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Abstract

Traditional background subtraction methods perform
poorly when scenes contain dynamic backgrounds such as
waving tree, spouting fountain, illumination changes, cam-
era jitters, etc. In this paper, a novel and effective dynamic
background subtraction method is presented with three con-
tributions. First, we present a novel local dependency de-
scriptor, called local dependency histogram (LDH), to ef-
fectively model the spatial dependencies between a pixel
and its neighboring pixels. The spatial dependencies con-
tain substantial evidence for dynamic background subtrac-
tion. Second, based on the proposed LDH, an effective
approach to dynamic background subtraction is proposed,
in which each pixel is modeled as a group of weighted
LDHs. Labeling the pixel as foreground or background
is done by comparing the new LDH computed in current
frame against its model LDHs. The model LDHs are adap-
tively updated by the new LDH. Finally, unlike traditional
approaches which use a fixed threshold to define whether a
pixel matches to its model, an adaptive thresholding tech-
nique is also proposed. Experimental results on a diverse
set of dynamic scenes validate that the proposed method
significantly outperforms traditional methods for dynamic
background subtraction.

1. Introduction

Moving objects detection and segmentation from a video
sequence is one of the essential tasks in object tracking and
video surveillance. A common approach for this task is
background subtraction, which first builds an adaptive sta-
tistical background model, and then pixels that are unlikely
to be generated by this model are labeled as foreground.
Despite a large number of background subtraction meth-
ods have been proposed in the literature over the past few
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decades, the task remains challenging when the scenes to
be modeled contain dynamic backgrounds such as waving
tree, spouting fountain, illumination changes, camera jit-
ters, etc. A robust background subtraction method should
work well in these scenes since they are common phenom-
ena in real world. It is always desirable to achieve very
high accuracy in the detection of moving objects. The per-
formance of background subtraction depends mainly on the
background modeling technique used.

Early approaches operated on the premise that the color
of a pixel over time in a static scene could be modeled by a
single Gaussian distribution. Wren et al. [15] modeled the
color of each pixel with a single three-dimensional Gaus-
sian. Its mean and variance were learned from pixel ob-
servations in previous frames. Once the pixel-wise back-
ground model was built, the likelihood of each incident
pixel generated by this model could be computed. Based
on the likelihood, the pixel was labeled as background or
foreground. However, a single-Gaussian model is unsuited
to most outdoor situations since repetitive object motion,
shadows or reflectance often cause multiple pixel colors to
belong to the background at each pixel. To overcome the
limitations of single-Gaussian model, the mixture of Gaus-
sians (MOG) approach was used to model the complex,
non-static scenes [12]. An incident pixel was compared to
every Gaussian distribution in the pixel’s model and, if a
match (defined by a fixed threshold) was found, the mean
and variance of the matched Gaussian distribution was up-
dated, otherwise a new Gaussian distribution with the mean
equal to the current pixel color and some initial variance
was introduced into the mixture. Each pixel was labeled
depending on whether the matched distribution represented
the background process. Many authors have proposed im-
provements and extensions to this algorithm. In Ref. [3],
new update algorithms for learning mixture models were
presented. In Ref. [18], not only the parameters but also the
number of components of the mixture was adapted for each
pixel.

The Gaussian-based methods have an assumption that
the pixel color values over time could be modeled by one



or multiple Gaussian distributions, however, this assump-
tion does not always hold in the real world. To deal with
the limitations of parametric methods, a nonparametric ap-
proach to background modeling was proposed in [1]. The
method utilized a general nonparametric kernel density es-
timation technique for building a statistical representation
of the scene. The probability density function for pixel
intensity was estimated directly from the observation data
without any assumptions about the underling distributions.
In [5], a quantization/clustering technique to construct a
nonparametric background model was presented. The back-
ground was encoded on a pixel by pixel basis and samples at
each pixel were clustered into the set of codewords. A sim-
ilar approach in [16] was proposed, which combined color
and texture features by a multi-layer model.

In [4, 9], each pixel was modeled with a Kalman filter.
The method can adapt to changes in illumination, but per-
forms poorly in complex dynamic scenes. This approach
was used in the automatic traffic monitoring application pre-
sented in [6]. In [8], the dynamic background was modeled
by an autoregressive moving average (ARMA) model. A
robust Kalman filter algorithm was used to iteratively esti-
mate the intrinsic appearance of the dynamic scenes.

