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Abstract

This article is concerned with the mathematical analysis of the Kohn-Sham and
extended Kohn-Sham models, in the local density approximation (LDA) and gener-
alized gradient approximation (GGA) frameworks. After recalling the mathematical
derivation of the Kohn-Sham and extended Kohn-Sham LDA and GGA models from
the Schrodinger equation, we prove that the extended Kohn-Sham LDA model has a
solution for neutral and positively charged systems. We then prove a similar result
for the spin-unpolarized Kohn-Sham GGA model for two-electron systems, by means
of a concentration-compactness argument.

1 Introduction

Density Functional Theory (DFT) is a powerful, widely used method for computing ap-
proximations of ground state electronic energies and densities in chemistry, materials sci-
ence, biology and nanosciences.

According to DFT [0, [[5], the electronic ground state energy and density of a given
molecular system can be obtained by solving a minimization problem of the form

wt {F)+ [ ovioz0 vremE), [ -}

where N is the number of electrons in the system, V' the electrostatic potential generated
by the nuclei, and F' some functional of the electronic density p, the functional F' being
universal, in the sense that it does not depend on the molecular system under consid-
eration. Unfortunately, no tractable expression for F' is known, which could be used in
numerical simulations.

The groundbreaking contribution which turned DFT into a useful tool to perform cal-
culations, is due to Kohn and Sham [[L1]], who introduced the local density approximation
(LDA) to DFT. The resulting Kohn-Sham LDA model is still commonly used, in par-
ticular in solid state physics. Improvements of this model have then been proposed by
many authors, giving rise to Kohn-Sham GGA models [[2, R1, B, PJ], GGA being the
abbreviation of Generalized Gradient Approximation. While there is basically a unique
Kohn-Sham LDA model, there are several Kohn-Sham GGA models, corresponding to



different approximations of the so-called exchange-correlation functional. A given GGA
model will be known to perform well for some classes of molecular system, and poorly
for some other classes. In some cases, the best result will be obtained with LDA. It is
to be noticed that each Kohn-Sham model exists in two versions: the standard version,
with integer occupation numbers, and the extended version with “fractional” occupation
numbers. As explained below, the former one originates from Levy-Lieb’s (pure state)
contruction of the density functional, while the latter is derived from Lieb’s (mixed state)
construction.

To our knowledge, there are very few results on Kohn-Sham LDA and GGA models
in the mathematical literature. In fact, we are only aware of a proof of existence of a
minimizer for the standard Kohn-Sham LDA model by Le Bris [[J]. In this contribution,
we prove the existence of a minimizer for the extended Kohn-Sham LDA model, as well
as for the two-electron standard and extended Kohn-Sham GGA models, under some
conditions on the GGA exchange-correlation functional.

Our article is organized as follows. First, we provide a detailed presentation of the
various Kohn-Sham models, which, despite their importance in physics and chemistry [R4],
are not very well known in the mathematical community. The mathematical foundations
of DFT are recalled in section ], and the derivation of the (standard and extended) Kohn-
Sham LDA and GGA models is discussed in section fJ. We state our main results in
section [, and postpone the proofs until section .

We restrict our mathematical analysis to closed-shell, spin-unpolarized models. All
our results related to the LDA setting can be easily extended to open-shell, spin-polarized
models (i.e. to the local spin-density approximation LSDA). Likewise, we only deal with
all electron descriptions, but valence electron models with usual pseudo-potential approx-
imations (norm conserving [RY], ultrasoft [BQ], PAW [B]) can be dealt with in a similar
way.

2 Mathematical foundations of DFT

As mentioned previously, DFT aims at calculating electronic ground state energies and
densities. Recall that the ground state electronic energy of a molecular system composed
of M nuclei of charges 21, ..., zar (2 € N\ {0} in atomic units) and N electrons is the
bottom of the spectrum of the electronic hamiltonian

:__ZA“ ZZ|r—Rk| Z

i=1 k=1 1<i<j<N

(1)

Z_r_]|

where r; and Ry, are the positions in R3 of the i electron and the £ nucleus respectively.
The hamiltonian Hy acts on electronic wavefunctions ¥(ry,01;--;rN,0nN), 0; € X 1=
{I1), 1)} denoting the spin variable of the i‘? electron, the nuclear coordinates {Ry};<p< 1
playing the role of parameters. It is convenient to denote by R3 := R3 x {|1),|l)} and
x; := (r;,0;). As electrons are fermions, electonic wavefunctions are antisymmetric with
respect to the renumbering of electrons, i.e.

\I/(Xp(l)f" ’Xp(N)) =e(p)¥(x1, -+ ,XN)

where €(p) is the signature of the permutation p. Note that (in the absence of magnetic
fields) Hy W is real-valued if ¥ is real-valued. Our purpose being the calculation of the
bottom of the spectrum of Hp, there is therefore no restriction in considering real-valued



wavefunctions only. In other words, Hy can be considered here as an operator on the real
Hilbert space

N
Hy = [\ L(R3,),
i=1

endowed with the inner product

(W[ ) :/ U(x1, - ,xy) U(xq, -+, xn) dxq - - dXp,
(RE)N

where

v f(x)dx = (Z;:/R?) f(r,o)dr,

1
and the corresponding norm || - |3y = (-[)7;, - It is well-known that Hy is a self-adjoint

operator on Hy with form domain

N
QN = /\ H'(RS).

i=1

Denoting by
M
Z = Z 2k
k=1

the total nuclear charge of the system, it results from Zhislin’s theorem that for neutral or
positively charged systems (Z > N), Hy has an infinite number of negative eigenvalues
below the bottom of its essential spectrum. In particular, the electronic ground state
energy Ai(Hy) is an eigenvalue of Hp, and more precisely the lowest one.

In any case, i.e. whatever Z and N, we always have

A (Hy) = inf {(Y[Hn|V), ¥ € On, [Py =1}. (2)
Note that it also holds
M(Hy) =inf {Tr (HyT), T' € S(Hy), Ran(I") C Qn, 0<T <1, Tr (T') = 1}. (3)

In the above expression, S(Hy) is the vector space of bounded self-adjoint operators on
Hy, and the condition 0 < T' < 1 stands for 0 < (W|[|¥) < [|¥|3, for all ¥ € Hy. Note
that if H is a bounded-from-below self-adjoint operator on some Hilbert space H, with
form domain Q, and if D is a positive trace-class self-adjoint operator on H, Tr (H D) can
always be defined in Ry U{+o00} as Tr (HD) = Tr ((H — a)%D(H — a)%) +aTr (D) where
a is any real number such that H > a.

From a physical viewpoint, (J) and () mean that the ground state energy can be
computed either by minimizing over pure states (characterized by wavefunctions ¥) or by
minimizing over mixed states (characterized by density operators I).

With any N-electron wavefunction ¥ € Hy such that ||¥[j4, = 1 can be associated
the electronic density

pu(r) =N Z/ [W(r,05%g,- - ;xN)[* dxz - - - dxp.
s (RS)N—l



Likewise, one can associate with any N-electron density operator I' € S(Hy) such that
0 <T <1andTr(I') =1, the electronic density

pr(r) =N Z/ [(r,o3X2, ++ ,XN;T,05Xg, 3 XN) dXg - - - dXN
oEXN (R%)N_l

(here and below, we use the same notation for an operator and its Green kernel).
Let us denote by

M
2
VI =-D TR
k=1

the electrostatic potential generated by the nuclei, and by

N

1 1
HL = 2N A, ) 4
beglaer ¥ o )

1<i<j<N '*

It is easy to see that
(U|Hy|U) = (U|HY|T) + / pyV and Tr (HyT) = Tr (HAT) +/ prV.
R3 R3
Besides, it can be checked that

Ry = {P | ¥ € Oy, ||\II||HN =1, pv = /0}
= {p|reS(Hy), Ran(I') C On, 0T <1, Tr (I') = 1, pr = p}

{p20|\/ﬁEH1(R3), /RSp:N}.

It therefore follows that

Iy = inf{FLL(p)+/3pV, pERN} (5)
R
— wt{Fi()+ [ o pe R )
R3
where Levy-Lieb’s and Lieb’s density functionals [[4, [[5] are respectively defined by
Fiulp) = inf {(UHY®), U € Ox, Wy =1, pu = p} (7)
F,(p) = inf{Tr (H\D), T € S(Hy), Ran(') C Qn,
0<I'<1 Tr(I) =1, pr = p}. (8)

Note that the functionals Fy1, and Fi, are independent of the nuclear potential V', i.e. they
do not depend on the molecular system. They are therefore universal functionals of the
density. It is also shown in [[[§] that F}, is the Legendre transform of the function V +— Iy.
More precisely, expliciting the dependency of Iy on V, it holds

Fi(p) = sup {IN<V> - [ovoveri@) L°°<R3>} |

from which it follows in particular that F7, is convex on the convex set Ry (and can be
extended to a convex functional on L'(R3) N L3(R?)).

Formulae (f) and (f) show that, in principle, it is possible to compute the electronic
ground state energy (and the corresponding groud state density if it exists) by solving a



minimization problem on Rpy. At this stage no approximation has been made. But, as
neither F1j, nor Fy, can be easily evaluated for the real system of interest (N interacting
electrons), approximations are needed to make of the density functional theory a practi-
cal tool for computing electronic ground states. Approximations rely on exact, or very
accurate, evaluations of the density functional for reference systems “close” to the real
system:

e in Thomas-Fermi and related models, the reference system is an homogeneous elec-
tron gas;

e in Kohn-Sham models (by far the most commonly used), it is a system of N non-
interacting electrons.

3 Kohn-Sham models

For a system of N non-interacting electrons, universal density functionals are obtained as
explained in the previous section; it suffices to replace the interacting hamiltonian H}V of
the physical system (formula ([])) with the hamiltonian of the reference system

0 a 1
HYy=-) 54 (9)
=1

The analogue of the Levy-Lieb density functional (i) then is the Kohn-Sham type kinetic
energy functional

Tics(p) = inf {(U|HY|P), ¥ € O, [U]ny =1, pw = p}, (10)
while the analogue of the Lieb functional (§) is the Janak kinetic energy functional
Ty(p) = inf {Tr (H}T), I € S(Hn), Ran(T') C Qn, 0<T <1, Tr (T') =1, pr = p}.

Let T' be in the above minimization set. The energy Tr (HR,F) can be rewritten as a
function of the one-electron reduced density operator YTt associated with I'. Recall that
Tr is the self-adjoint operator on L?(R3,) with kernel

Tp(x,x') =N I(x,xg,--- JXNG X, Xo, ,XN) dxg - - dXp.
(RE)N-1

Indeed, a simple calculation yields Tr (H{T) = Tr (—3A,;Yr), where A, is the Laplace
operator on L?(R3,) - acting on the space coordinate r. Besides, it is known (see e.g. [§])
that

{Y|3dr e S(Hy), Ran(l') C Qn, 0<T <1, Tr T) =1, Yr =7, pr = p}
={Y e S(L*RY)), 0 <Y <1, Ran(Y) C H'(RY), Tr (Y) = N, pr = p}, (11)
where

pr(r) = Z Y(r,o;r,0).

oEY
Hence,

Ti(p) = inf{Tr (—%AJ) , T € S(LARY)), 0<T <1,

Ran(Y) c HY(RY), Tr (Y) = N, py = p}. (12)
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It is to be noticed that no such simple expression for TKs(p) is available because one
lacks an N-representation result similar to ([L) for pure state one-particle reduced density
operators. In the standard Kohn-Sham model, Tks(p) is replaced with the Kohn-Sham
kinetic energy functional

Tks(p) = inf {(\II|HR,|\II>, U € Qu, U is a Slater determinant, py = p}, (13)

where we recall that a Slater determinant is a wavefunction ¥ of the form

1
Sdet(0i(x) with o€ PEY). [ o0y x)dx =5,

It is then easy to check that

\II(Xla"' 7XN) ==

N
TKS(p):lnf{%ZAS ‘V¢Z(X)‘2dx7 (b:(¢17 7¢N)€WN7 pq):p}7 (14)
=1 >
where we have set
Wy = {@ = (1, 0n) | ¢ € H'(RY), /RS (%) (x) dx = 5z‘a}

and
N
pa(r) =Y > |6i(r,0)*.
i=1 ceX
Note that for an arbitrary p € Ry, it holds

T(p) < Ts(p) < Ts(p).

