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Abstract. In this paper we present an unsupervised differential-geometric
approach for learning Riemannian metrics for dynamical models. Given
a training set of models the optimal metric is selected among a family
of pullback metrics induced by the Fisher information tensor through a
parameterized diffeomorphism. The problem of classifying motions, en-
coded as dynamical models of a certain class, can then be posed on
the learnt manifold. Experimental results concerning action and iden-
tity recognition based on simple scalar features are shown, proving how
learning a metric actually improves classification rates when compared
with Fisher geodesic distance and other classical distance functions.

1 Introduction

Manifold learning [1–6] has become a popular topic in machine learning and
computer vision in the last few years, as many objects of interests (like natural
images, or sequences representing walking persons), in spite of their apparent
high dimensionality, live in a non-linear space of reduced dimension. Many un-
supervised algorithms (e.g. locally linear embedding [7]) take an input dataset
and embed it into some other space, implicitly learning a metric. However, they
fail to learn a full metric for the whole input space (even though extensions
which take this issue into account have been recently formulated [8]). On the
other side, approaches to successfully reduce metric learning to constrained least
square optimization in the linear case have been proposed [9, 10].

In particular, it makes a lot of sense to represent videos or image sequences
as realizations of some sort of dynamical model, either stochastic (e.g. HMMs)
or deterministic (e.g. ARMA). This approach already proved to be effective in
contexts like video coding (e.g. dynamic textures [11]). A number of metrics or
distance functions for linear systems has been already introduced, in particular
in the context of system identification: cepstrum distances [12], subspace angles
[13], gap metric [14] and its variants nu-gap [15] and graph metric [16], ker-
nel methods [17]. Besides, a vast literature exists about dissimilarity measures
between Markov models, variants of the Kullback-Leibler divergence [18].

Consider though the problem of classifying a dynamical model (as represen-
tative of an input image sequence). A simple mental experiment is enough to
understand that no single distance function can possibly outperform all the oth-
ers in each and every classification problem, since data-points can be endowed
with different labeling while maintaining the same geometrical structure. In gait



analysis, for instance, each image sequence possesses several different labels: the
identity of the moving person, the action performed, the viewpoint (when several
cameras are presented [19]), the emotional status, etc.

The most reasonable thing to do when possessing some a-priori information
is then try and learn in a supervised fashion the “best” distance function for a
specific classification problem. As even linear dynamical models live in a non-
linear space, the need for a principled way of learning Riemannian metrics from
the data naturally arises. An interesting tool is provided by the formalism of
pullback metrics. If the models belong to a Riemannian manifold M , any diffeo-
morphism of M onto itself induces such a metric on M . By designing a suitable
family of diffeomorphisms depending on a parameter p we then obtain a family
of pullback metrics on M we can optimize on.

In this paper we propose to apply this formalism to the case of linear dynam-
ical models endowed with the classical Fisher metric. Analytical expressions of
Fisher metric and related geodesics for several classes of linear dynamical sys-
tems have been provided by Hanzon [20], Ravishanker [21], and Rijkeboer [22].
Given a dataset of dynamical models a “natural” Riemannian metric is learned
by inverse volume element minimization on a family of pullback metrics induced
by a class of diffeomorphisms. The learnt metric can later be used in any classi-
fication scheme. We argue that this improves the classification performance by
posing the problem in the region where the systems actually live.
We apply this learning scheme to action recognition and identity recognition
from gait. We use the image sequences collected in the Mobo database [19] to
show experiments in which (as a reference) simple nearest-neighbor classifiers
based on pullback Fisher metric between stochastic models outperform analo-
gous classifiers based on classical a-priori distances.

2 Learning non-linear manifolds of dynamical models

Metric and manifold learning. Learning distance functions or metrics to im-
prove, for instance, classification performance is a sensible approach when some
a-priori information is available [1–6]. A natural optimization criterion consists
on maximizing the classification performance achieved by using the learnt metric
in a simple nearest-neighbor classifier. Xing et al. [9] have recently proposed a
way to solve this optimization problem for linear maps y = A1/2x, when some
pairs of points are known to be “similar”. This leads to a parameterized family
of Mahalanobis distances ‖x − y‖A. Given the linearity of the map the problem
of minimizing the squared distance between similar points turns out to be con-
vex, hence solvable with efficient numerical algorithms. Shental et al. [10] have
successfully faced the same problem in a linear framework, by posing an opti-
mization problem based on information theory (relevant component analysis).
However, in several real-world applications the data are inherently nonlinear.
This is exactly the case of dynamical models (and human motions, in particu-
lar). The need for a way of learning Riemannian metrics from such data arises.