Hidden Markov Models (HMMs) have also been used
to model pixel intensity [10, 13]. In these approaches,
the pixel intensity variations were represented as discrete
states corresponding to scene modes. In [10], the approach
was used in a traffic monitoring application where the pixel
states represented the road, vehicles and shadows. In [13],
HMM states corresponded to global intensity modes each
modeled with a single Gaussian distribution. The model
was capable of handling sudden illumination changes.

Although the methods mentioned above demonstrated
their success cases, their performance will notably deteri-
orate in the presence of dynamic backgrounds such as wav-
ing tree, spouting fountain, illumination changes, camera
jitters, etc. There are two causes for this. First, these meth-
ods model the background model of a pixel exploiting only
its intensity information and ignoring the useful dependen-
cies existing in intensities of neighboring pixels. In dy-
namic scenes, although some pixels significantly changes
over time , they should be considered as background. How-
ever, the background models of these methods can not ef-
fectively model such changes since they exploit the pixel’s
intensity information lonely. Second, these methods use
a fixed threshold to define whether a pixel matches to its
model, which also will result in the notable performance
deterioration of these methods since the extents of dynamic
changes of different pixels are distinctly different. Using
a fixed threshold can not model such difference and it will
result in the performance deterioration of these methods.

In order to effectively model the dynamic scenes, in
this paper, we present a dynamic background subtraction

method that has three contributions. First, we present a
novel local dependency descriptor, called Local Depen-
dency Histogram (LDH), which is computed over the region
centered on a pixel. The LDH effectively extracts the spatial
dependency statistics of the center pixel, which contain sub-
stantial evidence for labeling the pixel in dynamic scenes.
Second, based on the proposed LDH descriptor, we present
a novel dynamic background subtraction method, in which
each pixel is modeled as a group of weighted LDHs. Label-
ing the pixel as foreground or background is done by com-
paring the new LDH computed in current frame against its
model LDHs. The model LDHs are adaptively updated by
the new LDH. Finally, unlike traditional approaches which
define whether a pixel matches to its model using a fixed
threshold, an adaptive thresholding technique is also pro-
posed. The proximity value computed using histograms in-
tersection between the LDH and its model LDH over time
is modeled by a Gaussian distribution. The match is de-
fined as the proximity value within 2.5 standard deviations
of the Gaussian distribution. The Gaussian distribution is
adaptively updated using the proximity value.

The rest of the paper is organized as follows: Section 2
describes the proposed local dependency histogram (LDH).
The proposed approach to dynamic background subtraction
based on LDH is presented in Section 3. The qualitative and
quantitative experimental results and analysis are shown in
Section 4, followed by some conclusions in Section 5.

2. Local Dependency Histogram

Let R be an (2N + 1) x (2N + 1) region. (For sim-
plicity, we assume that the region is square.) The color
space is quantized into M levels Cpy = {0,..., M — 1}.
Let P discretely and regularly index the region lattice,
P={(z,y)) —-N <2 <N,—-N <y < N} Fora
pixel p = (z, y), let C(p) € Cu denote its color level.
The center pixel of region R is p = (0, 0). For pixel pair,
pi = (4, ;) and p; = (x5, y;) we define two types of dis-
tances: 1) d(p;, p;) = max{|z; — =], |y; — y;|}, in which
the pixel pair can be along any directions, 2) d’(p;, p;) =
max{|z; — |, |y; — y;|}, in which the pixel pair is con-
fined to be only along the horizontal or vertical direction.
The given distance set is denoted by Dy, = {dg,...,dp_1}.
For the center pixel p, we define L direct neighboring sets
as follows:

Pr={pl|dp, p)=d},

We denote the pixels that are not in the L direct neighboring
sets but in the region R as indirect neighboring set P =
P— UlL:_Ol P,. To compute the local dependency histogram,
we define two quantities:

howya = #{p| Clp) =CH),pe R}, 2

1=0,...,L—1. (1)



Figure 1. lllustration of spatial dependencies
of the center pixel with given distance set
Ds ={1,3,5}. The direct neighboring sets of
the center pixel are denoted by gray points.
Note that some direct neighboring pixels are
denoted by dashed for conveniences. The
direct dependencies are denoted by gray ar-
rows which can be along any directions. The
indirect neighboring set are denoted by black
points and the indirect spatial dependencies
are denoted by black arrows which are con-
fined to be only along the horizontal or verti-
cal direction.