It is not difficult to check that ([@) always has a minimizer. If one of the minimizers Y of
(12) is of rank N, then Y =37, |¢i)(¢;| with & = (¢1,--- ,¢n) € Wy, ® being then a
minimizer of ([3) and Tks(p) = Ty(p). Otherwise, Tks(p) > Ty(p).

The density functionals Tks and T; associated with the non interacting hamiltonian
Hjy are expected to provide acceptable approximations of the kinetic energy of the real
(interacting) system. Likewise, the Coulomb energy

L e,
Tp) = 2/Ra/Ra r — /| drd

representing the electrostatic energy of a classical charge distribution of density p is a
reasonable guess for the electronic interaction energy in a system of N electrons of density
p. The errors on both the kinetic energy and the electrostatic interaction are put together
in the exchange-correlation energy defined as the difference

Exe(p) = FLr(p) — Tks(p) — J(p), (15)

Exe(p) = Fi.(p) — Ts(p) — J(p), (16)

depending on the choices for the interacting and non-interacting density functionals. We
finally end up with the so-called Kohn-Sham and extended Kohn-Sham models

1 N
IKS == i f{— Vz 2d V J EXC 9
¥ = i QZ/Rr S)Pax+ [ poV + (o) + Bclpw)
®:(¢17"'7¢N)€WN}7 (17)
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and

1
I]%KS = inf {Tr <—§ArT> +/ oxV + J(pr) + Exc(pr),
R3
TeS(LARE)), 0<T <1, Tr (T) =N, Tr (A, T) < oo}, (18)

the condition on Tr (—A,Y) ensuring that each term of the energy functional is well-

defined.

Up to now, no approximation has been made, in such a way that for the exact exchange-
correlation functionals (([§) or ([d)), IXS = IFXS = X\{(Hy) for all molecular system
containing N electrons. Unfortunately, there is no tractable expression of Ey.(p) that can
be used in numerical simulations. Before proceeding further, and for the sake of simplicity,
we will restrict ourselves to closed-shell, spin-unpolarized, systems. This means that we
will only consider molecular systems with an even number of electrons N = 2NN, where
N, is the number of electron pairs in the system, and that we will assume that electrons
“go by pairs”. In the Kohn-Sham formalism, this means that the set of admissible states
reduces to

{‘P = (1o, 018, - s on, 0, 0N, B) | i € H'(R?), /3 Qip; = 51“}
R

where a(|T)) =1, a(|])) =0, 5(|T)) = 0 and S(||)) = 1, yielding the spin-unpolarized (or
closed-shell, or restricted) Kohn-Sham model

NP
BKS = inf{Z/B Vil + /3p¢V+ J(pa) + Exc(pe),
i=1 7R R

Np

b= (g1, on,) € (H'(R?)N, /R3 Pip; =0, po = 22|%’|2}, (19)
=1

where the factor 2 in the definition of pg accounts for the spin. Likewise, the constraints on
the one-electron reduced density operators originating from the closed-shell approximation
read:

Y(r, (1), 1) =T(r,[1),x"[1)) and  L(r,[1),r',[1)) = T(r, [1),r",[1)) = 0.

Introducing ~(r,r') = Y(r,|1),r’,|T)) and denoting by p,(r) = 2v(r,r), we obtain the
spin-unpolarized extended Kohn-Sham model

INFES = {£(v), veKn,}

where

E0) =T (a0 + [ oV T(pr) + Bl

and
Ky, = {v€S(L*R*) [0<y <1, Tr(7) = N,, Tr (A7) < 00} .

Note that any v € Ky, is of the form
+oo
v =Y miléi) (@il
=1

7



with
+oo +oo
¢i € H'(R?), /3 Gidy =06, mi€10,1], D> mi=Np, > 0| Vei]7. < 0.
R i=1 i=1

In particular,
“+o00
py(r) =23 milei(r).
=1
Let us also remark that problem ([[J) can be recast in terms of density operators as follows

IV ={€(), ye€Kn,} (20)

where
Pn, = {7 € S(L*(R?)) | v* =7, Tr (7) = N, Tr (—A7) < oo}

is a the set of finite energy rank-NN, orthogonal projectors (note that Ky, is the convex
hull of Py,,). The connection between ([19) and (R{) is given by the correspondence

Np
v = le) i,
=1

ie. «is thtla orthogonal projector on the vector space spanned by the ¢;. Indeed, as
V| =(—A)z, it holds

NP NP NP
Tr (—A9) =T (VIIV]) = D _IlIVIgillEe = D IVaillzs = 3 /R Vil
i=1 i=1 1=1

Let us now address the issue of constructing relevant approximations for Ex.(p). In
their celebrated 1964 article, Kohn and Sham proposed to use an approximate exchange-
correlation functional of the form

Ei.(p) = / g(p(r))dr (LDA exchange-correlation functional) (21)
R3

where p~lg(p) is the exchange-correlation density for a uniform electron gas with density
p, yielding the so-called local density approximation (LDA). In practical calculations, it
is made use of approximations of the function p — ¢(p) (from Ry to R) obtained by
interpolating asymptotic formulae for the low and high density regimes (see e.g. [f]) and
accurate quantum Monte Carlo evaluations of g(p) for a small number of values of p [H].
Several interpolation formulae are available [23, 2, B1l|, which provide similar results. In
the 80’s, refined approximations of Fy. have been constructed, which take into account the
inhomogeneity of the electronic density in real molecular systems. Generalized gradient
approximations (GGA) of the exchange-correlation functional are of the form

E.(p) = /RS h(p(r), %|V\/p(r)|2) dx (GGA exchange-correlation functional). (22)

Contrarily to the situation encountered for LDA, the function (p,x) — g(p,k) (from
Ry x R4 to R) does not have a univoque definition. Several GGA functionals have been
proposed and new ones come up periodically.



Remark 1. We have chosen the form (£3) for the GGA exchange-correlation functional
because it is well suited for the study of spin-unpolarized two electron systems (see The-
orem B below). In the Physics literature, spin-unpolarized LDA and GGA exchange-
correlation functionals are rather written as follows

FEy(p) = Ex(p) + Ec(p)

with
Bp) = [ o) exolo) Filsole) dr (23)
Bep) = [ o) [eclrs0) + Hlr,fo): ()] . (24

In the above decomposition, Fy is the exchange energy, E. is the correlation energy, €y

and €. are respectively the exchange and correlation energy densities of the homogeneous
_1
electron gas, 1,(r) = (37p(r)) " ® is the Wigner-Seitz radius, s,(r) = L [Vell s the
2(37%)3 p(r)3
1 \Vp(l;)l

T is the correlation gra-
4(3r=1)% p(r)s

dient, Fy is the so-called exchange enhancement factor, and H is the gradient contribution
to the correlation energy. While ex has a simple analytical expression, namely

(non-dimensional) reduced density gradient, t,(r) =

€. has to be approzimated (as explained above for the function g). For LDA, Fx is every-
where equal to one and H = 0. A popular GGA exchange-correlation energy is the PBE
functional [B4], for which

is”

1+ puv—1ts?

v 1+ A(r)t? _ v o[ -1
H = Oln(1+—¢ A(r) = — [e—€c(M/f _q
() = oI ( et T Ame t apEa) vt A =g (e ) !

Fi(s) = 1+

the values of the parameters pu ~ 0.21951, v ~ 0.804, # = 7= 2(1 —In2) and v = 372
following from theoretical arguments.
4 Main results

Let us first set up and comment on the conditions on the LDA and GGA exchange-
correlation functionals under which our results hold true:

e the function ¢ in (R1)) is a C! function from R to R, twice differentiable and such

that
9(0)=0 (25)
g <0 (26)
2 l9'(p)]
<P <PLr <= st sup —— <0 27
B per, PP+ pi+ @)
3
N <a< - st limsup &5) < 0; (28)
2 p—0t 1Y



e the function h in (1)) is a C*! function from R, x Ry to R, twice differentiable with
respect to the second variable, and such that

h(0,k) =0, Vk € Ry (29)
g—z <0 (30)
) o)
< p <pBy < 3 s.t. (pﬁ)z};}jxﬂh Py < o0 (31)
d<a< 3 s.t. lim sup hp. ) <0 (32)
2 (pr)—(0+,0%)  P7

oh
D<a<b<oo st V(p,k) e Ry xRy, agl—l—%(p,m)gb (33)

2

oh 0°h
Vip,k) e Rp xRy, 1+ &(p7 K) + QRW(p, k) > 0. (34)

Conditions (R§)-(R8) on the LDA exchange-correlation energy are not restrictive. They

1
are obviously fulfilled by the LDA exchange functional (gtPA(p) = —3 (%) 3 p%), and are
also satisfied by all the approximate LDA correlation functionals currently used in practice
(with a = § and B_ = B = 1). We have checked numerically that assumptions (29)-(B4)

are satisfied by the PZ81 functional defined in [RJ].

Remark 2. Our results remain true if ([24) and ([BQ) are respectively replaced with the
weaker conditions

1 2 0.q
Lep <p <l sn sy 20IW)
3 3 peRy  pP= + pP+
and .
1 9 max <0, a—(p, m))
d-= S ﬂi S ﬂJr <z s.t. sup : P < 0.
3 3 (p,k)ERL xR4 pﬁ— + p5+

As usual in the mathematical study of molecular electronic structure models, we embed
(2d) in the family of problems

I =inf{&(7), v € Ky} (35)
parametrized by A € R} where
Kx={7eS(*R)[0<y<1, Tr(7) = A, Tr (A7) < oo},
and introduce the problem at infinity
I =inf{E7(7), v € Ki} (36)

where
EX5(7) = Tr (=A%) + I (py) + Exe(pr)-

The following results hold true for both the LDA and GGA extended Kohn-Sham models.

10



Lemma 1. Consider (33) and ([58) with Ex. given either by (21) or by (23) together with

the conditions (23)-(B8) or ([29)-(33). Then
1. Iy = I§° =0 and for all A > 0, —oo < I < I3° < 0;
2. the functions X\ — Iy and X\ +— IS° are continuous and decreasing;

3. forall 0 < p < A,
L <I,+1I2,. (37)

Our main results are the following two theorems.

Theorem 1 (Extended KS-LDA model). Assume that Z > N = 2N, (neutral or
positively charged system) and that the function g satisfies ([23)-(2§). Then the extended
Kohn-Sham LDA model ({33) with Ey. given by (21) has a minimizer ~o. Besides, 7o
satisfies the self-consistent field equation

Y0 = X(—oo,ep)(Hpm) +4 (38)

for some ep <0, where

H

Pyo

1 _
_ —§A +V + pyo x 2|71+ G (04,

Where X (oo e) is the characteristic function of the range (—oo, er) and where § € S(L*(R?))
is such that 0 < § <1 and Ran(0) = Ker(H,, — €r).

Theorem 2 (Extended KS-GGA model for two electron systems). Assume that
Z > N = 2N, = 2 (neutral or positively charged system with two electrons) and that the
function h satisfies (29)-(34). Then the extended Kohn-Sham GGA model ([33) with Ex.
given by (23) has a minimizer vo. Besides, yo = |){(¢| where ¢ is a minimizer of the
standard spin-unpolarized Kohn-Sham problem (19) for N, = 1, hence satisfying the Euler
equation

1 oh oh
—gtiv (14 5h0a V0R) ) Vo ) 4 (Vi pu i 4 ol Vo) J o =0 (30

for some € < 0, where py = 2¢*. In addition, ¢ € CO*(R3) for some 0 < a < 1 and
decays exponentially fast at infinity. Lastly, ¢ can be chosen non-negative and (€, ¢) is the
lowest eigenpair of the self-adjoint operator

1. oh _ oh
—5iv (14 Geen [997)) 9 ) 4V o 4 B0 [V

We have not been able to extend the results of Theorem [ to the general case of N,
electron pairs. This is mainly due to the fact that the Euler equations for (BY) with Fy.
given by (29) do not have a simple structure for N, > 2.

