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Abstract

In real scenes, dynamic background and moving cast

shadow always make accurate moving object detection dif-

ficult. In this paper, a probabilistic framework for moving

object segmentation in dynamic scenes is proposed. Un-

der this framework, we deal with foreground detection and

shadow removal simultaneously by constructing probability

density functions (PDFs) of moving objects and non-moving

objects. Here, these PDFs are constructed based on KDE-

GMM hybrid model (KGHM) which has advantages of KDE

and GMM. This KGHM models the spatial dependencies

of neighboring pixel colors to deal with highly dynamic

scenes. Moreover, in this framework, tracking information

is used to refine the PDF of moving objects. Experimental

results demonstrate the effectiveness of our method.

1 Introduction

Real-time segmentation of moving objects is a crucial

step in visual surveillance systems. This is because subse-

quent processes, such as tracking and behavior recognition,

are heavily dependent on its output. Background subtrac-

tion is a commonly used technique to detect moving objects

in videos, as it can provide a more complete set of feature

data describing the moving targets compared with other ap-

proaches [5]. Accurate moving object detection could be

difficult due to potential variability, such as moving cast

shadow and dynamic background. Therefore, an accurate

and robust algorithm for real scenes is needed.

Background modeling can be regarded as a classifica-

tion problem (foreground or background), and some prob-

ability density estimation methods have been used, such as

Gaussian Mixture Model(GMM) [14] and Kernel Density

Estimation (KDE) [3]. GMM is a widely used approach

due to its self learning capacity and its robustness to varia-

tions in lighting. However, it still has some shortcomings.

The number of Gaussians should be decided beforehand.

Another limitation is that it does not explicitly model the

spatial dependencies of neighboring background pixel col-

ors. Therefore, some false positive pixels will be produced

in highly dynamic scenes where dynamic texture does not

repeat exactly [13](as shown in Section 2 and 3). Another

density estimation method used for background modeling is

KDE. In [3], the authors use the KDE method to represent

the color distribution for each pixel. Then, Sheikh and Shah

[13] directly model the dependencies between the domain

(location) and the range (color) by using a non-parametric

density estimation method over a joint domain-range repre-

sentation of image pixels. They also introduce a foreground

model to improve detection results. However, this method

does not consider moving cast shadow, which will cause

problems, such as object merging and shape distortion. Be-

sides these, the authors in [7] propose a histogram based

method to estimate the color distribution.

Some other methods which are different from density es-

timation methods have also been used, such as Kalman filter

[6] and auto-regressive model method [10]. The Kalman fil-

ter is employed to update slow and gradual changes in the

background. However, it will fail when dealing with dy-

namic background. In [10], the authors propose an on-line

auto-regressive model to capture and predict the behavior of

the dynamic scenes.

The proposed method has two novel contributions:

1) A probabilistic framework for moving object segmen-

tation in dynamic scenes is proposed. Under this frame-

work as in Figure 1, we deal with foreground detection

and shadow removal simultaneously by constructing PDFs

of moving objects and non-moving objects. These PDFs

can be constructed based on GMM[14], KDE[13, 3] and

histogram[7]. Therefore, the method in [13] can be consid-

ered as a special case of this framework, if we neglect the

PDF of shadow and the tracking information . The method

in [12] also models background, foreground and shadow, si-

multaneously, based on HMM. However, the model param-

eters are learned off-line, and without additional constraints,



Figure 1. Block diagram of the proposed
method.

this method fails to distinguish shadow from dark vehicles.

Moreover, in our framework, tracking information is used to

refine the PDF of foreground. The advantages of unifying

background modeling, moving object detection and shadow

removal will be discussed in Section 2.4.

2) An KDE-GMM hybrid model(KGHM) is proposed to

construct the PDFs of background, foreground and shadow.

It overcomes some shortcomings of both KDE and GMM

for estimating the PDFs. Compared with GMM, it models

spatial dependencies of neighboring pixels color explicitly.

Moreover, the KGHM can determine the number of Gaus-

sian components in the corresponding GMM part, dynami-

cally, by Gaussian merging and deleting rules. The compar-

ison details with KDE in [13] are given Section 2.1.