Hyy = #{ (pi, p;)|C(pi) = u,C(p;) = u,
d'(pi, pj) =di,pi € P,p; € P}, (3

where u =0,...,M — 1,1 =0,...,L — 1 and # denotes
the number of elements of in the set. The h¢ (5),; is the total
number of pixels that are at distance d; from p along any
directions and have the same color with p. It models the
direct dependencies between p and its direct neighboring
pixels. We call this dependency as direct local dependency.
The H,,; is the total number of pixel pairs that have the
same color u and are d; apart only along the horizontal or
vertical direction in the set P. It models the indirect depen-
dencies of p between its indirect neighboring pixels. We
call this dependency as indirect local dependency. These
two dependency statistics can be integrated as:

Hay i = { Hy, 1+ hoe), ifu=C(p) @)

Hy, else,

where u = 0,...,M — 1,1 = 0,...,L — 1. Then, the lo-
cal dependency histogram H is obtained by arranging the
matrix (Hy,1),,, ; as a vector in row-major order. The il-
lustration of the spatial dependencies of the center pixel is
shown in Fig. 1.

3. Dynamic background subtraction based on
Local Dependency Histogram

In this section, we introduce our approach to dynamic
background subtraction based on local dependency his-
togram (LDH). The algorithm can be divided into three
phases, background modeling, background update and fore-
ground detection, respectively described in Section 3.1, 3.3
and 3.4. The proposed adaptive thresholding technique is
presented in Section 3.2.

3.1. Background Modeling

There are several advantages of using LDH as statisti-
cal descriptor for dynamic background subtraction. First,
it explicitly models the spatial dependencies of the cen-
ter pixel from two aspects: the direct dependencies be-
tween the center pixel and its direct neighboring pixels com-
puted by Eq. (2) and the indirect dependencies of the cen-
ter pixel between its indirect neighboring pixels computed
by Eq. (3). These two kinds of dependencies contain sub-
stantial evidence for modeling the background model of the
center pixel in dynamic scenes. The former models the dy-
namic motion of the center pixel due to non-periodic mo-
tion. For example, the center pixel in previous frame will
be a neighboring pixel in current frame. The latter mod-
els the dynamic motion occurring in indirect neighboring
pixels, which is also very important for labeling the center
pixel[2, 7]. For example, the center pixel will not be labeled
as background if its indirect neighboring pixels are labeled
as foreground. These two kinds of dependencies statistics
are then integrated into the histogram statistic, which effec-
tively models the complex dependencies between the pixel
and its spatial context. Second, it is not sensitive to noisy
since the color space is quantized into less levels. Finally,
the computation cost is low, since the pixel pairs in indirect
neighboring set are confined to be only along the horizontal
or vertical direction.

For a given pixel, let R be an (2N + 1) x (2N + 1)
square region centered on the pixel. In the following, we de-
scribe the background subtraction procedure for this pixel,
and the procedure is identical for each pixel. Since we
use LDH computed over the region R as the feature vec-
tor of the pixel, we can consider the feature vectors of the
pixel over time as a histogram process. At time ¢, the back-
ground of the pixel is modeled by a group of adaptive LDHs
{ht0,-.-,ht k—1}, where K is the number of model his-
tograms. The first B(< K) model histograms have been
identified as representing the background process in last
time instant. Each model histogram has a weight between 0
and 1 such that K weights sum to 1. The weight of the kth
model histogram is denoted by w; ;. It denotes the proba-
bility that this model histogram belongs to the background



process. Initially, the & model histograms are assigned by
the LDH computed at ¢ = 1 with weight 1/K.