11



5 Proofs

For clarity, we will use the following notation

ELPA(p) = / 9(p(r)) dr

R3

BSONp) = [ (p(e), 519 V() )

EPAG) =T (A + [ V(o) + [ ol (e dr
GGA 1 9
N =T () + [ VT + [ ha (o), 519V dr
The notations Ex.(p) and £(y) will refer indifferently to the LDA or the GGA setting.

5.1 Preliminary results

Most of the results of this section are elementary, but we provide them for the sake of
completeness. Let us denote by &; the vector space of trace-class operators on L%(R?)
(see e.g. [BF]) and introduce the vector space

H={y€61|[VNV]e6&i}
endowed with the norm || - ||5 = Tr (| - |) + Tr (||V| - |V]|), and the convex set

K={yeSEL*R*)|0<~y<1, Tr (y) < oo, Tr (|V[y|V]) < o0} .

Lemma 2. For ally € K, \/py € H'(R3) and the following inequalities hold true

SV VA < Tr (~a) (40)
0 < J(py) < C(Tr 7)2(Tr (~Ay))? (41)
—4Z(Tr 7)3 (Tx (~A9))? < /R AR (42)

34 364

e ((Tr N)E (T (—A7) T + (Tr )= (Tr (_M))T> < Frelpy) < 0(43)

1 2
E() = 5 ((Tr (=A9))2 —42(Tr7)3) —82°Tr y
2-8_ 2-8,
- <(Tr 7)1 w)“‘”) (44)
1 2—-8_ 275_’_

€20 23T (=4 = C <(Tr 7+ (T W‘Sﬁ*) : (45)
for a positive constant C' independent of ~v. In particular, the minimizing sequences of
(B3) and those of (34) are bounded in H.
Proof. Any 7 € K can be diagonalized in an orthonormal basis of L?(R3) as follows

+o0
v = nile) (el
i=1

12



with n; € [0,1], ¢y € H'(R?), [os didj = 65, Tr (v) = Fon; < oo and Tr (—Ay) =

Fo0 0|V il|2, < oo. As
2

+o00
Z ni¢; Vo
Vol =22 ——,
nid?
=1

Q) is a straightforward consequence of Cauchy-Schwarz inequality. Using Hardy-Littlewood-
Sobolev [[[f], interpolation, and Gagliardo-Nirenberg-Sobolev inequalities, we obtain

3 1 3
T(py) < Cullos2 5 < CillpsllzalloylFs < Colloy |21V /B3]l e

Hence (1)), using (£0) and the relation ||p,| ;1 = 2Tr (v). It follows from Cauchy-Schwarz
and Hardy inequalities and from the above estimates that

P 1 B \
/R3 |- _}{k| < QHPvHZlHV\/EHLz < 4(Tr v)2(Tr (—A7))2.

Hence (). Conditions (RF)-(R§) for LDA and (P9)-(BJ) for GGA imply that Ex.(p) <0
and there exists 1 < p_ < p3 < % (p+ =1+ p+) and some constant C' € R, such that

wek Bpizc([ o+ [ o). (40

from which we deduce (), using interpolation and Gagliardo-Nirenberg-Sobolev inequali-
ties. Lastly, the estimates ([4) and (f3) are straightforward consequences of (i)-(fd). O

Lemma 3. Let A > 0 and v € K. There exists a sequence (Y )nen Such that
1. for alln €N, v, € Ky, vy is finite-rank and Ran(vy,) C C(R3);

2. (Yn)nen converges to vy strongly in H;

3. (\/Prm)nen converges to \/p strongly in H'(R3);
4. (Pyy )nen and (V /Py, )Jnen converge almost everywhere to p~, and V., /p, respectively.

In particular
lim E(y,) =€&(y) and  lim E%(y,) = E7(y). (47)

n—oo n—oo

Proof. Let v € Ky. It holds
+o0o
v =Y milei) (el
i=1

with n; € [0,1], ¢; € HY(R3), [os ¢idj = 0ij, Tr (7) = 155 n; = X and Tr (—A) =
iy il VillZa < oo
We first prove that v can be approached by a sequence of finite-rank operators. Let
Ny € N such that 0 < ny, < 1 (if no such Ny exists, then ~ is finite-rank and one can
directly proceed to the second part of the proof). For all N € N, we set

N N
%:})mmww+0—2h0wmw%w

i=1 i=1

13



For N large enough, 7y € K,, and the sequence (yy) obviously converges to v in H.
Besides, (p, ) converges a.e. to p, and

N 400
P3n — Pyl < (mvo +A- Zm-) o+ D maildil® < py+ Ay

1=1 i=N+1
Hence the convergence of (ps, ) to p, in LP(R?) for all 1 < p < 3. Besides, for all N > Ny,

2
N

N
> nigiVei + <7”LN0 A= Zm) PNo VPN

—+00
i=1,1#£N; =1
vyl — 2 <2 Vo 2 Vo

N
> milei? + (nNo +A - an> |60 =

i=1,i#No i=1

Using Lebesgue dominated convergence theorem, we obtain that the sequence (||V/p5 || 12)
converges to ||V, /py||rz2, from which we deduce that (,/p5,) converges to ,/p5 strongly in
H(R3).

The second part of the proof consists in approaching each ¢; by a sequence of regular
compactly supported functions. For each ¢, we consider a sequence (¢; i )ren of functions
of C2°(IR?) such that

i Supp(¢i,k) - Supp((ﬁi) and f]R2 (ﬁi,k(ﬁj,k = 52‘]‘ for all k,
o (¢ k)ken converges to ¢; strongly in H L(R3) and almost everywhere,
e there exists h; € L*(R?) such that |V¢; x| < h; for all k.

It is then easy to check that the sequence (yn k)ren defined by

N N
e =D mildin) (il + (A - an> | O No. k) (PNo k|
i=1 i=1

converges to Yy in H and is such that (,/p5, )ken converges to ,/p5 strongly in H L(R3).
One can then extract from (Yn k) (v, k)enxn @ subsequence (7,)nen Which converges to
7y in H and is such that (,/ps, )nen converges to /p, strongly in H 1(R3), and there is no
restriction in assuming that (p,, )nen and (V,/ps,, Jnen converge almost everywhere to p,
and V,/py respectively.
The linear form y — Tr (—Avy) being continuous on H and the functionals u — [ps u?V
and u — J(u?) + Ex.(u?) being continuous on H'(R3), ({7) holds true. O

5.2 Proof of Lemma [I]
Obviously, Iy = I = 0 and I < I for all A € R,

Let us first prove assertion 3. Let 0 < u < A, € > 0 and v € K, such that I, < &(y) <
I, + €. It follows from Lemma B that there is no restriction in choosing + of the form

N
v = niléi) (el
i=1
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with 0 < n; <1, N ni =, (¢i]d;) = 8;; and ¢; € C°(R3). Likewise, there exists
N/
v =D il (@l
i=1

with 0 < nf <1, SN 0l = X — p, (#]¢}) = i and ¢} € C°(R%), such that I3, <
Ex(H) < I3, +e Let e be a unit vector of R3 and 7, the translation operator on L?(IR?)
defined by 7,f = f(- — a) for all f € L?(R3). For n € N, we define

Yn =7+ Tner)/Tfne-
It is easy to check that for n large enough, v, € K and

I, < 5(771) < 5(7) + 500('7) + D(pﬂ/ﬂ'nepﬂ/) < Iu + I;.\iﬂ + 3¢,

D(p,p) = /RS AS%drdr’.

where

Hence (7).

Making use of similar arguments, it can also be proved that
I < Iﬁo + If\xj“. (48)

Let us now consider a function ¢ € C°(R3) such that ||¢||;2 = 1. For all o > 0 and all
0 < A < 1, the density operator 7, y with density matrix

You(r,r') = Ao® ¢(or) d(or)

is in K. Using (B§) for LDA and (B2) for GGA, we obtain that there exists 1 < o < 3,
c > 0 and o9 > 0 such that for all 0 < XA <1 and all 0 < o < 0y,

I < E%(Yp0) < Ao? /R IVe* + X0 J(2]¢]%) — eA%o @ /R El

Therefore I5° < 0 for X positive and small enough. It follows from (B7) and (fI§) that the
functions A — I and A — I$° are decreasing, and that for all A > 0,

—oo < Iy < I <0.

To proceed further, we need the following lemma.

Lemma 4. Let A > 0 and (7n)nen be a minimizing sequence for ([33). Then the sequence
(P, )nen cannot vanish, which means that

dR>0 st lim sup / Py > 0.
Z‘+BR

N0 xcR3

The same holds true for the minimizing sequences of (B4).

15



Proof. Let (Vn)nen be a minimizing sequence for (BH). By contradiction, assume that

VR >0, lim sup / pn = 0.
:L'+BR

n—oo Z‘ER3

Let 1 < p < 2. For p > 0 such that \/p € H'(R?), it holds for all k € Z3,

k+B1 pp = <//€+B1 p>p_1 </k+B1 p21p>2_p = Cp <//€+B1 p>p_1 </k+Bl (p - |V\/ﬁ|2)>

(where the constant C}, does not depend on k). We therefore obtain

/Rgppgz o

k cz3 k+DB;
<o ([0 (], 0w
<56, (s [ o) (Lo [ vem).

Hence, for all v € IC,

p—1
/ pggmcp(sup/ m) 17113
R3 z€R3 Jz+By

As we know that any minimizing sequence of (BH) is bounded in H, we deduce from the
above inequality that for all 1 < p < %,

lim p?;n = 0.

n—oo Jp3

In particular, it follows from ([if) that

lim Evc(p~,) = 0.
3

n—oo R

Let us now fix 1 < p < 3, ¢ > 0 and R > 0 such that |[V| < eA~! on B%. For n large
enough, we have

1
ol

1
7\ P p €
Lol [ ovis [oavis ([ o) ([ o) +5 [ o<
R3 Br BS, Br Br By

Therefore

lim Py, V = 0.
n—oo RS
As,

E(ym) > /]R3 P%V‘{'EXC(/)%),

we obtain that I, > 0. This is in contradiction with the previously proved result stating

that Iy < 0. Hence (p,, )nen cannot vanish. The case of problem (B@) is easier since the
only non-positive term in the energy functional is Fx.(p). O
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We can now prove that Iy < I3°. For this purpose let us consider a minimizing sequence
(Yn)nen for (B). We deduce from Lemma [] that there exists n > 0 and R > 0, such that
for n large enough, there exists z,, € R? such that

/ Pryn = M-
:Bn+BR

Let us introduce v, = Tz, -2, YnTa,—z,- Clearly 7, € Ky and

~ 0o z
E(n) < £%(m) — .

Thus,
Z1m

It remains to prove that the functions A — I, and A — I3° are continuous. We will deal
here with the former one, the same arguments applying to the latter one. The proof is
based on the following lemma.

Lemma 5. Let (o )ken be a sequence of positive real numbers converging to 1, and (pk)ken
a sequence of non-negative densities such that (\/pr)ren is bounded in H*(R3). Then

lim (Exc(owpr) — Exc(pr)) = 0.
k—oo

Proof. In the LDA setting, we deduce from () that there exists 1 < p_ < p; < % and
C € R, such that for k£ large enough

BN ) = BEPA ()| < Clon =11 [ (6 +21)
In the GGA setting, we obtain from (1) and (BJ) that there exists 1 < p_ < p; < 5 and

C € R, such that for k large enough
S5 @upn) = BN ) < Clow =11 [+ 6" + 1V Vl?).

As (\/Pr)ken is bounded in H'(R?), (p)ken is bounded in LP(R?) for all 1 < p < 3 and
(V/Pr)ken is bounded in (L?(R?))3, hence the result. O

We can now complete the proof of Lemma .

Left-continuity of A — I. Let A > 0, and (A\x)ren be an increasing sequence of positive
real numbers converging to A\. Let € > 0 and v € Ky such that

L<EM) <D+

For all k € N, v, = A\pA "My is in Ky, so that
VEeN, VneN, I,<I, <&(w).

Besides,

2

A by by A
Ew) = 3T (A0 + 3 [ 0V + T T(p) + B (Tk’”> ety

k—o0
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in virtue of Lemma [ Thus
I, <1, <I\+e¢

for k large enough.