2 Framework for Moving Object Segmenta-

tion Based On KGHM

In this section, to segment moving objects, we first

deduce the KGHM for PDFs of background, foreground

and shadow. It is inspired by [13], [4]. Then, a three-

category classification problem(background, foreground

and shadow) is converted to a two-category problem by con-

structing PDFs of moving objects and non-moving objects.

At last, a classifier, such as likelihood ratio classifier, can be

used for segmentation. Here, to enforce spatial context, the

MAP-MRF labeling method is used. Furthermore, the feed-

back of tracking is used to refine the PDF of foreground.

The block diagram of the proposed framework is shown in

Figure 1. It is worthwhile pointing out that, in this paper,

the term ”moving object” which excludes shadow refers to

a part of foreground, ”GMM” refers to the method in [14],

and ”shadow” refers to moving cast shadow.

2.1 KGHM for background modeling

To deduce the KGHM, as in [13], the feature vector x
also works in domain-range space, where the coordinates

of pixel are the domain represented by s = (x, y), and the

RGB color space is the range by c = (r, g, b). Therefore,

we represent p pixels by xi ∈ IR5, i = 1, 2, ...p and xi =
(si, ci) = (xi, yi, ri, gi, bi). This makes the background

represented by a single model. We first construct the PDF

of background at time t by KDE as

f(x|b) = n−1
n

∑

i=1

KH(x − yi) (1)

where the samples y1, y2, y3...yn are the pixels obtained be-

fore time t and they are five-dimensional vectors, and

KH(x) = |H|−1/2K(H−1/2x) (2)

where Kis a five-variate kernel function and H is a sym-

metric positive definite 5×5 bandwidth matrix. We assume

the domain component and the range component are inde-

pendent with each other, then Equation 1 becomes

f(x|b) = n−1
n

∑

i=1

KHs(s − si)KHc(c − ci) (3)

where si and ci are the domain component and range com-

ponent of yi, s and c are components of x. Hs and Hc are

the corresponding bandwidth matrices. Obviously, Equa-

tion 3 can be rewritten as next formula:

f(x|b) = n−1
CN
∑

i=1

KHc(c − ci)(

SNi
∑

j=1

KHs(s − sj)) (4)

where CN is the number of different color values and SNi

is the number of samples whose color values equal ci. Then,

we ”grid or bin” the domain space and use gj to represent

the center coordinates of the jth grid(bin). For simplicity,

the width of bin along x and y directions is equal. Equation

4 can be approximated by rules similar to the binned kernel

density estimators [4] as

f(x|b) ≈ n−1
CN
∑

i=1

KHc(c− ci)(
BN
∑

j=1

NijKHs(s− gj)) (5)

where BN is the number of bins an image contains, and

Nij =
∑SNi

a=1 ωj(sa, δ). δ is the width of bin, and the weight

ωj(sa, δ) means that the observed data value sa should be

contributed to gj [4]. Rearrange Equation 5, we get

f(x|b) ≈
BN
∑

j=1

Nj

n
KHs(s− gj)(

CN
∑

i=1

Nij

Nj
KHc(c− ci)) (6)

where Nj =
∑CN

i=1 Nij =
∑CN

i=1

∑SNi

a=1 ωj(sa, δ).
Then, simple binning is used [4]. The corresponding

ωj(sa, δ) is as follows:

ωj(sa, δ) =

{

1, if ‖sa − gj‖∞ < δ/2,

0, otherwise;
(7)



where ‖ · ‖∞ is the infinite norm. Obviously, Nj is the

number of samples which fall in the jth bin. In the Nj

samples, there are Nij samples whose range components

equal ci. Then, Equation 6 can be rewritten as

f(x|b) ≈
BN
∑

j=1

cbKHs(s − gj)(
1

Nj

Nj
∑

z=1

KHc(c − cjz)) (8)

where cjz represents the range component of samples

whose corresponding domain part falls in the jth bin and the

factor, cb, equals
Nj

n , which is a constant allowing for equal

area for every bin. The expression, N−1
j

∑Nj

z=1 KHc(x −
cjz), can be seen as kernel density estimation for the

marginal distribution of range component, only allowing for

the samples falling in the jth grid.