Pullback metrics. Some notions of differential geometry provide us indeed
with a tool for building a structured family of metrics on which to define an opti-
mization problem, the basic ingredient of a metric learning algorithm. The idea
is the following. Suppose your dataset already lives on a Riemannian manifold M
of some sort: a Riemannian metric is defined in any point of the manifold. Any
diffeomorphism (a differentiable map) from M to itself induces a new metric,
called “pullback metric” (see below). If we manage to define an entire class of
diffeormorphisms depending on some parameter λ we then get the corresponding
family of pullback metrics, also depending on λ.
We can then define an optimization problem over this family of metrics in order
to select an “optimal” metric, which in turn determines the desired manifold. Of
course, the nature of this manifold depends on the objective function we choose
to optimize. Following Lebanon [23] we propose to maximize the inverse volume
of the space around the dataset to select the manifold on which the latter lives.

Proposed methodology. In this paper the dataset is composed by dynam-
ical models representing motions. Many classes of dynamical systems do live in
a Riemannian manifold M associated with the Fisher information metric [24].
We can then apply the formalism of pullback metrics, and learn a manifold as-
sociated with a training set D of movements. When new motions are acquired
they can then be classified on this reduced space within a three-step procedure:

1. each sequence of measurements representing a dynamical data-set is mapped
into the parameters of a dynamical model describing the sequence by param-
eter identification;

2. a parametric metric is learned for the resulting set of dynamical systems;
3. standard classifiers (e.g. k-nearest neighbor, SVM, etc.) are used to classify

the systems according to the new metric.

3 Volume minimization for pullback metric learning

Consider a family of diffeomorphisms between the Riemannian manifold M in
which the dataset D = {m1, ..., mN} ⊂ M resides and itself: Fp : M → M ,
m 7→ Fp(m), m ∈ M . Let us denote by TmM the tangent space to M in m.
Any such diffeomorphism F is associated with a push-forward map

F∗ : TmM → TF (m)M
v ∈ TmM 7→ F∗v ∈ TF (m)M

(1)

defined as F∗v(f) = v(f ◦ F ) for all the smooth functions f on M (see Figure
1). Consider now a Riemannian metric g : TM × TM → R on M . Roughly
speaking, a Riemannian metric determines how to compute scalar products of
tangent vectors v ∈ TmM . The map F induces a pullback metric on M as

g∗m(u, v)
.
= gF (m)(F∗u, F∗v). (2)

Scalar products of two vectors u, v according to g∗m are computed as the scalar
product with respect to the original metric g of the pair of vectors F∗u, F∗v



Fig. 1. The push-forward map associated with a diffeomorphism on a Riemannian
manifold M .

which are mapped onto u, v by F .
Any parametric family of differentiable maps naturally generates an entire para-
metric family of metrics on M . The pullback geodesic between two points is then
the geodesic connecting their images with respect to the original metric.

Volume element minimization. From this parameterized family of met-
rics, we wish to determine the Riemannian manifold which “best” represents the
dataset, according to some criterion. We propose here to minimize the volume
element associated with a metric, as suggested by G. Lebanon [23] in the context
of document retrieval (see also [25]). Equivalently, we seek to maximize

O(D) =

N
∏

k=1

(det g(mk))−
1

2

∫

M
(det g(m))−

1

2 dm
(3)

where g(mk) denotes the Riemannian metric in the point mk of the data-set D
living on a Riemannian manifold M . This amounts to finding a lower dimensional
representation of the dataset, in a similar fashion to locally linear embedding [7]
or laplacian eigenmaps [26], where dimensionality reduction is often considered
a factor in improving classification.