Right-continuity of A — I. Let A > 0, and (A\x)gen be an decreasing sequence of positive
real numbers converging to A. For each k € N, we choose v, € K, such that

1

Iy, <Em) < I, + p

For all k € N, we set v, = )\)\lzlvk. As 4 € Ky, it holds

~ A A A A
I)\ < 5(7]6) = )\_kTr (_A’Yk) + )\_k 43 p’ykv + FJ(p’Yk) + EXC (A_kp’yk> .
k

As (V) ken is bounded in H and (,/p-, )ken is bounded in H*(R?), we deduce from Lemmaf
that

lim (E(7%) — €(x)) = 0.

k—o0

Let € > 0 and k. > 2¢~! such that for all k > k.,

1E(k) — E()| <

DN

Then,
Vk > ke, In—e< I, <I,.

This proves the right-continuity of A — Iy on R} \{0}. Lastly, it results from the estimates
established in Lemmaf) that

lim Iy =0.
Aot

5.3 Proof of Theorem [l

Let us first prove the following lemma.

Lemma 6. Let (v,)nen be a sequence of elements of IC, bounded in H, which converges
to v for the weak-+ topology of H. If limy, .o Tr (7,) = Tr (), then (py, )nen converges
to py strongly in LP(R3) for all1 <p < 3 and

EWPA(y) < liminf ELPA(v,) and EYPA(y) < liminf EXPA(,).

n—oo n—oo

Proof. The fact that (7, )nen converges to «y for the weak-+ topology of H means that for
all compact operator K on L?(R3),

lim Tr (v, K) =Tr (yK) and lim Tr (|V|y,|V|K) =Tr (|V]|V|K).

n—oo

For all W € C2°(R?), the operator (1 + |V|)7*W (1 + |V|)~! is compact (it is even in the
Schatten class &, for all p > % in virtue of the Kato-Seiler-Simon inequality [R7]), yielding

/RSP%W = 2Tt (3W) =2Tr (1 + V)11 + VA + V) 'W(A+ (V)™

n—0o0

—  2Tr (L4 V(L + VA + V)W +|V) ™) = 2T (3W) = /R W

18



Hence, (p+, Jnen converges to p, in D'(R?). As by (i0), (M)neN is bounded in H'(R?),
it follows that (,/p-, )Jnen converges to \/p, weakly in H 1(R3), and strongly in L (R?)
for all 2 < p < 6. In particular, (,/p,, )nen converges to ,/p, weakly in L*(R?). But we
also know that

n—oo

T e = Jim [, =2 Jim T () = 2T () = [ o = VA

Therefore, the convergence of (,/py, Jnen to /py holds strongly in L?(R3?). By an elemen-
tary bootstrap argument exploiting the boundedness of (,/p-, Jnen in H'(R?), we obtain
that (\/pr, Jnen converges strongly to /py in LP(R?) for all 2 < p < 6, hence that (p-, Jnen
converges to p, strongly in LP (R3) for all 1 < p < 3. This readily implies

nh—>Holo R3 pﬂ{"v:/apvv

hm J(p'y ) =J(py)
hm ELDA(P%) = E)I;CDA(/)'y)-

Xc
Lastly, for any orthonormal basis (¢ )ren+ of L2(R3) such that ¢, € H'(R3) for all k, we
have

—+00

T VPV = Y (@l VIVIIee)

k=1

= ZTr (IV1e) IV [9k]))

3 i T (TR D)
k=1

—+00

< limint YT (VR (TID)
k=1
= liminf Tr (|V|v,|V]).

We thus obtain the desired result. O

We are now in position to prove Theorem [[. Let (7,)nen be a minimizing sequence for I).
We know from Lemma P} that (7, )nen is bounded in H and that (,/p-, )nen is bounded in
H'(R3?). Replacing (7, )nen by a suitable subsequence, we can assume that (7, ) converges
to some 7y € K for the weak-* topology of H and that (M JneN converges to /P~ weakly
in H'(R3), strongly in LP (R3) for all 2 < p < 6 and almost everywhere.

If Tr (y) = A, then v € K, and according to Lemma fi,

EPA(y) < liminf ELPA(y,) = I,

n—-+o0o
yielding that v is a minimizer of (Bg).

The rest of the proof consists in rulling out the eventuality when Tr (y) < A. Let us
therefore set @ = Tr (y) and assume that 0 < a < A. Following e.g. [{], we consider
a quadratic partition of the unity ¢2 + x? = 1, where ¢ is a smooth, radial function,
nonincreasing in the radial direction, such that £(0) =1, 0 < &(x) < 1if |z| > 0, £(z) =
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if 2] > 1, |V€z~ < 2 and V(1 — €2)2|z < 2. We then set &p(-) = & (%). For
all n € N) R — Tr (§gvn&r) is a continuous nondecreasing function which vanishes at
R = 0 and converges to Tr (7,) = A when R goes to infinity. Let R, > 0 be such that
Tr (€, YR, ) = . The sequence (Ry,)n,en goes to infinity; otherwise, it would contain a
subsequence (R,, )ren converging to a finite value R*, and we would then get

@@= lin [, @)k, (@) do =2 lim T (€r,706n,) =20 = [ p (o) e

n—oo RS RS

As &%, < 1 on R3\ {0}, we reach a contradiction. Consequently, (R;,)nen indeed goes to
infinity. Let us now introduce

n=E&R,YnéR, and Y25 = XR,VnXRn-

Note that 71, and 72, are trace-class self-adjoint operators on L?(R?) such that 0 <
Yjn < 1, that p,,, = py, . + py,,, and that Tr (v1,,) = o while Tr (y2,,) = A — a. Besides,
using the IMS formula

—A = xR, (—A)XR, + &R, (—D)R, — |VXR, > = V&, I,

it holds
Tr (=Av,) = Tr (=Avi) +Tr (=A%) = Tt (IVxr,* + [VER, [*)7n)
AN
> Tr (=Avin) +Tr (=Avyp) — I (49)

from which we infer that both (v1,)nen and (72,)nen are bounded sequences of H. As
for all ¢ € C°(R?),

Tr (na(l)(e)) = Tr (m(€r,0)(ERa01)
= Tr (m(I(€ra = DO)ER.D) + Tr (W (I0)((ER, = 1)@)) + Tr (7a(|6)(4]))
—2 T (v(l9)(e);

we obtain that (y1,)nen converges to 7 for the weak-* topology of H. Since Tr (v1,,) =
o = Tr (v) for all n, we deduce from Lemma [ that (P41, Jnen converges to p., strongly in
LP(R3) for all 1 < p < 3, and that

EMPA(y) < lim EMPA (). (50)

n—00 ’

As a by-product, we also obtain that (p,, , Jnen converges strongly to zero in LfOC(Rg) for
all 1 < p < 3 (since py,,, = py, — Pyy,, With (py, )nen and (py,, Jnen both converging to
py in LY (R3) for all 1 < p < 3). Besides, using again (1), it holds

loc

ELDA(%) - Tr (_A%H_/R p%V+J(p%)+/ 9(Py)

Tr (—A’yl,n) + Tl" A’72 n) + /3 P, WV +/ p"/Q,nV

R
4
+J(p"{1,n) +J(p"{2,n) + (p'“/ln +p72 n) ﬁ

Y

= ELDA(WLn) + ELDA’OO )+ /Rs PryanV

AN
+ / (9(Prvin + Pran) = 9(Pnn) = 9(Pra)) — 72k
R3 n
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For R large enough, one has on the one hand

1

2 2Z(\ — «)
‘/ p’Y2,nV‘ S QZ </ p'y?,n) ”v\/ p'yQ,n”L2 + T?
R3 Br

and on the other hand

/ (901 + Pron) = 9(P1n0) — g(pw,n))' < 9Py + Pran) — 9P| + / 9(Pv2.0)|
R3 Bgr

b
+ / 9P+ Pr2n) = 9(Pr2)] +/Bc |9(p.0)]
C

R

1
2
) ol () 2) )
Br
+ )
'YQn Y2,n

R
1
2
+ ( p'Yl,n + p’zylyn) + ”p'y2,nHL2 (/ p'%/l,n)
By

o[ o)

IN

for some constant C' independent of R and n. Yet, we know that (\/m Jnen and
(\/Prin)nen are bounded in HY(R?), that (p,,, )nen converges to p, in LP(R?) for all
1 < p < 3 and that (p4,,, Jnen converges to 0 in L (R?) for all 1 < p < 3. Consequently,
there exists for all € > 0, some N € N such that for all n > N,

ELDA(,YH) > ELDA(,YLH) _{_gLDA,OO(,YZH) —e> Ia + Iicia — ¢

Letting n go to infinity, € go to zero, and using (B7), we obtain that Iy = I, + Iy, and
that (v1,n)nen and (2, )nen are minimizing sequences for I, and I3° | respectively. It also
follows from () that + is a minimizer for I,. In particular « satisfies the Euler equation

7 = 1(—OO,€F)(HP~/) + 5

for some Fermi level ep € R, where
1 _
Hp, :_§A+V+Pw*‘r‘ 1+g,(pv)7

and where 0 < § < 1, Ran(6) C Ker(H,, — ep). As V + py x [r|~! + ¢'(p,) is A-compact,
the essential spectrum of H, is [0,400). Besides, H p, is bounded from below,

H,

y

1
<—5A+ VA py x|

and we know from [[[7, Lemma II.1] that as — Z,ivil Zp+ g py = —Z 420 < —Z+2X <0,
the right hand side operator has infinitely many negative eigenvalues of finite multiplicities.
Therefore, so has H, . Eventually, e < 0 and

v =Y leadil+ Y nildi) (el
i1 i=nt1
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where 0 < n; <1 and where

1
_§A¢i + Vi + (py*|r|™") ¢i + 9 (py) 65 = € ¢

€1 < €2 < €3 < -+ < 0 denoting the negative eigenvalues of H, including multiplicities
(by standard arguments the ground state eigenvalue of H, is non-degenerate). It then
follows from elementary elliptic regularity results that all the ¢;, hence p,, are in H*(R?)
and therefore vanish at infinity. Using Lemma [13, all the ¢; decay exponentially fast to
zero at infinity.

Let us now analyze more in details the sequence (72,)nen. As it is a minimizing
sequence for I3° . (P4, )neN cannot vanish, so that there exists 7 > 0, R > 0 and such
for all n € N, fyn+BR Pz = M for some y, € R3. Thus, the sequence (7y,Y2,nT—y, JneN
converges for the weak-+ topology of H to some ' € K satisfying Tr (7/) > n > 0. Let
B = Tr (7). Reasoning as above, one can easily check that «' is a minimizer for I3°, and
that Iy =1, + IEO + Ifﬁa,ﬁ- Besides,

/

vy = 1(,0076%)(}[;:/) + (5’
where )
1
Hy = =5 A+ py < [r[ ™+ ¢'(py),
and where 0 < ¢’ <1, Ran(¢') C Ker(H;’O, — €p), and epr < 0.
v

Assume for a while that one can choose egr < 0. Then

! !

=D le@il+ > nilehell,
i=1 i=n'+1

all the ¢;’s being in C°°(R?) and decaying exponentially fast at infinity. For n € N large
enough, the operator

Yn = min (17 |y + Tne'Y/T—neuil) (v+ Tne'Y/T—ne)

then is in K and Tr (7,) < (o + (). As both the ¢;’s and the ¢}’s decay exponentially
fast to zero, a simple calculation shows that there exists some § > 0 such that for n large
enough

ELDA(’)/”) — gLDA(7)+gLDA,OO(,yI)_2O‘(Z — 26) _{_O(ef&z) — Ia+I§°—2a(Z — 26) _{_O(ef&z).

n

Hence, for n large enough
Iopp < Iy () < EPM ) < 1"+ I
Adding I3° ,_ 5 to both sides, we obtain that
NS Iawp+ I, g <1+ 157+ 17, 5
which obviously contradicts the previously established equality I, = I, + I+ 12, 5

It remains to exclude the case when ep has to be chosen equal to zero. In this case,
0 is an eigenvalue of HC>O and there exists ¢ € Ker(HOO ) C H?(R3) such that ||¢|2 =1

and 71 = pp with p > 0 We then define for 0 <7 < ppand n € N,

Yo = min (1|7 4 0|@mi1) (Smi1] + Tne(Y — nl) (W) T_nel ")
('Y + 77‘¢m+1><¢m+1‘ + Tne('Y/ - 77‘¢> <¢’)T—ne)-

22



As 7y, is in K and such that Tr (7,,) < A, it holds

In < Ity () < E"P2 ()

Yr,n)

It is then easy to show that

lim EYPA (v, ) = EXPA(y + 0lgmi) (Gmet ) + € X (' = ) (]).

n—0o0

Besides, for n > 0 small enough

EXPA (vt n| b1 ) (Dmep1 ) FEXPA(y =) (]) = EVPA(7) +EXPA () +2n€ 41 +0(n).