We consider the colors of pixels belonging to a certain

bin as a ”bin process” compared to ”pixel process”. Some

”bin processes” belonging to different grid are shown in

Figure 2 which illustrates that a multi-modal representation

is needed for the data. Then, we assume the color values of

the samples belonging to the same bin fit Gaussian Mixture

distribution, and Equation 8 can be approximated as

f(x|b) ≈
BN
∑

j=1

cbKHs(s − gj)(

Mj
∑

i=1

ωjiGσji
(c − µji)) (9)

where Mj is the number of Gaussian components in the jth

bin, Gσ() is the Gaussian function with variance σ, µ is the

mean, and ωji is the weight of the ith Gaussian in the jth

bin. It is the final expression of KGHM for background,

which is a hybrid representation of KDE and GMM. The

bandwidth selection of KHs is according to the dynamic

degree of background. If we set δ = 1 and KHs(s − gj)
an indicator function 1(‖s − gj‖∞ < 0.5), then the den-

sity estimation of Equation 9 is equivalent to the traditional

GMM [14]. Obviously, the spatial information is fused in

two ways: first, KGHM is constructed in grid(bin) level;

then, the part KHs(s − gj) is used to model the dependen-

cies between a sample and its neighboring bins. Compared

with the KDE method in [13] which also fuses spatial in-

formation, our method does not need to store samples, al-

though kernel function is used. This is because the coordi-

nates of every pixel which are described by kernel function

don’t change over time. This also makes the bandwidth se-

lection for the domain(determined by the dynamic degree

of background) is much easier than it for the range. More-

over, the proposed model also does not need to estimate the

bandwidth for the range component. In a word, KDE is

used for the domain part since the coordinates of each pixel

do not change and the bandwidth selection for this part is

easier, and GMM is used for the range part since the color

distribution of a pixel can be learned adaptively. Therefore,

KGHM has the advantages of KDE and GMM for estimat-

ing the PDFs.

Figure 2. Empirical distributions of inten-
sity values for different bins(grids) in in-
door and outdoor environments. Histograms
a1,b,c,d1,e,f correspond to bins A...F, respec-
tively, and the width of the bins is 4. His-
tograms a2 and d2 correspond to bins whose
width is 2, and they are part of bins A and
D, respectively. It illustrates that histograms
a2 and d2 which correspond to smaller bins
have less peaks than a1 and d1, and that
more Gaussians are usually needed for the
bins which are situated on the boundary or
show dynamic motion, such as A and D.

2.2 Determination of the Gaussian com-
ponents by Gaussian Merging and
Deleting Rules

After fusing spatial information, it is difficult to estimate

the fixed number of Gaussians for all bins, even in the static

indoor environment. Figure 2 shows histograms of inten-

sity for different bins which have different width, in indoor

and outdoor environments. It illustrates that different selec-

tion of bin width and different situation of bins will cause

the number of Gaussians which are needed to describe the

distribution to change. In this section, for consideration of

computation, Gaussian merging and deleting rules are used

to determine the number of Gaussians, dynamically, instead

of other methods, such as reversible jump MCMC [11].

The authors in [15] also used Gaussian merging to im-

prove density estimation. However, they make use of batch

learning where all the samples are saved for training. Back-

ground modeling is an on-line learning process and all the

older samples will be discarded.

When a Gaussian is updated, we will check if it should

be merged with others and the merging rules are as follows.

Let two Gaussians which exist in the same model be

represented as G1 = (µ1,Σ1 = σ2
1I, ω1) and G2 =

(µ2,Σ2 = σ2
2I, ω2), where µ1, µ2 are the means of cor-

responding Gaussians, Σ1, Σ2 are covariance matrices, ω1,



ω2 are weights. To merge these two Gaussians, we assume,

during training, there are totally P samples, where N sam-

ples belong to G1 and M belong to G2. Clearly, the total

number of samples for the new Gaussian is M + N .

The combined mean is:

µnew =
(
∑N

i=1 xi +
∑M

i=1 yi)

N + M
=

(N/Pµ1 + M/Pµ2)

N/P + M/P

≈
1

ω1 + ω2
(ω1µ1 + ω2µ2) (10)

where xi and yi are samples from G1 and G2, respectively.