Computing the Gramian. The computation of (3) requires that of the
Gramian det g. To find the expression of the Gramian associated with the pull-
back metric (2) we first need to choose a base of the tangent space TmM to M .
Let us then denote with {∂i}, i = 1, ...,dimM the base of TmM .
We can compute the push-forward of the vectors of this base, getting in turn a
base for TF (m)M . By definition, the push-forward of a vector v ∈ TmM is [23]

Fp(v)
.
= d

dtFp(m + t · v)
∣

∣

t=0
, v ∈ TmM. (4)

The diffeomorphism Fp induces a base for the space of vector fields on M , wi
.
=

{Fp(∂i)}, for i = 1, ...,dimM . We can rearrange these vectors as rows of a matrix

J = [w1; · · · ; wdim M ]. (5)

The volume element of the pullback metric g∗ in a point m ∈ M is then the deter-
minant of the Gramian [23]: det g∗(m)

.
= det[g(F∗p(∂i), F∗p(∂j))]ij = det(JT gJ).



If J is a square matrix (as in the following) we get simply

det g∗(m) = det(J)2 · det g(m). (6)

Plugging (6) in (3) we obtain the function to minimize.
Algorithm. We have then a method to select an optimal metric for a dataset

D = {m1, ..., mN} of points of a Riemannian manifold M with (basis) metric g.

1. First, a family {Fp, p ∈ P} of diffeomorphisms (P the parameter space) from
M to itself is designed to provide a large search space of metrics (the variable
in our optimization scheme) from which to select the optimal one;

2. Fp induces a family g∗p of pullback metrics (2) on M ;
3. we can then pose an optimization problem maxp∈P O(p), where

O(p) =

N
∏

k=1

(det g∗p(mk))−
1

2

∫

M
(det g∗p(m))−

1

2 dm
(7)

is the objective function, the inverse volume of the manifold in the neigh-
borhood of the N points {mk, k = 1, ..., N} of the dataset D;

4. this yields an optimal pullback metric ĝ∗;
5. knowing the geodesics of M we can compute the distance between two points

according to ĝ∗;
6. this distance function can then be used to cluster or classify the dataset.

In the following Section we will show how to apply this optimization scheme
to the case of linear dynamical models, endowed with the Fisher metric. In
particular we will consider the simple case of autoregressive models of order 2,
for which both Fisher metric and geodesics are analytically known, and recover
closed-form expressions for the objective function (7).

4 Learning pullback metrics for linear models

As linear dynamical models live in a Riemannian space, we can apply to them the
pullback metric formalism and obtain a family of metrics on which to optimize.

Fisher metric. The study of the geometrical structure of the space formed
by a family of probability distribution was first due to Rao, and was developed by
Nagaoka and Amari [24]. A family S of probability distributions p(x, ξ) depend-
ing on a n-dimensional parameter ξ can be regarded in fact as an n-dimensional
manifold. If the Fisher information matrix

gij
.
= E

[∂logp(x, ξ)

∂ξi

∂logp(x, ξ)

∂ξj

]

(8)

is nondegenerate, G = [gij ] is a Riemannian tensor, and S is a Riemannian
manifold. In particular, the analytic expressions of the entries of the Fisher
information matrix for several manifolds of linear MIMO systems have been
obtained by Hanzon et al. [27].



An interesting class of linear dynamical models. Let us consider in
particular the class of stable autoregressive discrete-time processes of order 2,
AR(2), in a stochastic setting in which the input signal is a Gaussian white
noise with zero mean and unit variance. This set can be given a Riemannian
manifold structure under Fisher metric. A natural parametrization uses the non-
unit coefficients (a1, a2) of the denominator of the transfer function, h(z) =
z2/(z2 + a1z + a2) (which corresponds to the AR difference y(k) = −a1y(k −
1)−a2y(k−2)). To impose stability the necessary conditions are 1+a1 +a2 > 0,
1 − a1 + a2 > 0, and 1 − a2 > 0. The manifold is then composed by a single

[0,-1]

[2,1][-2,1]

a

a

a1

2

Fig. 2. Left: Graphical representation of the manifold of stable autoregressive sys-
tems of order 2, AR(2), with the non-unit coefficients of the denominator of h(z) as
parameters. It forms a simplex with vertices [−2, 1], [2, 1], [0,−1]. Right: Effect of a
diffeomorphism of the form (10) on the AR(2) simplex.

