Meteorological Conditions Processing for Vision-based Traffic Monitoring

Abstract : To monitor their networks, road operators equip them with cameras. Degraded meteorological conditions alter the transportation system operation by modifying the behavior of drivers and by reducing the operation range of the sensors. A vision-based traffic monitoring system is proposed to take fog and rain into account and react accordingly. A background modeling approach, based on a mixture of gaussians, is used to separate the foreground from the background. Since fog is steady weather, the background image is used to detect and quantify it and to restore the images. Since rain is a dynamic phenomenon, the foreground is used to detect it and rain streaks are removed from the images accordingly. The different detection algorithms are described and illustrated using actual images to show their potential benefits. The algorithms may be implemented in existing video-based traffic monitoring systems and allow the multiplication of applications running on roadside cameras.
Type de document :
Communication dans un congrès
The Eighth International Workshop on Visual Surveillance - VS2008, Oct 2008, Marseille, France. 2008
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00325657
Contributeur : Peter Sturm <>
Soumis le : lundi 29 septembre 2008 - 18:29:04
Dernière modification le : lundi 29 septembre 2008 - 20:17:59
Document(s) archivé(s) le : vendredi 4 juin 2010 - 11:58:12

Fichier

VS2008-Poster-h.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00325657, version 1

Collections

Citation

Nicolas Hautiere, Erwan Bigorgne, Jérémie Bossu, Didier Aubert. Meteorological Conditions Processing for Vision-based Traffic Monitoring. The Eighth International Workshop on Visual Surveillance - VS2008, Oct 2008, Marseille, France. 2008. 〈inria-00325657〉

Partager

Métriques

Consultations de la notice

235

Téléchargements de fichiers

358