The combined covariance matrix is:

Σnew =
(
∑N

i=1 xi(xi)T +
∑M

i=1 yi(yi)T )

N + M
− µnew(µnew)T

≈
ω1Σ1

ω1 + ω2
+

ω2Σ2

ω1 + ω2
+

ω1ω2(µ1 − µ2)(µ1 − µ2)
T

(ω1 + ω2)2

In background modeling, we assume that the covariance

matrix is diagonal and that its diagonal components are

identical, so

σ2
new =

ω1σ
2
1

ω1 + ω2
+

ω2σ
2
2

ω1 + ω2
+

ω1ω2(µ1 − µ2)
T (µ1 − µ2)

(ω1 + ω2)2

is used as approximation, where σ2
new is the diagonal com-

ponent of Σnew.

The combined weight is:

ωnew =
N + M

P
=

N

P
+

M

P
≈ ω1 + ω2 (11)

Then, the new Gaussian which is obtained from G1 and

G2 is denoted as Gnew = (µnew,Σnew = σ2
newI, ωnew).

Ideally, merging is performed at a bin when the com-

mon area of the two weighted Gaussians divided by any

weight exceeds a threshold. However, the computation of

common area would be a rather costly procedure. Allow-

ing for diagonal covariance matrix, we construct two one-

dimensional weighted Gaussians to represent the originals.

These Gaussians are denoted as Gm1 = (0, σ2
1 , ω1) and

Gm2 = (d = ‖µ1 − µ2‖, σ
2
2 , ω2), where σ2

1 and σ2
2 are the

diagonal components of Σ1 and Σ2, and d = ‖µ1 − µ2‖ is

Euclidian distance of µ1 and µ2. As an approximation, the

relation between the intersections and the centers of these

one-dimensional weighted Gaussians is used to determine

whether we should merge the original Gaussians:

1) No intersection. It means that one weighted Gaussian

is totally under another, so we merge them.

2) Only one intersection. The intersection point is de-

noted as Xin. If min(Xin/σ1, |d − Xin|/σ2) ≤ THmerge,

these two Gaussians will be merged. In our experiments,

this one-intersection condition has never happened. This is

because some equation should be satisfied strictly.
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(b) Two intersections under

condition Xin1 < 0 and

Xin2 > d

Figure 3. Examples of Gaussian merging
in background modeling. The dashed red
curves are the weighted Gaussians before
merging. The blue curves are the Mixed

Gaussian distribution before merging. The
pink ones show the results after merging.

3) Two intersections. The intersection points are

denoted as Xin1 and Xin2, and Xin1 < Xin2.

If min(Xin1/σ1, |d − Xin1|/σ2) < THmerge or if

min(Xin2/σ1, |d − Xin2|/σ2) < THmerge or If Xin1 < 0
and Xin2 > d or if Xin1 > d or Xin2 < 0, merge them.

Under other conditions, there is no merging. THmerge is a

threshold for merging and is set to 0.2.

Figure 3 shows some examples of Gaussian merging ob-

tained in the process of background learning. It demon-

strates the effectiveness of the approximation.

The Gaussian mixture model which describes the

marginal distribution of range component for a bin is up-

dated by the samples belonging to the same bin and is ini-

tialized with no Gaussian. If a sample finds no Gaussian to

match, then, a new Gaussian centered on the sample with

initial weight and variance is added. The updating rules for

parameters µ and σ are the same as [14]. The prior weight

of the kth Gaussian at time t, ωk,t, is adjusted as follows

ωk,t = (1 − α)ωk,t−1 + α(Nk,t/M) (12)

where α is the learning rate, Nk,t is the number of samples

which match the kth Gaussian in the corresponding bin, at

time t, and M is the number of pixels a bin contains in

a frame. Therefore, the weights of Gaussians are updated

only once despite more samples in a bin. Then, the weights

will be checked. If a Gaussian’s weight is smaller than

a threshold, THdel, it will be deleted. Also, the weights

should be normalized after updating. Figure 4(c) illustrates

the results of applying Gaussian merging and deleting rules

on a simulated data set with four Gaussians. Figure 4(a)

and (b) show the results of traditional GMM with different

number of components. Each experiment in Figure 4 is re-

peated twenty times. After training by the test sequence,

the output of the proposed method is better and more sta-

ble than GMM. It also illustrates that, to obtain a better re-
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GMM with 5 components.
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(c) Distributions obtained by

our method.

