Super-resolved Digests of Humans in Video

Abstract : This paper describes a hierarchical approach towards the extraction of highly informative summarized information of humans from video sequences. Objects of interest, such as facial features, are detected through transformation-invariant clustering of the frames, iteratively from bigger to smaller regions, and then expressed with an information-rich representation obtained by super-resolution. To guarantee the fundamental constraints under which the super-resolution process is well-behaved, we propose a Bayesian framework that integrates the uncertainties in the registration of the frames. The ultimate product of the overall process is a strip of images that describe at high resolution the dynamics of the video, switching between alternative local descriptions in response to visual changes.
Type de document :
Communication dans un congrès
The 1st International Workshop on Machine Learning for Vision-based Motion Analysis - MLVMA'08, Oct 2008, Marseille, France. 2008
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00325809
Contributeur : Peter Sturm <>
Soumis le : mardi 30 septembre 2008 - 13:53:16
Dernière modification le : mardi 30 septembre 2008 - 14:44:21
Document(s) archivé(s) le : vendredi 4 juin 2010 - 12:01:16

Fichier

mlvma08_submission_6.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00325809, version 1

Collections

Citation

Dong Seon Cheng, Marco Cristani, Vittorio Murino. Super-resolved Digests of Humans in Video. The 1st International Workshop on Machine Learning for Vision-based Motion Analysis - MLVMA'08, Oct 2008, Marseille, France. 2008. 〈inria-00325809〉

Partager

Métriques

Consultations de la notice

86

Téléchargements de fichiers

207