connected component (see Figure 2-left). The Riemannian Fisher tensor can
be expressed, in alternative local coordinates given by the Schur parameters
γ1 = a1/(1 + a2), γ2 = a2, as [28]

g(γ1, γ2) =
1

(1 − γ2
2)

(

(1+γ2)
2

(1−γ2

1
)

0

0 1

)

. (9)

Geodesics. To compute the distance between two points of a Riemannian
manifold (and in particular two dynamical models) it is not sufficient to know
the metric: it is necessary to compute (analytically or numerically) the shortest
path connecting them on the manifold (geodesic). All the geodesics of stable
AR(2) systems endowed with the Fisher metric (9) as a function of the Schur
parameters have been analytically computed by Rijkeboer [22].

A family of diffeomorphisms for AR(2). To build a parameterized family
of Riemannian metrics for AR(2) we can apply the optimal pullback metric
scheme of Section 2 to the case in which the dataset D is a collection of linear
systems which leaves in a Riemannian manifold M = AR(2), the triangle of
Figure 2. It is then necessary to choose a family of diffeomorphisms of M onto
itself. Clearly the choice of a class of diffeomorphisms depends on the class of
dynamical systems we adopt, but it is not univocal. The more sophisticated the



set of diffeomorphisms, the larger is the search space to optimize the metric on.
Some hints can be provided by the geometry itself of the space M of dynamical
models. As a matter of fact one possible choice for a diffeomorphism of AR(2)
onto itself is suggested by the triangular form of the manifold (see Figure 2),

Fp(m) = Fp([m1,m2,m3]) =
[λ1m1, λ2m2, λ3m3]

λ · m (10)

where p = λ = [λ1, λ2, λ3] with λ1+λ2+λ3 = 1, while m = [m1,m2,m3] collects
the simplicial coordinates of a system a ∈ AR(2) in the manifold:

a = [a1, a2]
′ = m1[0,−1]′ + m2[2, 1]′ + m3[−2, 1]′ (11)

and λ · m denotes the scalar product of the two vectors. The application (10)
stretches the triangle towards the vertex with the largest λi (Figure 2-right).

Volume element for AR(2). It is then possible to apply the method of
Section 3 to find the analytical expression of the determinant of the Gramian
detg∗λ(λ,m) (6), as a function of the parameter λ of the family of diffeomor-
phisms (10). By plugging it in the expression for the inverse volume (3) we finally
obtain the objective function O(λ) to optimize to find an optimal metric.

Theorem 1. The volume element of the pullback metric on AR(2) induced by
the diffeomorphism (10) is given by

detg∗λ(λ,m) ∝ (λ1λ2λ3)
2

(λ · m)6
· 1

m2
1m2m3

. (12)

Proof. Let us choose as base of the tangent space in AR(2) the set ∂1 = [1/2, 1/2]′,
∂2 = [−1/2, 1/2]′. To compute the Gramian we need to express the diffeo-
morphism with respect to a. From Equation (11) a1 = 2(m2 − m3), a2 =
m2 + m3 − m1, while the inverse relation is m2 = 1+a1+a2

4 , m3 = 1−a1+a2

4 ,

m1 = 1−a2

2 . Hence Fλ can be expressed in terms of a1, a2 as

Fλ(a) = 1
∆

[

2λ2(1 + a1 + a2) − 2λ3(1 − a1 + a2),

λ2(1 + a1 + a2) + λ3(1 − a1 + a2) − 2λ1(1 − a2)
]′ (13)

where ∆ = 2λ1(1− a2) + λ2(1 + a1 + a2)+ λ3(1− a1 + a2), so that Fλ(a+ tv) =
[2λ2(1+ a1 + tv1 + a2 + tv2)− 2λ3(1− a1 − tv1 + a2 + tv2), λ2(1+ a1 + tv1 + a2 +
tv2) + λ3(1 − a1 − tv1 + a2 + tv2) − 2λ1(1 − a2 − tv2)]

′. We can then compute4

d
dtFλ(m + t · v)

∣

∣

t=0
, and in particular

w1 = d
dtFλ(m + t∂1)

∣

∣

t=0
= [ 2λ1λ2(3 − a2 + a1) + 2λ3(2λ2 − λ1)(1 − a1 + a2),

2λ1λ2(3 − a2 + a1) + 2λ1λ3(1 − a1 + a2)]
(14)

while

w2 = d
dtFλ(m + t∂2)