Figure 4. Output distributions by different
methods. The blue curves shown in these
figures are real distribution.

sult, the number of Gaussians in GMM should be larger than

the real number of components. This is because additional

Gaussians are needed to describe outliers.

2.3 Modeling Foreground with the feed-
back of tracking

To make use of temporal persistence property of real

foreground objects, in this section, the PDF of foreground

is constructed based on the assumption that, interesting ob-

jects tend to appear in the predicted spatial vicinity which is

obtained by a tracker, and tend to maintain consistent colors

from frame to frame. This assumption fuses tracking infor-

mation and is different from that in [13]. It means that, if

a bin detects object samples, then the probability of detect-

ing foreground samples with similar colors around another

bin where the samples are predicted to appear in the next

frame will increase. For considering that, before a bin de-

tects any foreground samples, the probability of observing

a foreground pixel of any color is uniform, we model the

foreground as

f(x|f) =
BN
∑

j=1

cfKHs(s − gj)[ωfjγ + (1 − ωfj)ψj ] (13)

where ωfj is the mixture weight at the jth bin, γ is a random

variable with uniform probability, constant cf is a normal-

ization factor which equals cb, and ψj is a Gaussian Mixture

Model:

ψj =

Mj
∑

i=1

ωjiGσji
(c − µji).
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Figure 6. Histograms of negative log-
likelihood ratio values for background and

foreground. (a) Histogram based on fore-
ground and background model without
tracking information. (b) Histogram obtained
with feedback of tracking. The dashed line is
the ”natural” threshold for the log-likelihood
ratio, i.e., zero.

Figure 7. Foreground detection results in dy-
namic scenes. (a) is the original images, (b)
shows the results obtained by the traditional
GMM, (c) demonstrates the results obtained
by the MAX-MRF labeling method based on
KGHM.

Obviously, the part, ωfjγ + (1− ωfj)ψj can be seen as the

marginal distribution which describes the range component

of foreground at jth bin. ωfj is set to 1, at the beginning.

To use tracking information, Kalman filter is used. Every

frame, we obtain the speed vector, represented as (dx, dy),
of a moving object, then, the object’s samples which show

at the bin whose coordinates are (xb, yb) will update the

marginal distribution which describes foreground’s range

component of another bin where the point situated at (xb +
dx, yb +dy) belongs. If we ignore tracking information, the

marginal distribution describing the bin at (xb, yb) should

be updated. At time t, if marginal distribution of the jth bin

is updated by the foreground samples, the mixture weight

ωfj will decrease with a learning rate αw, which is set to

0.7, and the foreground samples are used to update the cor-

responding ψj . The updating rules for ψj are the same as



Figure 5. Foreground detection by different strategies. (a) original images. (b) detection results by
thresholding background model based on KGHM. Under similar foreground detection, the scattered
noise is higher. (c) detection results using MAP-MRF estimation without tracking information. Under
this condition, a foreground sample updates the marginal distribution at the bin where the sample
situates. (d) detection results by [13] which neglects tracking information. (e) resutls obtained after
fusing tracking information based on the KGHM. Obviously, tracking information can improve the
segmentation results. In these experiments, the learning rates for background are set to 0.005.

those for background model. However, the model’s learn-

ing rate and the initial weight for newly added Gaussian are

much higher than those of background, as the foreground

changes far more rapidly than background. To allow stop-

ping objects to become part of background, the minimum

of ωfj is limited to 0.1 and all samples are used to update

the background model, simultaneously. If no updating takes

place, ωfj will increase with a smaller rate, 0.1αw, for con-

sidering that the interesting object may disappear.

After constructing PDF of foreground, there are several

strategies to detect foreground(including shadow) as shown

in Figure 5. The fusion of foreground density can increase

detection rate of the foreground which persists in time.