3.2. An Adaptive Thresholding Method

The LDH of the pixel computed at current frame ¢ + 1,
is denoted by h. It is compared against all K model his-
tograms using a proximity measure. The histogram inter-
section is used to measure the proximity value of two LDHs
as follows:

M min(hy 4, ha i)
M-—1 M-1
maX(Zj:O hl»j’Zj:O ha,j)

where h; and hg are two LDHs, and M is the number of
histogram bins. The denominator is the maximal value of
the sums of all elements in two histograms. It is used to
normalize the histogram intersection since the sums of all
elements in two different LDHs are different.

K proximity values p;o,...,p:,x—1 between h and K
model histograms are obtained by Eq. (5). Unlike tradi-
tional approaches which define whether the pixel matches
to its model using a fixed threshold, an adaptive threshold-
ing method is also proposed. We consider the K proxim-
ity values over time as K proximity values processes and
each such process is modeled by a Gaussian distribution
Pt ~ N(,Uft,k,(fik), k=0,...,K — 1. Initially, for each
Gaussian distribution the mean p is assigned by the prox-
imity value computed at time ¢ = 2 and the ¢ is assigned
by a low initial value o2, ,,. The histogram h matching to
the model histogram h, j, is defined as the proximity value
Ptk Within 2.5 standard deviations of the kth Gaussian dis-
tribution:

P(hl, hz) = , &)

B 2
(Prk = k)" 2““’“) <252, (6)

Otk
3.3. Background Update

The background update consists of three aspects: updat-
ing the K model histograms, updating the K Gaussian dis-
tributions and updating the background process.

If none of the K model histograms matches to h using
Eq. (6), the model histogram with the lowest weight is re-
placed with h and assigned a low initial weight. In our ex-
periments, a value of 0.01 was used. The other model his-
tograms and the K Gaussian distributions keep invariant.

If a model histogram h; j, matches to h, the correspond-
ing Gaussian distribution of the model histogram is updated
as follows:

Pk = (L =)tk + Y0tk » @)

0t =1 =)ot +v(pre — i), (8

where
_ (Pt,k*“t‘k)z

: e ©

vV =Qg——e€
g V2o i
oy is the Gaussian learning rate that controls the update
speed of the Gaussian distributions.
In all matched model histograms, the best matching
model histogram h; ;. is selected with the highest proxim-

ity value. The h; j is adapted with the new data by updating
its bins as follow:

hivip = aph + (1 — ap)hy g, (10)

where «y, is a background learning rate. The weights of all
K model histograms are updated as follows:

(k=0,...,K-1),

(1)
where o, is a weight learning rate and M, is 1 for the
best matching model histogram and O for the others. The
adaptive speed of the background model is controlled by
the learning rate v, and au,.

All of the model histograms are not necessarily produced
by the background process. The weight of the model his-
togram is used to decide whether the model histogram mod-
els the background process or not. All of the model his-
tograms are sorted in decreasing order according to their
weights, and the first B model histograms are selected as
the background histograms as follows:

Wit1,k = My o+ (1—0up)we o,

b—1

B = i T
argmbm(kz_;wk > Tg),

TB € [07 1]) (12)

where T'p is a threshold for measuring the minimum portion
of the data that should be accounted for by the background.

3.4. Foreground Detection

It should be noted that the B background histograms
identified using Eq. 12 in Section 3.3 will be used in next
time instant. In current time instant, foreground detection
is done before updating the background model. It uses the
current B background histograms which were identified in
the update step at last time instant. The LDH h is com-
pared against the current B background histograms using
the same match definition as in the update algorithm. If the
match is found for at least one background histogram, the
pixel is labeled as background, otherwise, it is labeled as
foreground.

4. Experimental Results and Analysis

In order to confirm the effectiveness of the proposed
method for dynamic scenes, we conduct experiments on a



Figure 2. Experimental results on waving tree
sequence. Morphological operators were not
used in the results. The top row are the
original images: 10", 246", 248", 252" and
254" frames. The second row are the results
obtained by Mixture of Gaussians method
(MOG). The third row are the results obtained
by the proposed method, and the fourth row
are the masked original images.

variety of sequences presented in previous literature. The
widely used Mixture of Gaussian method (MOG) is used
to compare with the proposed method. The comparison
is done based on qualitative evaluation by looking at pro-
cessed images provided by the algorithms, and quantitative
evaluation in terms of true positive ratio and false positive
ratio.