Reasoning as above, we obtain that for n > 0 small enough

I\ < I + 2n€pmy1 + o(n),

which is in contradiction with the fact that €,,41 is negative. The proof is complete.

5.4 Proof of Theorem
For ¢ € H'(R3), we set pg(z) = 2|¢(x)* and

B0 = [ V6P + [ poV 4+ T(pe) + B ()

For all ¢ € HY(R3) such that ||§ 2 =1, 74 = |¢)(#| € K1 and E(v4) = E(¢). Therefore,
n<int {B0), o &), [ o =1},
R3

Conversely, for all v € K1, ¢y = 4/ p% satisfies ¢, € HY(R?), ||¢]|2 = 1 and

£69A () = 99N (0)(6, ) + Tr (=A0) = 5 [ VYA 2 E994(6,)(6,) = B,
Consequently,
n=inf {50), o€ (&), [ 1o =1} (51)

and (RO) has a minimizer for N, = 1, if and only if (51]) has a minimizer ¢ (v, then is a
minimizer of (R0) for N, = 1). We are therefore led to study the minimization problem
B1). In the GGA setting we are interested in, F(¢) can be rewritten as

B@) = [ V6P + [ gV + 0000 + [ hpen VP

Conditions (RJ)-(BJ) guarantee that E is Fréchet differentiable on H'(R?) (see [fl] for
details) and that for all (¢, w) € H'(R3) x H*(R3),

1 oh

oh
E'(¢)w = 2(5 /RB (1 + 5 (Po ywﬁ)) v¢-Vw+/RB (V +ppx x|t + % (Pos ywﬁ)) ¢w>.

We now embed (p1) in the family of problems
n=int{B(o), e @), [ 1o =} (52
R3
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and introduce the problem at infinity

s =t {E¥(0), e @), [ 1o =2} (53)

where

() = [ V0P + (o) + [ o V6.
R3 R3
Note that reasoning as above, one can see that Jy = I and J3° = I{° forall 0 < A <1

(while these equalities do not a priori hold true for A > 1).

The rest of this section consists in proving that (bJ) has a minimizer for all 0 < X\ < 1.
Let us start with a simple lemma.

Lemma 7. Let 0 < p < 1 and let (¢n)nen be a minimizing sequence for J,, (resp. for
J°) which converges to some ¢ € HY(R?) weakly in H'(R?). Assume that ||¢]|2, = p.
Then ¢ is a minimizer for J,, (resp. for Ji°).

Proof. Let (¢n)nen be a minimizing sequence for .J, which converges to ¢ weakly in
HY(R3). For almost all z € R3, the function z — |z[> + h(ps(z), |2|*) is convex on
R3. Besides the function ¢ — ¢ + h(ps(z),t) is Lipschitz on Ry, uniformly in z. It follows
that the functional

wH/ (V%[ + hpg, [T[2))
]R3

is convex and continuous on H!(R3). As (¢ )nen converges to ¢ weakly in H(R?), we
get

/ (’V(ﬁ‘Q + h(p¢, ’V(ﬁ‘Q)) < lim / (’v¢n’2 + h(p¢, ’v¢n‘2)) :
R3 n—ao0 JRr3

Besides, we deduce from (B1)) that

[ 04000, 19001 = bl 19602 | < Clon 6112

where the constant C' only depends on h and on the H' bound of (¢ )nen. As (¢n)nen
converges to ¢ weakly in L?(R3) and as ||¢||;2 = ||¢n||2 for all n € N, the convergence of
(¢n)nen to ¢ holds strongly in L?(R3). Therefore,

/ Vo + FSGA () = / (IVI2 + hps, V)
R3 R3

< liminf /R3 (|V¢n|2 + h(pg, |V¢n|2))

n—oo

+ lim | (R(po,s [Voul®) = Blps. [Véul?)

n—oo R

:mm#WWﬁ+£@WJ
n—oo ]R3

Finally, as (¢, )nen is bounded in H' and converges strongly to ¢ in L?(R?), we infer that
the convergence holds strongly in LP(R3) for all 2 < p < 6, yielding

lim pmv+ﬂ%J=/ psV + J(pg)-
R3 R3

n—oo
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Therefore,
E(¢) < liminf E(¢y,) = 1,,.

n—oo

As H(;SH%Q = 1, ¢ is a minimizer for J,,. Obviously, the same arguments can be applied to
a minimizing sequence for J;°. O

In order to prove that the minimizing sequences for Jy (or at least some of them) are
indeed precompact in L?*(R3), we will use the concentration-compactness method due to
P.-L. Lions [[§]. Consider an Ekeland sequence (¢, )nen for (F3), that is [ a sequence
(¢n)nen such that

vn €N, ¢,<c H(R?) and P2 = A (54)
R3

lim E(én) = J (55)

lim E'(¢n) + Oppy =0 in H1(R?) (56)

for some sequence (6,)nen of real numbers. As on the one hand, |¢| € H'(R3) and
E(|¢|) = E(¢) for all ¢ € H'(R?), and as on the other hand, the function \ — J is
decreasing on [0, 1], we can assume that

VneN, ¢,>0ae onR> and 6, >0. (57)

Lastly, up to extracting subsequences, there is no restriction in assuming the following
convergences:

¢ — ¢ weakly in H'(R?), (58)
¢n — ¢ strongly in L (R?) for all 2 < p < 6 (59)
bn — ¢ ae. in R? (60)
6, — 6 in R, (61)

and it follows from (57) that ¢ > 0 a.e. on R3 and 6 > 0. Note that the Ekeland condition
(a) also reads

1., Oh _1  Oh
_§d1V <<1 + % (p(bna ‘v¢n’2)> V(bn) + <V + Py, * ’I" ! + 3_p (p¢>na ‘V¢n’2)> bn + Ondn

=7, with 75, —0in H '(R?). (62)

n—0

We can apply to the sequence (¢, )nen the following version of the concentration-compactness
lemma.

Lemma 8 (Concentration-compactness lemma [[L§]). Let A > 0 and (¢n)nen be a
bounded sequence in H'(R3) such that

Vn € N, / 2 =\
RN

Then one can extract from (¢n)nen a subsequence (¢n, )ken such that one of the following
three conditions holds true:
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1. (Compactness) There exists a sequence (yi)ren in R3, such that for all € > 0, there
exists R > 0 such that

Vk € N, / bh, > A—e
yr+Br

2. (Vanishing) For all R > 0,

lim sup/ gbik = 0.
k=20 yer3 Jy+Bg
3. (Dichotomy) There exists 0 < § < A, such that for all € > 0 there exists

e a sequence (yp)ren of points of R3,

e a positive real number Ry and a sequence of positive real numbers (Raj)ken
converging to 400,

o two sequences (¢1x)ken and (2 )nen bounded in H(R3) (uniformly in )

such that for all k:

( ¢nk =¢1k onyg+ Br,
¢2k OnRg\ yk+BR2k)
1/ il

<, ‘/ ¢2k (A — 5)'

klim dist(Supp ¢1 k, Supp ¢2x) =

;P
Pn — (D16 + P2k) [|Lrsy < Cpe > forall 2<p<6

H¢nk||Lp(yk+(BR2k\§Rl)) <Gy EW forall 2<p<6

1iminf/ (|v¢nk|2 — Vi a* - |V¢2,kl2> > —Ce,
k R3

—00

where the constants C' and C), only depend on the H' bound of (¢n)nen.
We then conclude using the following result.

Lemma 9. Let (¢pn)nen satisfying (4)-(64). Then using the terminology introduced in
the concentration-compactness Lemma

1. if some subsequence (¢n, )ken Of (¢n)nen satisfies the compactness condition, then
(¢ny Jken converges to ¢ strongly in LP(R?) for all2 <p <6 ;

2. a subsequence of (¢p)nen cannot vanish ;

3. a subsequence of (¢ )nen cannot satisfy the dichotomy condition.
Consequently, (¢n)nen converges to ¢ strongly in LP(R3) for all 2 < p < 6. It follows that
¢ is a minimizer to ([H3).

As the explicit form of the functions ¢y and ¢9; arising in Lemma § will be useful for
proving the third assertion of Lemma [, we briefly recall the proof of the former lemma.
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Sketch of the proof of Lemma[§. The argument is based on the analysis of Levy’s concen-
tration function

QuB)=sup [ g2,

yEeR3 Jy+Bg
The sequence (Qn)nen is a sequence of nondecreasing, nonnegative, uniformly bounded
functions such that Rlim Qn(R) = A
—00
There exists consequently a subsequence (Qp, )ren and a nondecreasing nonnegative func-
tion @ such that (Qn, )ken converges pointwise to Q. We obviously have
lim Q(R) =4 € [0, A].

R—oo
The case § = 0 corresponds to vanishing, while § = A corresponds to compactness. We
now consider more in details the case when 0 < § < A (dichotomy). Let &, x be in C°(R?)
and such that 0 < &, x <1, &(z) =11if [z| < 1, &{(x) =0 if |z| > 2, x(z) =0 if |z| < 1,
x(z) = 1if [z| > 2, [[Vx]|[Le < 2and [|[VE[|g < 2. For R > 0, we denote by x(+) =€ ()
and xgr(-) = x (%) Let € > 0 and Ry > € ! large enough for Q(R;) > § — § to hold.
Then, up to getting rid of the first terms of the sequence, we can assume that for all k, we
have Qn, (R1) > 0 — € and Q,,, (2R1) < 6+ §. Furthermore, there exists y; € R? such that

Que(R1) = / o2,

Yk +BRry

and we can choose a sequence (R} )ren of positive real numbers greater than R, converging
to infinity, such that Qn, (2R}) < 0 + € for all k¥ € N. Consider now

1 =Er (- — Yk)Pn,  and  dok = Xp; (+ = Yk)Pny-

Denoting by Ra ) = 2R), we clearly have

‘/ qbik—(S‘gE, ‘/ QS%,]C—()\—(S)‘ge,
R3 R3

/ g = / 02 < Quy(Rok) — Quy (R1) < 26,
Y+ (Br, , \BR;) R1<|-—yk|<Ra i

and

/ (s — (D1 + doi)? < / 1= €ry (- — 1) — X, (- — we) 62,
R3 R3

< / ¢p, < 2€.
R1<|-—yk|<Ro i

Similarly, by Holder and Gagliardo-Nirenberg-Sobolev inequalities, we have for all £ and
2<p<6
(6—p)
[6n, = @1+ S22 < Ul 8n, \ By ) < o

where the constant C), only depends on p and on the H ! bound on (¢, )nen. Finally, we
have ||VE&g, || < 2R7 < 2¢ and VxR, [l < 2(R},)™t < 2e, so that

€

[ 1Voa - (- mlTen | <
R3
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and
€
[ 190 =y~ T < €
R3

where the constant C' only depend on the H' bound on (¢, )nen. Thus

Y

[ 1960 = Fou = 1VousP = [ 1=k, (= m)— By ( ~ ) IV6n, P - Ce
R3 R3

> —C(Cle.

O

Proof of the first two assertions of Lemma [g. Assume that there exists a sequence (yx)ren
in R3, such that for all € > 0, there exists R > 0 such that

Vk € N, / o> A€
yr+Br

Two situations may be encountered: either (yx)ren has a converging subsequence, or
klim lyk| = co. In the latter case, we would have ¢ = 0, and therefore
—00

k—o00

lim [ ¢35V =0.
R3

Hence
I < lim E%(¢p,) = khm E(¢n,) = I,
—00

k—o0

which is in contradiction with the first assertion of Lemma ([l). Therefore, (yx)ren has a
converging subsequence. It is then easy to see, using the strong convergence of (¢, )nen to

¢ in L2 (R3), that
/ ¢22/ ¢* > A —e
R3 y+Br

loc
where y is the limit of some converging subsequence of (yx)gen. This implies that [|¢[|2, =
A, hence that (¢,)nen converges to ¢ strongly in L?(R3). As (¢n)nen is bounded in
H1(R3), this convergence holds strongly in LP(R3) for all 2 < p < 6.

