A multi-sensor approach for People Fall Detection in home environment

Abstract : This paper presents a hardware and software framework for reliable fall detection in the home environment, with particular focus on the protection and assistance to the elderly. The integrated prototype includes three di®erent sensors: a 3D Time-Of-Flight range camera, a wearable MEMS accelerometer and a microphone. These devices are connected with custom interface circuits to a central PC that collects and processes the information with a multi-threading approach. For each of the three sensors, an optimized algorithm for fall-detection has been developed and benchmarked on a collected mulitimodal database. This work is expected to lead to a multi-sensory approach employing appropriate fusion techniques aiming to improve system precision and recall.
Type de document :
Communication dans un congrès
Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications - M2SFA2 2008, Oct 2008, Marseille, France. 2008
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00326739
Contributeur : Peter Sturm <>
Soumis le : lundi 6 octobre 2008 - 09:36:20
Dernière modification le : lundi 8 janvier 2018 - 16:00:02
Document(s) archivé(s) le : lundi 8 octobre 2012 - 13:57:32

Fichier

1569141334.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00326739, version 1

Collections

Citation

A. Leone, G. Diraco, C. Distante, P. Siciliano, M. Malfatti, et al.. A multi-sensor approach for People Fall Detection in home environment. Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications - M2SFA2 2008, Oct 2008, Marseille, France. 2008. 〈inria-00326739〉

Partager

Métriques

Consultations de la notice

378

Téléchargements de fichiers

295