4.1. Qualitative Evaluation

Qualitative results on four sequences of dynamic scenes
are presented in this section. The first sequence is the wav-
ing tree sequence presented in [14]. The tree branches heav-
ily waves in the presence of a strong wind. Fig. 2 shows the
comparative results. The first row are the original images,
the second row shows the detected foreground by MOG.
The detected results by the proposed method are shown in
the third row. The fourth row are the masked original im-
ages. It is stressed that no morphological operators or me-
dian filters were used in the presentation of these results.
As shown in Fig. 2, since the dynamic motions caused by
waving tree do not repeat exactly, it causes substantial per-
formance degradation of the MOG, which detected a large
number of background pixels as foreground and also labeled
a huge amount of foreground pixels as background on the
inner areas of the moving person. The proposed method
dramatically outperforms the MOG, and achieves very high
accuracy in the detection of moving person.

Fig. 3 shows some results on fountain sequence

Figure 3. Experimental results on fountain se-
quence. The top row are the original frames:
10th, 597th, 877", 1113t" and 1816'" frames.
The second row are the results obtained by
Mixture of Gaussians method (MOG). The
third row are the results obtained by the pro-
posed method, and the fourth row are the
masked original images.

from [11], which involves three sources of dynamic mo-
tion: 1) The spouting fountain, 2) the swaying tree branches
above, and 3) the shadow of the trees branches on the
grass below. The MOG performs poorly with labeling a
large number of background pixels as foreground due to the
dynamic motions, especially the spouting fountain in the
scene. The proposed method manages the situation rela-
tively well and suppresses most false detection by the MOG.

In Fig. 4, results on car sequence presented in [17] are
shown. This is a very difficult scene from the background
modeling point of view since it involves fast moving car,
heavily swaying vegetation and large area of illumination
changes. The MOG outputs a huge amount of background
pixels as foreground. Although the proposed method also
misses some foreground pixels, the overall performance of
the proposed method is better than the performance of the
MOG.

Fig. 5 shows results on moving camera sequence
from [11], which involved a camera mounted on a tall tri-
pod. The wind caused the tripod to sway back and forth
causing motion of the camera. The second row shows the
detected foreground by MOG, and it is evident that the mo-
tion of the camera causes substantial degradation in perfor-
mance, despite a five-component mixture model and a rel-
atively high learning rate of 0.05. The proposed method
detects the moving car and person accurately.

As shown in the first columns of Fig. 2-Fig. 5, the
MOG performs poorly and labels a huge number of back-
ground pixels as foreground at the beginning of the se-
quences which do not include foreground objects. On the
other hand, the proposed method handles dynamic motions



Table 1. The parameter values of the proposed method for four test sequences.

Parameter | N M Dy,

Quyy ap a, Tp o2

Value 9 64 {1,3,5}

init
0.01 0.01 0.01 0.8 0.025

immediately and achieves accurate detection at the begin-
ning of the sequences. There are two causes for this: First,
the proposed method uses LDH as statistical features which
effectively models the spatial dependencies of neighbor-
ing pixels. The spatial dependencies provide the substan-
tial evidence for labeling the center pixel and they are ex-
ploited to sustain high levels of detection accuracy at the
beginning of the sequences. However the MOG exploiting
only single pixel’s color can not accurately detect the fore-
ground objects at the beginning of the sequences since the
MOG need to take longer time to train the background mod-
els than the proposed method. Second, the MOG defines
whether the pixel match to its model using a fixed thresh-
old, which is unsuited to dynamic scenes since the extents of
dynamic motions of different pixels are distinctly different.
A fixed threshold can not effectively model such difference
and it will cause performance degradation at the beginning
of the sequences. The proposed method uses an adaptive
thresholding technique, which can achieve accurate detec-
tion even if at the beginning of the sequences.

The parameter values of the proposed method are given
in Table. 1. We did not change the parameter values for four
test sequences, although better results could be obtained by
customizing the values for each sequence.

4.2. Quantitative Evaluation

The performance of the proposed method is also evalu-
ated quantitatively in terms of true positive ratio (TPR) and
false positive ratio (FPR):

true positives
TPR = P

number of foreground pixels in ground truth ’
13)

FPR — false positives

number of background pixels in ground truth ’4
(14)
where true positives are the number of foreground pixels
that are correctly detected, false positives are the number
of background pixels that are detected as foreground, and
ground truth is the correct detection result and was obtained
by manual segmentation.

