A. Elgammal, R. Duraiswami, D. Harwood, and L. S. Davis, Background and foreground modeling using nonparametric kernel density estimation for visual surveillance, Proceedings of the IEEE, pp.1151-1163, 2002.
DOI : 10.1109/JPROC.2002.801448

S. Geman and D. Geman, Stochastic relaxation, gibbs distributions , and the bayesian restoration of images, IEEE Trans. Pattern Analysis and Machine Intelligence, vol.6, issue.6, pp.721-741, 1984.

P. Kaewtrakulpong and R. Bowden, An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection, Proc. European Workshop Advanced Video Based Surveillance Systems, 2001.
DOI : 10.1007/978-1-4615-0913-4_11

K. Karmann and A. Brandt, Moving object recognition using an adaptive background memory, Time-Varying Image Processing and Moving Object Recognition, 1990.

K. Kim, T. Chalidabhongse, D. Harwood, and L. Davis, Background modeling and subtraction by codebook construction, Proc. Int. Conf. Image Processing, pp.3061-3064, 2004.

D. Koller, J. Weber, T. Huang, J. Malik, G. Ogasawara et al., Towards robust automatic traffic scene analysis in real-time, Proc. Int. Conf. Pattern Recognition, pp.126-131, 1994.

S. Li, Markov Random Field Modeling in Computer Vision, 1995.
DOI : 10.1007/978-4-431-66933-3

M. Mason and Z. Duric, Using histogram to detect and tracking objects in color video, Proc. Applied Imagery Pattern Recognition Workshop, pp.154-159, 2001.

C. Ridder, O. Munkelt, and H. Kirchner, Adaptive background estimation and foreground detection using kalmanfiltering, Proc. Int. Conf. Recent Advances in Mechatronics, pp.193-199, 1995.

J. Rittscher, J. Kato, S. Joga, and A. Blake, A Probabilistic Background Model for Tracking, Proc. European. Conf. Computer Vision, pp.336-350, 2000.
DOI : 10.1007/3-540-45053-X_22

Y. Sheikh and M. Shah, Bayesian modeling of dynamic scenes for object detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, issue.11, pp.1778-1792, 2005.
DOI : 10.1109/TPAMI.2005.213

C. Stauffer and W. Grimson, Learning patterns of activity using real-time tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.8, pp.747-757, 2000.
DOI : 10.1109/34.868677

B. Stenger, V. Ramesh, N. Paragios, F. Coetzee, and J. Buhmann, Topology free hidden Markov models: application to background modeling, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, pp.294-301, 2001.
DOI : 10.1109/ICCV.2001.937532

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, Wallflower: principles and practice of background maintenance, Proceedings of the Seventh IEEE International Conference on Computer Vision, pp.255-261, 1999.
DOI : 10.1109/ICCV.1999.791228

C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, Pfinder: real-time tracking of the human body, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.19, issue.7, pp.780-785, 1997.
DOI : 10.1109/34.598236

J. Yao and J. Odobez, Multi-Layer Background Subtraction Based on Color and Texture, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2007.
DOI : 10.1109/CVPR.2007.383497

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

W. Zhang, X. Z. Fang, X. K. Yang, and Q. M. Wu, Spatiotemporal Gaussian mixture model to detect moving objects in dynamic scenes, Journal of Electronic Imaging, vol.16, issue.2, pp.23013-23014, 2007.
DOI : 10.1117/1.2731329

Z. Zivkovic, Improved adaptive Gaussian mixture model for background subtraction, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., pp.28-31, 2004.
DOI : 10.1109/ICPR.2004.1333992

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=