Kernel-based unsupervised trajectory clusters discovery

Abstract : Nowadays support vector machines (SVM) are among the most popular tools for data clustering. Even though the basic SVM technique works only for 2-classes problems, in the last years many variants of the original approach have been proposed, such as multi-class SVM for multiple class problems and single-class SVM for outlier detection. However, the former is based on a supervised approach, and the number of classes must be known a-priori; the latter performs unsupervised learning, but it can only discriminate between normal and outlier data. In this paper we propose a novel technique for data clustering when the number of classes is unknown. The proposed approach is inspired by single-class SVM theory and exploits some geometrical properties of the feature space of Gaussian kernels. Experimental results are given with special focus on the field of trajectory clustering.
Type de document :
Communication dans un congrès
The Eighth International Workshop on Visual Surveillance - VS2008, Oct 2008, Marseille, France. 2008
Liste complète des métadonnées

https://hal.inria.fr/inria-00325650
Contributeur : Peter Sturm <>
Soumis le : lundi 29 septembre 2008 - 18:14:48
Dernière modification le : lundi 29 septembre 2008 - 20:21:21
Document(s) archivé(s) le : vendredi 4 juin 2010 - 11:57:59

Fichier

VS2008-Poster-n.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00325650, version 1

Collections

Citation

C. Piciarelli, C. Micheloni, Gian Luca Foresti. Kernel-based unsupervised trajectory clusters discovery. The Eighth International Workshop on Visual Surveillance - VS2008, Oct 2008, Marseille, France. 2008. 〈inria-00325650〉

Partager

Métriques

Consultations de la notice

94

Téléchargements de fichiers

146