Online Discriminative Feature Selection in a Bayesian Framework using Shape and Appearance

Abstract : This paper presents a probabilistic Bayesian framework for object tracking using the combination of a cornerbased model and local appearance to form a locally enriched global object shape representation. A shape model is formed by corner information and it is rendered more robust and reliable by adding local descriptors to each corner. Local descriptors contribute to estimation by filtering out some irrelevant observations, making it more reliable. The second contribution of this paper consists in introducing an online feature adaptation mechanism that enables to automatically select the best set of features in presence of time varying and complex background, occlusions, etc. Experimental results on real-world videos demonstrate the effectiveness of the proposed algorithm.
Type de document :
Communication dans un congrès
The Eighth International Workshop on Visual Surveillance - VS2008, Oct 2008, Marseille, France. 2008
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00325648
Contributeur : Peter Sturm <>
Soumis le : lundi 29 septembre 2008 - 18:13:00
Dernière modification le : lundi 29 septembre 2008 - 20:21:52
Document(s) archivé(s) le : vendredi 4 juin 2010 - 11:57:56

Fichier

VS2008-Poster-o.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00325648, version 1

Collections

Citation

Alessio Dore, Majid Asadi, Carlo S. Regazzoni. Online Discriminative Feature Selection in a Bayesian Framework using Shape and Appearance. The Eighth International Workshop on Visual Surveillance - VS2008, Oct 2008, Marseille, France. 2008. 〈inria-00325648〉

Partager

Métriques

Consultations de la notice

337

Téléchargements de fichiers

603