Offline Learning of Top-down Object based Attention Control

Abstract : Like humans and primates, artificial creatures like robots are limited in terms of allocation of their resources to huge sensory and perceptual information. Serial processing mechanisms are believed to have the major role on such limitation. Thus attention control is regarded as the same solution as humans in this regard but of course with different attention control mechanisms than those of parallel brain. In this paper, an algorithm is proposed for offline learning of top-down object based visual attention control by biasing the basic saliency based model of visual attention. Each feature channel and resolution of the basic saliency map is associated with a weight and a processing cost. Then a global optimization algorithm is used to find a set of parameters for detecting specific objects. Proposed method is evaluated over synthetic search arrays in pop-out and conjunction search tasks and also for traffic sign recognition on cluttered scenes.
Type de document :
Communication dans un congrès
Workshop on Vision in Action: Efficient strategies for cognitive agents in complex environments, Oct 2008, Marseille, France. 2008
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00325806
Contributeur : Peter Sturm <>
Soumis le : mardi 30 septembre 2008 - 13:39:45
Dernière modification le : mardi 30 septembre 2008 - 14:46:17
Document(s) archivé(s) le : vendredi 4 juin 2010 - 12:01:10

Fichier

Borji.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00325806, version 1

Collections

Citation

Ali Borji, Majid Nili Ahmadabadi, Babak Nadjar Araabi. Offline Learning of Top-down Object based Attention Control. Workshop on Vision in Action: Efficient strategies for cognitive agents in complex environments, Oct 2008, Marseille, France. 2008. 〈inria-00325806〉

Partager

Métriques

Consultations de la notice

508

Téléchargements de fichiers

170