Assume now that (¢p, )ken is vanishing. Then we would have ¢ = 0, an eventuality that
has already been excluded. O

Proof of the third assertion of Lemma [§. Replacing (¢, )nen With a subsequence and using
a diagonal extraction argument, we can assume that in addition to (54)-(F1l), there exists

e a sequence (Y, )nen of points in R3,

e two increasing sequences of positive real numbers (R, )nen and (Ra p)nen such that

lim Ry, =00 and lim Ry, — Ry, =0
n—o00 n—00

e two sequences (¢1.n)nen and (¢2,)nen bounded in H(R?)
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such that

¢n=¢1,n Onyn+ Br,,

¢n = d2n onR’\ (Yo + Br,,)

dm | G1n =0, lm | @5, =A-0

Jim [pn — (P10 + P20)lLp(rsy =0 forall2 <p <6
7}1—>Holo ||¢”HL"(yn+(BR2m\§Rl,n)) =0 forall 2<p<6

lim dist(Supp ¢1,n, Supp ¢2n) = 00

liminf/ (|V¢n|2 — |Vral® — |V¢2,n|2) >0
n—oo R?,

Besides, it follows from the construction of the functions ¢, and ¢3,, that
VneN, ¢1,>0 and ¢9, >0 ae. onR3

A straightforward calculation leads to

B = B+ [ ponV+E¥ o) + [ 00,V

4 [ (190 =101 = V62a) + [ 7V
R3 R3

N 1
+D (P 0> Pbon) + D(Pris Py + Pbn) + —D(pn, Pn)

+ / (0o, [V 6u2) = 1(por o |V b10l%) — 0o [V ),
R3

where we have denoted by pn = pn — pg,,, — P, AS

~ 2

|pn| < 2Xyn+(BR2m\§le) |¢n| ;
the sequence (pp)nen goes to zero in LP(R3) for all 1 < p < 3, yielding

- - 1
/ puV + D(Pns Porn + Po2n) + 5D (Pn, pn) — 0.
RS n—oo

Besides,

D103 P) < 4 dist(Supp d1,0,Subp G2) " |61,0l132 62032 — 0

an

\ [ 0o 196, = ooy [V61%) - <p¢2,n,|v¢2,n|2>>\

_/ 1006 IV )| + |10 s VDL )| + [R5 [V B2 ] )|
yn+(BR2n\ Rq n)

< C (Hp(an y +( \BR + ||p¢"HLP+ y +( \BRI n))> njo)oo

(recall that 1 <py =141 < %) Lastly, as lim,, .o dist(Supp ¢1n,Supp ¢2n) =

min <'/ Pdn,nv' , '/ p¢2mVD — 0.
R3 R3 e
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It therefore follows from (64) and from the continuity of the functions A — Jy and A — J°
that at least one of the inequalities below holds true

> Js+ 25 (case 1) or Jy > J° + Jy_s (case 2). (65)
As the opposite inequalities are always satisfied, we obtain

In=Js+J2s (case 1) or Jy=JF + s (case?2) (66)
and that (still up to extraction)

lim E(¢1,n) =Js lim EOO(¢1,n) = J(?O
lim E°(don) = J5°, (case 1) or nhjrolo Béan) = Jrs

n—oo

(case 2). (67)

Let us now prove that the sequence (¢, )nen, where ¥, = ¢, — (41,5 + d2.,), goes to zero
in H'(R3). For convenience, we rewrite v, as ¢, = e,¢, where e, = 1 — & R (= Yn) —
XRy.n/2(* — yn) and Ekeland’s condition (B) as

~div (@, V) + Vén + (pg, x 1| ) n + Vi 65T~ + Vo Foh 204 10,6, =0, (68)
where

on =5 (14 Goloon V6,

B 4 0h

Vo= 25*,%5 5, (Pons IV énl*)Xps, <1
_3.0

V= 2ﬁ+ﬂ¢>f+6_p(/7¢m ’V¢n’2)an>1'

The sequence (Véy, + (pg, * [v|71)n + Vn_gb,lj%* + Vn‘kgb}[ﬂﬁ+ + 0,0 )nen is bounded in
L2(R?), (N )nen goes to zero in H~1(R?), and the sequence (¢, )nen is bounded in H'(R?)
and goes to zero in L?(R3). We therefore infer from (5§) that

/ an Vo, - Vb, — 0.
RS n—oo

Besides Vi, = €,V + ¢, Ve, with 0 < e, <1 and ||Ve,||z~ — 0. Thus

/ anen|qu§n|2 — 0.
R3

n—0o0

a 1 /. oh 2\ b ;
— < = — — < — e.
0< 5 San =35 <1+am(p¢n,|v¢n| )) S5 <00 ae on R (69)

and 0 < e% < e, <1, we finally obtain

/ e2|Von|> — 0,
R3 n—oo

from which we conclude that (Vb )n,en goes to zero in H'(R?). Plugging this information
in () and using the fact that the supports of ¢, and ¢, are disjoint and go far apart
when n goes to infinity, we obtain

. _ _ _ H!
—div (4, V1,0) + Vi + (051, * F 7)1+ Vi 10" + Vo 4+ 0ud1 = 0

. _ _ _ H!
—~div (anVo,n) + Vb + (0, % 11V 2n + Vi 0537 + Vit 6357 + 0o 7 0.
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We can now assume that the sequences (¢1,n)nen and (¢2,n)nen, which are bounded in
H'(R3), respectively converge to uj and uy weakly in H'(R?), strongly in LP (R3) for all
2 < p < 6andae in R3 In virtue of (63), we also have u; > 0 and us > 0 a.e. on
R3. To pass to the limit in the above equations, we use a H-convergence result proved in
Appendix (Lemma [[()). The sequence (a,)nen satisfying (BY), there exists ao € L>®(R?)
such that § < a, < % and (up to extraction) a,l3 —p ancl3 (where I3 is the rank-
3 identity matrix). Besides, the sequence (V,),en is bounded in L>(R?), so that there
exists VE € L>®(RR?), such that (up to extraction) (V,),en converges to V* for the weak-*
topology of L>®(R3). Hence for j = 1,2 (and up to extraction)

n
Voin i Vuj strongly in H_l(Rg)
Viqu—Qﬁi N Vi 1+25i weakly in L%OC(RB)

n Jn TL*?OO

(Pg;. * |r|” Yojn + 9n¢],n njoo(puj * || u; + 0u;  stronly in L (R?).
We end up with

—div (aee V1) + Vg + (pu, % |r| Huy +Vu 1+267 V"’u}—”ﬁ+ +0u; =0 (70)
—div (a0 Vug) + Vg 4 (pu, * || Dug + V- uéwﬁ_ + V'Fu?rw+ + Ous = 0. (71)

By classical elliptic regularity arguments [ (see also the proof of Lemma [13 below), both
up and ug are in C%*(R3) for some 0 < a < 1 and vanish at infinity. Besides, exactly one
of the two functions uq and us is different from zero. Indeed, if both u; and us were equal
to zero, then we would have ¢ = 0, hence

Iy = hm E(¢n) = lim E*(¢n) = J5°,

n—oo

which is in contradiction with the first assertion of Lemma [l| (recall that Jy, = I and

Jo = I3 for all 0 < A < 1). On the other hand, as dist(Supp ¢1,n, Supp ¢on) — 00, at
least one of the functions u; and us is equal to zero.

We only consider here the case when us = 0, corresponding to case 1 in (65)-(67),
since the other case can be dealt with the same arguments. A key point of the proof
consists in noticing that apply Lemma [[1] (proved in Appendix) to (0) (note that W =

Vouy™ + V*‘uf+ is nonpositive and goes to zero at infinity) yields
0> 0. (72)

Consider now the sequence (51,n)n€N defined by 517n = 5%¢1,n||¢17n||221. It is easy to check
that

( ~ ~ ~
VneN, ¢, € H(R?), / $1,=06 and ¢1,>0ae onR?
RrR3
lim E(¢1n) Js

n—-+4oo
~ - ~ H—l
—div (01,2 V10) + Vi + (05, * 1 7)1n + Vi b1 2 + Vb1 57 + 0,61, 7= 0
\ (glm)neN converges to v; # 0 weakly in H', strongly in . for 2 < p <6 and a.e. on R?

(with in fact v; = ¢). Likewise, the sequence (()\—5)% H(;Sg,nHzgl ®2.n)neN being a minimizing
sequence for J3° s, it cannot vanish. Therefore, there exists v > 0, R > 0 and a sequence
(7n)nen of points of R? such that f 4 Bn |p2.n|> > ~. Then, denoting by ¢2n = (A —
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1 _
5)2 H¢2,n”L21 ¢2,n(' - xn)7

Vn € N, 527n€H1(R3), / $§n:A—5 and ag,nan.e. on R3
- RS
lim  E*(d2n) = J32s

n—-+4oo
. ~ “INT _ T1428_ 7142 ~ H!
—div (azn Vo) + (g, * Il o+ V0o + Valny " + 0udon —— 0

\ (gln)neN converges to vy # 0 weakly in H', strongly in L{’OC for 2 < p < 6 and a.e. on R3.

It is important to note that the sequence (a;)nen and (Vi@)neN are such that

<ajn <5 and ||Vl < 28+,

N
DO | o

where the constants a, b and C' are those arising in (BI]) and (BJ).

We can now apply the concentration-compactness lemma to (gl,n)neN and to (ig,n)neN.
As (@,n)neN does not vanish, either it is compact or it splits into subsequences that are
either compact or split, and so on. The next step consists in showing that this process
necessarily terminates after a finite number of iterations. By contradiction, assume that
it is not the case. We could then construct by repeated applications of the concentration-
compactness lemma (see [fl] for details) an infinity of sequences (ﬁkm)neN, such that for
all k e N

Vn € N, T:Z;km € H'(R?), / 1;,%” =0, and ka >0 a.c. on R?
R3
.~ ~ N S 1428, o4 142 ~ H1!
—div (@ Vrn) + (g, * 1) kn + Vi Oh ™ + VG2 + 00t 15 0
k.n)necN converges to wy wea mn , stron, mn or 2<p<06and a.e. on
(Vkn)ne g # 0 weakly in H' gly in L for 2 < p < 6 and R3,

with

> o <A (73)

keN
and with for all k € N,

< ak,n <

| o

and H\N/,i[nHLoo < 2%+ (.

VRS

Using Lemma [L(] to pass to the limit with respect to n in the equation satisfied by {/;k,na
we obtain

—div (@ Vwr) + (puy * 1| Dwg + Vowp 20 4 Vw7 4wy =0, (74)
with
@~ b’ e B+
Besides, we infer from (7J) that Z |wg]|%2 < A, hence that

keN

lim ||wg|lz2 = 0.
k—oo
It then easily follows from ([f4) that

lim HdiV (akak)HLz =0.
k—o00
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We can now make use of the elliptic regularity result [J] (see also the proof of Lemma [[2)
stating that there exists a constant C, depending only on the positive constants a and b,
such that for all u € H'(R3) such that div (a,Vu) € L3(R3), u € L*°(R3) and

[ullzee < C (ullg2 + ||div (arVu)|2)
and obtain
lim ||wg||p~ = 0.
k—o0
Lastly, we deduce from ([/4) that
28_ 2
Ollwnla < © (ol Fe + ol 72 ) w22
As ||wg|lr2 > 0 for all k£ € N, we obtain that
28 2
0 < C (lwnlZ + el ) — o,
k—o0

which obviously contradicts (7J). We therefore conclude from this analysis that, if di-
chotomy occurs, (¢, )nen splits in a finite number of compact bits. We are now going to
prove that this cannot be.