∣

∣

t=0
= [ −2λ1λ3(3 − a2 + a1) + 2λ2(λ1 − 2λ3)(1 + a1 + a2),

2λ1λ3(3 − a2 + a1) + 2λ1λ2(1 + a1 + a2)].
(15)

4 The straightforward details are not reported to improve the readability of the proof.



The determinant of the matrix J = [w1;w2] (5) is then (after a few passages)

detJ = 32
λ1λ2λ3

∆3
=

1

2

λ1λ2λ3

(λ · m)3
. ¤ (16)

Finally, the function (3) to maximize assumes the form

O(λ) =

N
∏

k=1

(λ · mk)3
∫

AR(2)
(λ · m)3m1

√
m2m3dm

(17)

where the normalization factor I(λ) =
∫

AR(2)
(λ ·m)3m1

√
m2m3dm forbids triv-

ial solutions in which the volume element is minimized by shrinking the whole
space. It can be computed by decomposing (λ · m)3 using Tartaglia’s formula:

I(λ) =
∑

c1+c2+c3=3

3!

c1!c2!c3!
·

3
∏

j=1

λ
cj

j

∫

AR(2)

m1+c1

1 m
1/2+c2

2 m
1/2+a3

3 dm. (18)

The objective function (17) can be maximized by means of any numerical opti-
mization scheme, simple (like gradient descent) or more sophisticated.

Extension to multi-dimensional systems.
It is important to stress that the proposed scheme is by no means limited to

scalar dynamical models. It is true that the analytic expressions for the Fisher
metric and the associated geodesics are known for scalar outputs. This allows to
derive elegant analytic expressions for the inverse volume (17) to maximize.
However, in the case of multi-dimensional linear systems both Fisher metric and
its geodesics can still be computed by means of an iterative numerical scheme [28,
27]. The extension of the pullback manifold learning scheme to multi-dimensional
systems is then straightforward.
In any case, using the Fisher information metric as basis Riemannian metric is
not mandatory. We can as easily adopt the standard Euclidean metric as initial
distance, and build a family of pullback Euclidean metrics to optimize upon.

5 Effect on classification performances

It can be argued that maximizing classification performance and minimizing
volume elements are indeed correlated optimization problems. In other words,
that classification is easier on the pullback manifold which better interpolates
the dataset of dynamical systems.

Experiments on human motion classification. To test this conjecture
we considered the problem of recognizing actions and identities from image se-
quences. We used the Mobo database [19], a collection of 600 image sequences of
25 people walking on a treadmill in four different variants (slow walk, fast walk,
walk on a slope, walk carrying a ball), seen from 6 different fixed viewpoints (see
Figure 3-middle). Each sequence of the database possesses three labels: action,
view, and identity. As the objective function to optimize has been computed



in Section 4 for single input-single output linear systems, we extracted from
each image a single scalar feature, the width of the minimum box containing
the silhouette (Figure 3-left). Each scalar sequence was passed as input to an
identification algorithm which generated a dataset of AR(2) linear systems, one
for each labeled motion sequence. However, as we just pointed out, this is not a
limitation of the proposed approach.

We empirically assessed the conjecture on the effect of pullback manifold
learning on classification by measuring the performance of a nearest-neighbor
classifier based on the optimal pullback metrics induced by the diffeomorphism
(10) and comparing the results with those of NN classifiers based on several a-
priori distances between models (including the Fisher geodesic distance itself).

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

Fig. 3. Left: from each image the width of the bounding box containing the silhouette
is extracted. Middle: location and orientation of the six cameras in the Mobo experi-
ment (the origin of the frame is roughly in the position of the walking person on the
treadmill). Right: Performance of the NN classifier in the ID recognition experiment,
based on several a-priori distances between dynamical models and two pullback metrics
induced by the Fisher geometry. Classification rate for the used metrics averaged on
the size of the training set. 1 - Frobenius norm of the matrices in canonical form; 2 -
gap metric; 3- ν-gap matric; 4 - subspace angles; 5 - basis Fisher metric; 6 - pullback
metric with diffeomorphism (19); 7 - pullback metric with diffeomorphism (10).