However, if an object initially in the background moves,

this will also make the newly revealed part of background

wrongly detected as foreground for a long time as in Figure

5(c) and (d). To alleviate this, if the speed of an object is

less than a threshold, no samples of the object will update

the foreground model.

The utility in using tracking information can be seen in

Figure 5 and 6. Figure 6 shows histogrammed negative like-

lihood ratio based on KGHM with or without tracking infor-

mation. It illustrates that, after fusing tracking information,

the interclass variance of background reduces and the vari-

ance between clusters increases. Figure 7 shows foreground

detection results in highly dynamic scenes 1by the MAP-

MRF labeling method [13] based on the models described

above. It illustrates that, for the traditional GMM, neglect

of spatial information will cause a lot of false positive pixels

when dealing with highly dynamic scenes.

1These two videos are downloaded from

http://server.cs.ucf.edu/ vision/temp/yaser and, http://perception.i2r.a-

star.edu.sg/bk model/bk index.html, respectively.

2.4 Modeling moving cast shadow

After obtaining PDFs of background and foreground, we

can detect foreground objects. However, the detection usu-

ally includes shadow which will cause problems, such as

object merging and shape distortion. A large part of shadow

removal methods is used as an isolated module after fore-

ground detection, such as [2]. Under this condition, the re-

sults of shadow removal are highly dependent on the output

of foreground detection. The proposed framework can al-

leviate this problem. In this section, to incorporate shadow

removal in a probabilistic framework, we will construct the

PDF of shadow.

The construction of the shadow’s PDF is based on the as-

sumption that, for a given bin, the shadow cast by different

moving objects is relatively similar [9]. In other words, the

shadow value tends to converge to one or more of states in

a Gaussian mixture model. Thus, the model of shadow is

represented as:

f(x|sh) =
BN
∑

j=1

cshKHs(s − gj)(

Mj
∑

i=1

ωjiGσji
(c − µji))

where f(x|sh) is the PDF of shadow and csh is a constant

which also equals cb. The PDF of shadow has the same

form as that of background. The part,
∑Mj

i=1 ωjiGσji
(c −

µji), is the marginal distribution which describes the range

component of shadow at the jth bin. The samples which

can be used to update the model must satisfy [2]:

0 <
IV
k (x, y)

BV
k (x, y)

< 1

∧(IS
k (x, y) − BS

k (x, y)) ≤ τS

∧|IH
k (x, y) − BH

k (x, y)| ≤ τH (14)



where IH
k (x, y), IS

k (x, y) and IV
k (x, y) are the hue, satu-

ration and intensity of a pixel located at (x, y) of frame k.

BH
k (x, y), BS

k (x, y) and BV
k (x, y) are the hue, saturation

and intensity of a background pixel at (x, y). τS , τH are

parameters which need to be set beforehand. Equation 14

means that the intensity of shadow sample is smaller than

the corresponding background and that shadows lower the

saturation of points. The equation, 0 <
IV

k (x,y)

BV
k

(x,y)
< 1, can

be seen as a preclassifier and we can refine it through global

and tracking information as in [8], which helps distinguish

shadow from dark objects as in Figure 8(b). The updating

rules for shadow are the same as those for background.

The rules described above need a background image as

reference. However, unlike pixel-wise GMM which can use

the mean of the Gaussian with maximum weight as back-

ground reference, the KGHM can not obtain background

image directly. The background reference is constructed as:

Bt+1(x, y) =



















I0(x, y) if t = 0;

(1 − β1)Bt(x, y) + β1It(x, y),

else if f(x|b) < f(x|f);

(1 − β2)Bt(x, y) + β2It(x, y), otherwise.
(15)

where Bt(x, y) is the background value of pixel (x, y) at

time t, It(x, y) is the image value, and β1 = 0.0001, β2 =
0.1. This formula means that, if a pixel is more prone to

be background, a higher learning rate is used to update the

corresponding pixel of background image.

