property (Eq. 7)

then
Compute confidence value C(rt(p)) from

global shadow model (Eq. 13)

Update global shadow model

Update local shadow model at pixel p with

confidence C(rt(p))
end

end

end

Algorithm 3: Detection Process

At time t,

for each pixel p ∈ P do
Compute background likelihood

P (zt(p)|lp = BG) (Eq. 4)

Compute shadow likelihood P (zt(p)|lp = SD)
Generate partial foreground mask F (Eq. 16)

Find samples respect to pixel p from the

neighboring pixels of p ∈ F
Compute foreground likelihood P (zp|lp = FG)
(Eq. 17)

end

Construct the graph to minimize Eq. 1

Generate the segmentation fields St

The shadows appearing in the video are dark and cover

large area in the scene.

• ”Laboratory” video is a typical indoor sequence with

light shadow. But, the lighting conditions are more

complex than the outdoor scenes.

• ”Intelligent Room” [13] is an indoor sequence with

low shadow strength.

• ”Entrance” [1] are typical surveillance videos captured

in different time of a day, thus with different lighting

conditions.

Figure. 3 and 4 demonstrate the effectiveness of the

proposed method in both outdoor and indoor scenes. (a)

shows the original image in the sequence. (b) shows the

moving pixels detected by the background model and the

gray regions of (b) is labeled as shadow points by the weak

shadow detector. Note that the weak shadow detector has



a very high detection rate, but with some false detections.

(c) is the confidence map predicted by GSM. The lighter

these regions are, the higher confidence value the model

predicts. (d) shows the segmentation result after perform-

ing the graph cut algorithm.

The effect of GSM is illustrated by Figure 5. The de-

tection result without using the GSM is presented in Figure

5(b), in which some portions of real foreground are miss la-

beled as shadows. This is due to the slow learning of the

LSM. In Figures 5(c), the foreground objects are accurately

detected. Figure. 6 demonstrates the adaptability of the

proposed algorithm to different lighting conditions. Figure.

6(a),(c), and (e) show the same scene captured in different

periods of the day: morning, noon, and afternoon, respec-

tively. As shown in the Figure. 6(b),(d), and (f), our method

can detect the foreground and shadows correctly. Table 5

and 5 show the quantitative comparison with previous ap-

proaches. The shadow detection and discriminative rate η
and ξ follow the metrics described in [13]. The readers

should refer to [13] for exact equations.

(a) (b)

(c) (d)

Figure 3. Outdoor sequence: ”Highway”. (a)

Frame in the sequence. (b) Detection result
by the weak shadow detector. (c) The confi-
dence map by GSM. (d) Foreground and Seg-
mentation result

6. Conclusion and Future Work

In this paper, we have presented a general model for fore-

ground/shadow/background segmentation. There are sev-

eral novelties in this work. For cast shadow detection, we

have proposed a pixel-based model to describe the prop-

erties of shadows. The pixel-based model has the advan-

tage over the global model that it can adapt to the local illu-

mination conditions, particularly for the background under

(a) (b)

(c) (d)

Figure 4. Indoor sequence: ”Laboratory”. (a)
Frame in the sequence. (b) Detection result
by the weak shadow detector. (c) The confi-

dence map by GSM. (d) Foreground and Seg-
mentation result

(a) (b) (c)

Figure 5. Effect of global shadow model in
the sequence ”Intelligent Room”. (a) Frame
in the sequence. (b) Detection result without
using GSM (c) Detection result with GSM

complex lighting conditions. To solve the slow convergence

speed of local shadow model, we maintain a global shadow

model to predict the confidence value of a given sample,

and update the local shadow model through confidence-

rated learning. We have developed a nonparametric fore-

ground model that exploits the spatial color characteristics,

free from the assumption that the object motion is slow.

The likelihoods of background, shadow, and foreground

are built into MRF energy function in which an optimal

global inference can be achieved by the graph cut algorithm.

The effectiveness and robustness of the proposed method

have been validated on both indoor and outdoor surveillance

videos. We have only introduced the color feature in this

work. In the future, other features such as edge or motion

can also be easily incorporated into our framework.



(a) (c) (e)

(b) (d) (f)

Figure 6. Different periods of the day in the
”Entrance” sequence. (a) In the morning. (c)

At noon. (e) In the afternoon. (b)(d)(f) Detec-
tion results of frame in (a),(c), and (e), respec-
tively

Table 1. Quantitative comparison on ”High-
way” sequence.

Method η% ξ%

Proposed 76.76% 95.12%

SNP [13] 81.59% 63.76%

SP [13] 59.59% 84.70%

DNM1 [13] 69.72% 76.93%

DNM2 [13] 75.49% 62.38%
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