Identity recognition. In a first experiment we selected a training set of
models, and used the pullback geodesic distance to classify the identity of the
person appearing in a different set of randomly selected sequences. This is a very
difficult problem, as there are 25 different people, and the one-dimensional signal
we chose to represent sequences with (the series of bounding box widths along the
image sequence) clearly provides insufficient information. However, measuring
the comparative performance of the metrics can be useful to see how learning
appositively a metric improves classification. We implemented a naive Frobenius
norm of the system matrices in canonical form, gap and ν-gap metrics [14, 15],
subspace angles [13, 12], and of course the Fisher geodesic distance together with
the associated optimal pullback metric.
Figure 3-right shows the average percentage of correctly classified testing systems



over several dozens of runs in which we randomly selected an increasing number
of systems in both training and testing set. The number of training sequences
ranged from 10 to 50, while the size of the testing set would vary from 50
to 300. The purpose of the random selection was avoiding biased results due
to a particular choice of training and testing sets. Standard variations were
very small and they are not reported. As a comparison we also tested a second
diffeomorphism for AR(2) systems, namely

Fλ(m) = [λm1 + (1 − λ)m2, λm2 + (1 − λ)m3, λm3 + (1 − λ)m1], (19)

with 0 < λ < 1. Figure 3-right shows that the larger the parameter space
(as (19) has just one parameter, while (10) has two) the greater the chance of
selecting a better metric. All other distances have rather similar performances
as they obviously have not been designed to solve classification tasks but for
identification purposes. In the following only the performance of the second best
distance is reported for comparison.

Action recognition. In a second series of experiments we used the pullback
geodesic distance to classify the action performed by the person. The correct
classification rate was measured after several dozens of repeated trials in which
training and testing set of increasing size (as in the ID experiment) were ran-
domly selected from the database in order to avoid any bias in the results. Figure
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Fig. 4. Average recognition performance of second-best a-priori distance (left, in this
case the Frobenius distance between the matrices representing two systems) and opti-
mal pullback metric for AR(2) systems and diffeomorphism (19) (middle) in the action
recognition experiment. Here the whole dataset is considered, regardless of the view-
point. Rates are plotted against the size of testing (x axis) and training (y axis) set.
Right: recognition rates for view 5 only. The learnt pullback metric always outperforms
its best competitor.

4 compares again the average recognition rate over such repetitions of the opti-
mal pullback metric for autoregressive systems (in particular under deformation
map (19)) and its best competitor among a-priori metrics (typically Frobenius
norm or cepstrum distance), as a function of testing and training size, 10 repe-
titions for each pair of such sizes. Rates are not very high, but remember that
actions in the Mobo database are just slightly different variations of the walk-
ing gait, and we were using a single scalar feature. We want to stress relative
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Fig. 5. Correct action classification rates for sequences coming from three different
viewpoints (1,5,6). Sequences are represented as autoregressive order 2 systems. The
performance (in red) of the pullback metric associated with the map (10) is shown out-
performing the best competitor (in blue, typically Frobenius norm or Martin’s distance)
for increasing sizes of the testing set (from 20 to 50).

performances here. To test the approach more thoroughly we also conducted six
separate experiments by selecting the portion of the dataset associated with a
single view, for each possible view.
Figure 5 illustrates the average performance of the classifiers associated with
the optimal pullback metric for AR(2) models with (this time) diffeomorphism
(10) and the best competing non-learnt, a-priori distance (gap, ν-gap, etc.) for
four view-dependent experiments, as a function of the testing set size. As usual
the average (for each size) is computed over 10 repeated random selections. The
optimal pullback metric performs far better than all the others.

6 Conclusions

In this paper we proposed a differential-geometric framework for manifold learn-
ing given a data-set of linear dynamical models. We pose an optimization prob-
lem in which the pullback metric induced by a diffeomorphism which minimizes
the volume element around the available data is learned. We adopt as basis
metric tensor the classical Fisher information matrix. This yields a global em-
bedding, while usual spectral methods only provide images of training points. We
showed experimental results concerning identity and action recognition, which
support the claim that learning a metric in such a way actually improves clas-
sification performance with respect to the Fisher metric and all other known
a-priori distances between dynamical models.
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