Unsupervised Learning of Behavioural Patterns for Video-Surveillance

Abstract : Unsupervised learning is a way to extract knowledge from noisy and complex sets of unlabeled data. The video-surveillance setting provides a potentially huge amount of unlabeled information on a given scene. In this paper we explore the use of spectral clustering to learn common behaviours from sets of dynamic events from a video-surveillance system. In particular we discuss how temporal data, characterized by variable lengths and an internal ordering, may be exploited effectively by means of appropriate representations and kernel functions. An experimental assessment on synthetic and real data guides us to an effective solution based on the use of strings.
Type de document :
Communication dans un congrès
The 1st International Workshop on Machine Learning for Vision-based Motion Analysis - MLVMA'08, Oct 2008, Marseille, France. 2008
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00326714
Contributeur : Peter Sturm <>
Soumis le : dimanche 5 octobre 2008 - 12:28:49
Dernière modification le : lundi 6 octobre 2008 - 09:43:44
Document(s) archivé(s) le : jeudi 3 juin 2010 - 20:12:46

Fichier

mlvma08_submission_25.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00326714, version 1

Collections

Citation

Nicoletta Noceti, Matteo Santoro, Francesca Odone. Unsupervised Learning of Behavioural Patterns for Video-Surveillance. The 1st International Workshop on Machine Learning for Vision-based Motion Analysis - MLVMA'08, Oct 2008, Marseille, France. 2008. 〈inria-00326714〉

Partager

Métriques

Consultations de la notice

141

Téléchargements de fichiers

170