2.5 Labeling of moving objects and non-
moving objects based on MAP-MRF

In real scenes, moving object detection can be seen as a

two-category classification problem, moving objects of in-

terest or non-moving objects. Obviously, the non-moving

objects should include shadow and background. We ap-

proximate the PDFs of them as follows:

f(x|m) = f(x|f) (16)

f(x|nm) = max(f(x|sh), f(x|b)) (17)

where f(x|m) is the PDF of moving objects and f(x|nm)
the PDF of non-moving objects. Then, an MAP-MRF label-

ing method is used, as it can enforce spatial context. After

deduction as in [13], the MAP-MRF estimate of this classi-

fication problem is equivalent to maximize next formula,

L =

p
∑

i=1

ln(
f(xi|m)

f(xi|nm)
)li +

p
∑

i=1

p
∑

j=1

λ(lilj + (1 − li)(1 − lj))

(18)

where p is the number of samples in a frame, li is the label

of the ith sample, moving objects of interest or non-moving

objects, and λ is a positive constant. To maximize Equation

18, a graph with a four-neighborhood system is constructed

as in [13]. Then, the max-flow algorithm needed for graph

cuts computation in [1] is used. After segmentation of mov-

ing objects, the detected samples are fed back to update the

PDF of moving objects.

3 Experimental results

The experiments in this paper include scenes of fountain,

ocean surface (as shown in Section 2.2), swaying tree and

simulated nominally moving camera. They are carried out

on a 3.0 GHZ Intel Pentium 4 processor with 1 GB RAM.

The speed is about 6 fps for a frame size of 320×240 with-

out optimization. The bin width is set to four in our exper-

iments. The bandwidth matrix Hs for these models is pa-

rameterized as a diagonal matrix with equal variance which

is set to 4.

The sequence as in Figure 8(a) shows the scene where

the wind caused the trees to move randomly. In this scene,

the shadow is also distinctive. This sequence was manu-

ally segmented to generate ground truth. It is evident that

orderless movement of neighboring ”background” will de-

teriorate the performance of traditional GMM. As shown in

(4) and (6) of Figure 8(a), we also can find that the contour

of shadow has been removed and that majority of hollows

are filled by our method. This shadow contour is caused,

because the intensity value changes not abruptly at the edge

of the evident shadow. Figure 8(b) shows an indoor scene,

where the nominally moving camera was simulated by mov-

ing the original pictures left and right(motion distance is

about 8 pixels). The shadow here is insignificant. It shows

that a slight movement will also cause substantial degrada-

tion in performance of GMM, especially on the neighbor

of edges. Figure 9 shows the per-frame moving object de-

tection rates according to precision [13] and recall [13] for

the video of Figure 8(a). The results in Figure 9 are shown

for three different learning rates of traditional GMM. The

shadow removal method for GMM is the same as [2]. The

detection accuracy is consistently higher than the traditional

GMM with shadow removal method in [2].

These figures demonstrate that our method can deal with

dynamic scenes and cast shadow effectively after fusing

spatial information and incorporating PDF of shadow.

4 Conclusions and discussions

In this paper, a probabilistic framework for moving ob-

ject segmentation in dynamic scenes has been proposed.

Under this framework, we unify background modeling,

moving object detection and shadow removal by construct-

ing probability density functions(PDFs) of background,

shadow and foreground based on KGHM which fuses spa-

tial information. Also, the number of Gaussian components



Figure 8. Moving object detection in dynamic
scenes. (1) original images. (2) background
images obtained by Equation 15. (3) results
obtained by GMM. (4) the results obtained
by GMM and the shadow removal method in
[2]. (5) results obtained by MAX-MRF labeling
method without PDF of shadow. (6) results of
the proposed method.
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Figure 9. Per-frame detection rates for our
method and GMM with shadow removal
method in [2]. The learning rates for GMM are
0.5, 0.05 and 0.005, respectively.

in this model is determined dynamically by Gaussian merg-

ing and deleting rules. Furthermore, the feedback of track-

ing is used to refine the PDF of foreground. Quantitative

evaluation and comparison with existing method demon-

strate improved performance for moving object detection

in dynamic scenes.

Here, the KGHM gives a promising solution to integrate

the spatial information (KDE for coordinates) and its cor-

responding color or texture information (GMM for inten-

sity or texture components) together, which can effectively

characterize the texture which has different types of tex-

ture(color) details at different local components. Therefore,

this comprehensive model is suitable to many applications,

such as biometrics and visual surveillance. Our future work

will try this model for face recognition.
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