We first perform quantitative evaluation on waving tree
sequence, which has total 287 frames and the person moves
across the field of view during 243" to 258" frames. The
TPR and FPR are shown in Fig. 6. As shown in Fig. 6(b),
the proposed method gives lower false positives ratio than
the MOG for all 287 frames. Especially for the first 242

el

Figure 4. Experimental results on car se-
quence. The top row are the original frames:
10th, 202th, 208", 216" and 220" frames. The
second row are the results obtained by Mix-
ture of Gaussians method (MOG). The third
row are the results obtained by the proposed
method, and the fourth row are the masked
original images.

frames where there are no moving objects, the proposed
method outputs zero false positives and is notable superior
to the MOG. In the case of true positive ratio, as shown in
Fig. 6(a), compared to the MOG the proposed method per-
forms better for 251"—255" frames. For the rest of the
11 frames, the proposed method is inferior to the MOG. It
should be noticed that, for the proposed method, most of the
missing foreground pixels occur on the contour areas of the
moving objects (as seen in Fig. 2). This is because spatial
dependency features are extracted from the pixel neighbor-
ing. In most applications, the accurate contour information
is not need. According to the overall performance shown in
Fig. 6, the proposed method outperforms the MOG.

In the moving camera sequence, the scene is empty for
the first 276 frames, after which two objects (first a per-
son and then a car) move across the field of view. The
sequence contained an average camera motion of approx-
imately 14.66 pixels[11]. Fig. 7 shows its quantitative eval-
uation results. As shown in Fig. 7(a), the proposed method
achieves the higher true positive ratio than the MOG. In
the case of false positive ratio (shown in Fig. 7(b)), the
proposed method outperforms the MOG for the first 276
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Figure 6. Quantitative evaluation results on waving tree sequence. (a) True positive ratio and (b)

false positive ratio.

Figure 5. Experimental results on moving
camera sequence. The top row are the origi-
nal frames: 10", 379", 396t", 421*" and 452"

frames. The second row are the results
obtained by Mixture of Gaussians method
(MOG). The third row are the results obtained
by the proposed method, and the fourth row
are the masked original images.

frames and outputs zero false positives. When the moving
objects move across the scene after 276" frame, the pro-
posed method outputs higher false positive ratio than the
MOG. This is because that the proposed method labels a
large number background pixels as foreground on the con-
tour areas of the moving objects (see Fig. 5). The over-
all performance of the proposed method is superior to the
MOG.

We also measured the speed of the proposed method on

waving tree sequence. The image resolution is 160 x 120
pixels. We used a standard PC with a 3.0 GHz processor and
1 GB of memory in our experiments. The proposed method
achieved a frame rate of 15 fps. This makes the method
well-suited to applications that require real-time processing.

5. Conclusions

In this paper, we present a dynamic background subtrac-
tion method that has three contributions. First, we present
a novel local dependency descriptor, called Local Depen-
dency Histogram (LDH), which is computed over the region
centered on a pixel. The LDH effectively extracts the spatial
dependency statistics of the center pixel which contain sub-
stantial evidence for labeling the pixel in dynamic scenes.
Second, based on the proposed LDH descriptor, we present
a novel dynamic background subtraction method, in which
each pixel is modeled as a group of weighted LDHs. Label-
ing the pixel as foreground or background is done by com-
paring the new LDH computed in current frame against its
model LDHs. The model LDHs are adaptively updated by
the new LDH. Finally, unlike traditional approaches which
define whether a pixel matches to its model using a fixed
threshold, an adaptive thresholding technique is also pro-
posed. The proximity value computed using histograms in-
tersection between the LDH and its model LDH over time
is modeled by a Gaussian distribution. The match is de-
fined as the proximity value within 2.5 standard deviations
of the Gaussian distribution. The Gaussian distribution is
adaptively updated using the proximity value. Experimen-
tal results on a variety of dynamic scenes validate that the
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Figure 7. Quantitative evaluation results on moving camera sequence. (a) True positive ratio and (b)
false positive ratio.

proposed method significantly outperforms the widely used
Mixture of Gaussian (MOG).
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