Descriptor Based Methods in the Wild

Abstract : Recent methods for learning similarity between images have presented impressive results in the problem of pair matching (same/notsame classification) of face images. In this paper we explore how well this performance carries over to the related task of multi-option face identification, specifically on the Labeled Faces in the Wild (LFW) image set. In addition, we seek to compare the performance of similarity learning methods to descriptor based methods. We present the following results: (1) Descriptor-Based approaches that efficiently encode the appearance of each face image as a vector outperform the leading similarity based method in the task of multi-option face identification. (2) Straightforward use of Euclidean distance on the descriptor vectors performs somewhat worse than the similarity learning methods on the task of pair matching. (3) Adding a learning stage, the performance of descriptor based methods matches and exceeds that of similarity methods on the pair matching task. (4) A novel patch based descriptor we propose is able to improve the performance of the successful Local Binary Pattern (LBP) descriptor in both multi-option identification and same/not-same classification.
Type de document :
Communication dans un congrès
Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Oct 2008, Marseille, France. 2008
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger
Contributeur : Peter Sturm <>
Soumis le : dimanche 5 octobre 2008 - 12:59:05
Dernière modification le : lundi 6 octobre 2008 - 09:37:42
Document(s) archivé(s) le : vendredi 4 juin 2010 - 12:13:14


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00326729, version 1



Lior Wolf, Tal Hassner, Yaniv Taigman. Descriptor Based Methods in the Wild. Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Oct 2008, Marseille, France. 2008. 〈inria-00326729〉



Consultations de la notice


Téléchargements de fichiers