If this was the case, there would exist 4; > 0 and d9 > 0 such that 0 < §; + o < A and
two sequences (U1, )nen and (u2,,)nen such that

VneN, wu,€ HI(R?’), / |u17n|2 =61, wu;>0ae onR?
R3

lim E(ui,) = Is,

n—oo

H71
nUln > 0
n—00

) 1428— 14284 +6

—div (a1, Vurn) + Vur, + (puy, * £ Durn + o1 Ui, T v} nUin

and

VneN, wuy, € Hl(Rg), / |uQ,n|2 =09, wuy>0ae onR3
R3
lim E*(ug,) =I5,

n—oo

—div (agvnVuzm) + (puz,n * \r\f

H—l
nU2.n > 0
n—00

) 14+28- 142834 +6

Ugp + Vg, Us +U2nu2

and converging weakly in H'(R?) to u1 and us respectively, with ||uq||;2 = 81 and |jus|;2 =
52 (as the weak limit of (¢, )nen in L2(R3) is nonzero, one bit stays at finite distance from
the nuclei). It then follows from Lemma m that u; and ug are minimizers for Js, and J6°2°
respectively:

E(u1) = Js,, |willfz =61, E(ug) = J55, |uz]72 = .
Letting n go to infinity in the equations satisfied by u1 , and us, we also have
—div (a1 Vuy) + Vg + (puy * [r| " Hug + o5 u}+2ﬁ* + v u{mﬁ+ +60u; =0 (75)

and
—div (aaVug) + (puy * |r| Hug + v5 ué+2ﬁ + vl u 1+26+ + Oug =0, (76)

with § < a; < % and ”U;t”LOO < 926+C. This shows in particular that w; and us are

in L>(R?). Applying Lemma [[3, we then obtain that there exists v > 0, fi € H'(R3),
fo € HY(R?), g1 € (L*(R3))? and g € (L?(R?))3 such that

up = e M, wg=eMfy, Vuy=e Mg, Vuy = e Mg (77)
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In addition, as u; > 0 and us > 0, we also have f; > 0 and fo > 0. Let e be a given unit
vector of R3. For ¢t > 0, we set

1
wi(r) = oy (ug(r) + ug(r — te)) where o = (61 + 92)2 ||ug + ua(- — te)”;%.
Obviously, w; € HY(R3) and |lwq||z2 = 81 + &2, so that
E(wt) > J51+52' (78)

Besides,
lus + (- — te)[|2> = / u? + / uj+2 / F1(x) fo(r — te) e (elHr=teD gy
R3 R3 R3
R / Fu(x) folr — te) el +e—teD gy
]RS

= 01 +02+ O(ef'yt),

yielding
o = 1+ O(eiﬂyt).

Likewise, we have

/ |V |? = / |V 2 +/ |Vaug|* + O(e™) (79)
R3 R3 R3

/ Viw? = / Vi | +/ V(- — te) > + 0(e ™) (80)

R3 R3 R3

D(puwrs pur) = D(purs Pur) + D(Pug, pus) + 2D (Puy s Pus(—te)) + O(e™7). (81)

The exchange-correlation term can then be dealt with as follows. Denoting by
T = Pu = Pur = Pus(—te) = 2(0f = D (lur]* + [ua(- — te)[*) + dafurus(- — te)

and
5 = |Vw)* = |Vur > = |Vua (-—te)|? = (o —1)(|Vur|*+|Vua (- —te)|*) +202 Vuy - Vusy (-—te),

and using (B1), (BY), (77) and the fact that u; and uy are bounded in L>°(R3), we obtain

‘/RS h(pwt, ’th’2) - h(pu17 ‘VU1’2) - h(puz(-fte% ’qu( - te)‘Q)

< / [1(pus + Pus(—te) + 7, [Vur]? + [Vuz(- — te)|* + s¢) — h(puy, [Vur )]

By

V]

+ / ., |h(Pus(—te) + Puy + 71, | Vua(- — t€)* + [Vur |* + s¢) — hlpyy(—te): [Vua(- — te)[?)]
te+B ¢
2

+ / {h(pm(._te), |Vug (- — te)|2)‘ +/ {h(pul, |Vu1|2){

B te+B¢
2

ol

+

/]I%S\(Bé U(te-‘t‘B% ))
Combining (f9)-(B1]) together with the above inequality, we obtain

E(w) < Js5, + Jgy + /]R3 Vi]ug(- — te)> + D(puy» Pus(-—te)) + O(e™ ).
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Next, using ([[7), we get

/ Vpu2(~—te) + D(Pulapug(_te)) = _Zt_l/ Puy T+ t_l/ Puy / Puy + O(t_l)
R3 R3 R3 R3
= —260(Z —26))t L+ ot ).
Finally,
E(wy) < Js, + J52 = 202(Z =260t +0(t™1) < Js, 46, — 202(Z —261)t  +o(t) < JTs, 16,
for ¢ large enough, which contradicts ([7§). O

End of the proof of Lemma [J. As a consequence of the concentration-compactness lemma,
and of the first three assertions of Lemma f], the sequence (¢, )nen converges to ¢ weakly
in H'(R?) and strongly in LP(R3) for all 2 < p < 6. In particular,

$* = lim [ ¢2 =\
R3 n—ao0 JRr3

It follows from Lemma [ that ¢ is a minimizer to (52). O

Appendix

In this appendix, we prove three technical lemmas, which we make use of in the proof of
Theorem []. These lemmas are concerned with second-order elliptic operators of the form
—div (AV-). For the sake of generality, we deal with the case when A is a matrix-valued
function, although A is a real-valued function in the two-electron GGA model.

For € an open subset of R? and 0 < A < A < 0o, we denote by M (A, A, ) the closed
convex subset of L>(Q, R3*3) consisting of the matrix fields A € L>(Q, R3*3) such that
for all £ € R3 and almost all = € ,

MNEPP < A(2)€ - ¢ and  A(z)E] < Alg].

We also introduce the set M*(X, A, ) of the matrix fields A € M (A, A, ) such that A(x)
is symmetric for almost all € Q. Obviously, M*(\, A, Q) also is a closed convex subset
of L>®(Q,R3*3).

The first lemma is a H-convergence result, in the same line as those proved in the
original article by Murat and Tartar [[I9], which allows to pass to the limit in the Ekeland
condition (). Recall that a sequence (A,)nen of elements of M(), A, Q) is said to H-
converge to some A € M (XN, A, Q), which is denoted by A,, —y A, if for every w CC € the
following property holds : Vf € H!(w), the sequence (uy)nen of the elements of HE(w)
such that

—div(A,Vu,) = f|, in H '(w)
satisfies

u, — u weakly in Hj(w)

ApVu, — AVu weakly in L?(w)
where u is the solution in H}(w) to —div(AVu) = f|,. It is known [I] that from
any bounded sequence (Ap)neny in M (A A,Q) (resp. in M(A\ A,Q)) one can extract

a subsequence which H-converges to some A € M(A\A"1A%2 Q) (resp. to some A €
M\, ATTAZ, Q).
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Lemma 10. Let Q be an open subset of R3, 0 < X < A < 00, 0 < XN < A <
00, and (Ap)nen a sequence of elements of M (A, A, Q) which H-converges to some A €
M(N, AN Q). Let (up)nen, (fa)nen and (gn)nen be sequences of elements of H'(S2),
H=YQ) and L*(Q) respectively, and u € HY (), f € H () and g € L*(Q) such that

—div(A,Vu,) = fo + gn in H1(Q) for alln € N
U, — u weakly in H(Q)

fn — f strongly in H~1(Q)

gn — g weakly in L*().

Then —div (AVu) = f + g and A,Vu, — AVu weakly in L?(52).

The second lemma is an extension of [[[7, Lemma II.1] and of a classical result on the
ground state of Schrédinger operators [2]. Recall that

L*(R3) + L®(R3) = {W |Ve >0, IWa, Wao) € LA(R?) x L®(R?) s.t.

Wallie < 6 W= W +woo}.

Lemma 11. Let 0 < A < A < oo, A € M3\, A, R3), W € L2(R3) + LX(R3) such that
W, = max(0,W) € L*(R3) + L3(R3) and i a positive Radon measure on R? such that
w(R3) < Z=S"M 2. Then,

H=—div(AV) +V +puxr| '+ W
defines a self-adjoint operator on L?(R3) with domain
D(H) = {u e H'(R?)|div (AVu) € L*(R*)} .

Besides, D(H) is dense in H'(R?) and included in L>(R3) N C%*(R3) for some a > 0,
and any function of D(H) vanishes at infinity. In addition,

1. H is bounded from below, cess(H) C [0,00) and H has an infinite number of negative
etgenvalues;

2. the lowest eigenvalue py of H is simple and there exists an eigenvector u; € D(H)
of H associated with p1 such that uy > 0 on R3;

3. if w € D(H) is an eigenvector of H such that w > 0 on R3, then there exists a > 0
such that w = aquq.

The third lemma is used to prove that the ground state density of the GGA Kohn-
Sham model exhibits exponential decay at infinity (at least for the two electron model
considered in this article).

6
Lemma 12. Let 0 < A < A < 0o, A € M(A\,A,R?), V a function of L} (R®) which
vanishes at infinity, @ > 0 and u € H*(R3) such that

—div(AVu) + Vu +0u =0 in D'(R?).

Then there exists v > 0 depending on (A, A,0) such that elrly e H(R3).
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Proof of Lemma [10. Let us denote by &, = A, Vu,. One can extract from the sequence
(é4)nen, which is bounded in L?, a subsequence (&, )ken Which converges weakly in L?(2)
to some ¢ solution to —div (£) = f + ¢ in H~1(22). The proof will be completed if we can
show that we necessarily have ¢ = AVu. Consider w CC Q, ¢ € H !(w) and v,, € H}(w)
satisfying

—div(A:Vv,) =q in H ' (w).

As the sequence (A})nen H-converges to A* [[I9], it holds

v, — v in He (w)
AX Vv, = A*Vuin L*(w)

where v is the solution to —div (4*Vv) = ¢ in H}(w). Let ¢ € C°(w). As

Pv, — dv in HY ()

Pvp — ¢vin L (w)

Vo, — Vouin (L*(w))?
Vou, — Vouin (L*(w))3,

we have on the one hand
/w bnp Vomed = —(divug, BVn) i1 0y 11 () — /w En - Ve im,
= Uty = [ smdvn = [ - ou,
= =(f,0) g-1(0),H () —/wgtﬁv—/wf-vfﬁv
= (v )y — [ € Vou= [ € Voo,
and on the other hand
/wgnk Vup, ¢ = /WVun,C . (A*ank)gb
- —/wunk(A*ank)-VQH—/wunquS
— —/u(A*Vv)-th—i—/uqu:/Vu-(A*Vv)¢:/(AVu)-VU¢.

Therefore,
/S-Vvqﬁ = /(AVu) -Voo.

As the above equality holds true for all w, all v € H}(w) and all ¢ € C°(w), we finally
obtain £ = AVu. O

Proof of Lemma [[]. The quadratic form ¢o on L?(R3) with domain D(qo) = H'(R3),
defined by

V(u,v) € D(q0) X D(q0), qo(u,v) = /RS AVu - Vo,

is symmetric and positive. It is also closed since the norm /|| - |13, + qo(-) is equivalent

to the usual H' norm. This implies that gq is the quadratic form of a unique self-adjoint
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operator Hy on L?(R3), whose domain D(Hy) is dense in H!(IR?). It is easy to check that
D(Hp) = {u € H'(R3) | div (AVu) € L*(R?)} and that

Yu € D(Ho), Hou = —div (AVu)

Using classical elliptic regularity results [J], we obtain that there exists two constants
0 <a<1landC € Ry (depending on A and A) such that for all regular bounded domain
Q CcCc R3, and all v € H'(Q) such that div (AVv) € L?(Q),

o) = o) _

[olcon@ = suplof+  sup < C([Wllp2g) + lldiv (AVV)|lz2(g)) -

(r,r")eQxQ |I' - I./|C‘{
It follows that on the one hand, D(Hy) < L*®(R3) N C%*(R3), with
/
v(r) —o(r
vue D(H), [ullpme + o POl o ), (82
(r,r")ER3 xR3 ‘I‘ —-r ‘
and that on the other hand, any u € D(Hj) vanishes at infinity.

Let us now prove that the multiplication by W = V 4 pu* |r|~! + W defines a compact
perturbation of Hy. For this purpose, we consider a sequence (uy,)nen of elements of D(H)
bounded for the norm || - ||, = (|| - |22 + || Ho - H%Q)% Up to extracting a subsequence, we
can assume without loss of generality that there exists u € D(Hj) such that:

U, — uin H'(R®) and LP(R®) for 2 < p < 6
u, —uin L (R*) with2 < p < 6

Up — U G.€.

Besides, it is then easy to check that the potential W = V + ux |r|~' + W belongs to
L? + L®(R3). Let € > 0 and (Wh, Ws) € L2(R3) x L®(R?) such that |[Wa||z < € and
W = W5 + Ws. On the one hand,

[Weo(urn — w2 < 2€ sup [lun |y,
neN

and on the other hand
lim ||Wa(u, —u)||z2 = 0.
n—oo

The latter result is obtained from Lebesgue’s dominated convergence theorem, using the
fact that it follows from () that (up)nen is bounded in L>(R?). Consequently,

lim [|[Wu,, — Wul|r2 =0,
n—oo

which proves that W is a Hg-compact operator. We can therefore deduce from Weyl’s
theorem that H = Hy+ W defines a self-adjoint operator on L?(R3) with domain D(H) =
D(Hy), and that ces(H) = 0ess(Hp). As qo is positive, o(Hy) C Ry and therefore
Oess(H) C Ry.

Let us now prove that H has an infinite number of negative eigenvalues which forms an
increasing sequence converging to zero. First, H is bounded below since for all v € D(H)
such that ||v||z2 = 1,

(v|Hv) = / AVv-Vo+ [ We?
R3 R3

3
> A|Veld = [Wala V0l — e
27
P 4.
> - AWt -
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In order to prove that H has at least N negative eigenvalues, including multiplicities, we
can proceed as in the proof of [17, Lemma II.1]. Let us indeed consider N radial functions
¢1, ..., ¢n in D(R?) such that for all 1 < i < N, supp(¢;) € Biy1 \ Bi and g [¢5* = 1.

Denoting by ¢; »(-) = agqﬁi(a-), we have

/ AVGso - Vi < A Ver|a,
]R3

and

/ Wdso|?
RS

=

IN

1
2 2
(/ B W§> |r¢i,a|r%4+</ B W§> 6101125
B, \B,, 1 B, \B,, -1

(i+1)o—1 (i+1)o—1

1 1
3 : ’
o ( [ W§> H¢i”%4+a< . w;) I6ill2s
B, \B,, -1 By, B,

(i+1)o—1 (1+1)U_1\ ioc—1
= o(o)

where we have split Wy = max(0, W) as Wy = Wy + W3 with Wy € L2(R3) and W3 €
L3(R3). Besides, we deduce from Gauss theorem that

1 |¢zo d d R?, ‘¢(r)‘2d
/R(M*Irl /Rs/Rsmax|r| e dnle!) < >/RS o

and that, for o small enough,

2 W(r)’z
Aa V’¢z7o" - O'Z Ag ’I" dI‘.

Thus,

icltone) < o ®)-2) [ XL ars o o),

I" o—0

yielding (¢;.o|H|¢io) < 0 for ¢ > 0 small enough. As ¢; , and ¢;, have disjoint supports
when i # j, we also have

max S|H|d) < 0
¢€Span(¢1,oy”'v¢N,o)7||¢”L2:1< ’ ’ >

for o > 0 small enough. It follows from Courant-Fischer formula [26] and from the fact
that oess(H) C Ry that H has at least N negative eigenvalues, including multiplicites.

The lowest eigenvalue of H, which we denote by 1, is characterized by

I :inf{/ Avu-w+/ Wul?, uwe HY(R?), |ul2= 1}, (83)
R3 R3

and the minimizers of (BJ) are exactly the set of the normalized eigenvectors of H asso-
ciated with p1. Let uj be a minimizer (BJ). As for all u € H'(R3), |u| € H(R?) and
V]u| = sgn(u)Vu a.e. on R3, |up| also is a minimizer to (BJ). Up to replacing u; with
|ui|, there is therefore no restriction in assuming that u; > 0 on R3. We thus have

up € HY (R} NCO'(R?), wu; >0 and —div (AVuy) + gu; =0
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with g =W — py € L (R3) for some p > 3 (take p = 2). A Harnack-type inequality due
to Stampacchia [Pg] then implies that if u; has a zero in R3, then wu; is identically zero.
As ||ui||z2 = 1, we therefore have u; > 0 on R3.

Consider now w € D(H) \ {0} such that Hw = pw and w > 0 on R3. It holds

u/ wiw = (w|H|wy) = ,ul/ wiw.
R3 R3

As w is not identically equal to zero and as w; > 0 on R3, fR3 wiw > 0, from which
we deduce that g = p1. It remains to prove that u; is a non-degenerate eigenvalue. By
contradiction, let us assume that there exists v € D(H) such that Hv = pyv, [[v|j2 =1
and (v,u1)r2 = 0. Reasoning as above, |v| also is an eigenvector of H associated with gy
and |[v| > 0 on R3. Since D(H) C C°(R?), v is continuous on R3, so that either v = ||
on R? or v = —|v| on R3. In any case, | [ps u1v| = [s u1]v] > 0, which is in contradiction
with the fact that (u;,v)r2 = 0. The proof is complete. O

Proof of Lemma [13. Consider R > 0 large enough to ensure

0 0 _
§§V(r)+9§37 a.e. on By ::R3\BR.

It is straightforward to see that u is the unique solution in H'(BS,) to the elliptic boundary
problem

—div(AVv) + Vv +0v =0 in Bj
v=u on JBg.
Let v > 0, @& = uwexp "= and w = u — 4. The function w is in H'(R3) and is the

unique solution in H'(B%) to

{ —div(AVw) + Vw 4 w = div(AVa) — Vi — 0@ in B, (54

w=0 on JBg.
Let us now introduce the weighted Sobolev space W (B%,) defined by
Wi (BR) = {v e Hy(BR) | Mv e H' (B}
endowed with the inner product
g = 0t + Vo) Tute)ar
Multiplying (B4) by ¢e*!'! with ¢ € D(B$,) and integrating by parts, we obtain

AVw- V(g2 4 / V40 wee = — [ AVa- V(g2 - / (V4 0)ipe

Bg Bg Bx Bx

and then

A
-

AT - MV + 27 / Ay . Ll 4 / (V4 0)e el
B Ir| B, (85)

Aty - %e’v\r\(b _ (V4 0)elaerlrlg,
By

%
ANV - el g — 27/
B

c c
R R
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Due to the definitions of Wy (B$,) and @, (BY) actually holds for (w,¢) € W (BS) x
Wy (B%), and it is straightforward to see that (BH) is a variational formulation equivalent
to (5.

It is also easy to check that the right-hand-side in (BF) is a continuous form on W (B%),
so that we only have to prove the coercivity of the bilinear form in the left-hand-side of
[B3) to be able to apply Lax-Milgram lemma. We have for v € W (B%)

J

A7y - Ty 4+ 27/ A7y - %eﬂrlv + / (V + 0)etlyerlrly

7 By By

sa [ lervel? _QM/ el [l +Q/ ey 2

B B, 2 /g,

2 0 2
>\ ewr‘Vv‘ — 2Ay 67|T|Vv‘ ’67|r|v‘ = He'y‘r‘v
- L2(B%) L2(BY) L2(Bg) 2 L2(B%)
2 0 2

> (A — A H kv, Y A |l ,
> ( 7) ||V LQ(B%)+(2 ) ||e"" v 2B

Thus the bilinear form is clearly coercive if v < min(%, %), and there is a unique w solution
of (B4) in Wy (B) for such a v. Now since u = w + 4, it is clear that e'l'lu € H'(B),
and then ey € HY(R?). O

Acknowledgements.

The authors are grateful to C. Le Bris and M. Lewin for helpful discussions. This work was
completed while E.C. was visiting the Applied Mathematics Division at Brown University.

References

[1] A. Anantharaman, PhD thesis, Ecole des Ponts and Université Paris Est, in prepara-
tion.

[2] A.D. Becke, Density-functional exchange-energy approximation with correct asymp-
totic behavior, Phys. Rev. A 38 (1988) 3098-3100.

[3] P.E. Blochl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953-17979.

[4] D.M. Ceperley and B.J. Alder, Ground state of the electron gas by a stochastic method,
Phys. Rev. Lett. 45 (1980) 566-569.

[5] E.R. Davidson, Reduced density matrices in quantum chemistry, Academic Press, New
York, 1976.

[6] R.M. Dreizler and E.K.U. Gross, Density functional theory, Springer 1990.
[7] 1. Ekeland, Nonconvex minimization problems, Bull. Am. Math. Soc. 1 (1979) 443-474.

[8] R. L. Frank and E. H. Lieb and R. Seiringer and H. Siedentop, Muller’s exchange-
correlation energy in density-matriz-functional theory, Phys. Rev. A 76 (2007) 052517.

[9] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order,
3rd edition, Springer 1998.

[10] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (1964)
B864-B&71.

41



[11]

[12]

P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (1964)
B864-B8T71.

D.C. Langreth and J.P. Perdew, Theory of nonuniform electronic systems. I. Analysis
of the gradient approximation and a generalization that works, Phys. Rev. B 21 (1980)
5469-5493.

C. Le Bris, Quelques problémes mathématiques en chimie quantique moléculaire,
These de I’Ecole Polytechnique, 1993.

M. Levy, Universal variational functionals of electron densities, first order density
matrices, and natural spin-orbitals and solution of the V-representability problem,
Proc. Natl. Acad. Sci. USA 76 (1979) 6062-6065.

E.H. Lieb, Density Functional for Coulomb systems, Int. J. Quant. Chem. 24 (1983)
243-277.

E.H. Lieb and M. Loss. Analysis, Second Edition. Graduate Studies in Mathematics,
Vol. 14. American Mathematical Society, Providence, Rhode Island, 2001.

P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math.
Phys. 109 (1987) 33-97.

P.-L. Lions, The concentration-compactness method in the Calculus of Variations.
The locally compact case. Part. I: Anal. non-linéaire, Ann. IHP 1 (1984), p. 109-145.
Part. II: Anal. non-linéaire, Ann. IHP 1 (1984), p. 223-283.

L. Tartar, Homogénéisation et compacité par compensation, Cours Peccot au College
de France (1977). F. Murat, H-convergence, Séminaire d’Analyse Fonctionnelle et
Numérique de I'Université d’Alger (1978). F. Murat and L. Tartar, H-convergence, In:
Mathematical Modelling of Composites Materials, A. Cherkaev and R.V. Kohn. (eds.),

Progress in Nonlinear Differential Equations and their Applications, Birkh&user, 1997.

J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made
simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

J.P. Perdew and Y. Wang, Accurate and simple density functional for the electronic
exchange energy: Generalized gradient approximation, Phys. Rev. B 33 (1986) 8800-
8802.

J.P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-
gas correlation energy, Phys. Rev. B 45 (1992) 13244-13249.

J.P. Perdew and A. Zunger, Self-interaction correction to density-functional approzi-
mations for many-electron systems, Phys. Rev. B 23 (1981) 5048-5079.

S. Redner, Citation statistics from 110 years of Physical Review, Physics Today 49
(2005) 49-54.

M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol I, Functional
Analysis, 2nd edition, Academic Press, New York, 1980.

M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol IV, Analysis
of Operators, Academic Press, New York, 1978.

42



[27]

28]

[29]

[30]

[31]

B. Simon. Trace Ideals and their Applications. Vol 35 of London Mathematical Society
Lecture Notes Series. Cambridge University Press, 1979.

G. Stampacchia, Le probléme de Dirichlet pour les équations elliptiques du second
ordre a coefficients discontinus, Ann. Inst. Fourier 15 (1965) 189-257.

N. Troullier and J.L. Martins, Efficient pseudopotentials for plane wave calculations,
Phys. Rev. B 43 (1991) 1993-2006.

D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue for-
malism, Phys. Rev. B41 (1990) 7892-7895.

S.H. Vosko, L. Wilk and M. Nusair, Accurate spin-dependent electron liquid correlation
energy for local spin density calculations: a critical analysis, Can. J. Phys. 58 (1980)
1200-1211.

43



