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Video Surveillanceusing a
Multi-Camera Tracking and Fusion System

Zhong Zhang, Andrew Scanlon, Weihong Yin, Li Yutdtd.. Venetianer
ObjectVideo Inc.
{zzhang, ascanlon, wyin, liyu, pvenetianer}@ Objeick.com

Abstract. Usage of intelligent video surveillance (IVS) ®yas is spreading
rapidly. These systems are being utilized in a wiaege of applications. In
most cases, even in multi-camera installations, W#eo is processed
independently in each feed. This paper describggstem that fuses tracking
information from multiple cameras, thus vastly exgiag its capabilities. The
fusion relies on all cameras being calibrated sitea map, while the individual

sensors remain largely unchanged. We present amnmetivod to quickly and

efficiently calibrate all the cameras to the sitapmmaking the system viable
for large scale commercial deployments. The methsgs line feature

correspondences, which enable easy feature seleatid provide a built-in

precision metric to improve calibration accuracy.

1 Introduction

The usage of IVS systems is spreading rapidly. @ase user defined rules or
policies, IVS systems can automatically detect middb threats or collect business
intelligence information by detecting, tracking asmklyzing the targets in the scene.
In large, multi-camera installations, a central agament console provides unified
access to all systems, allowing centralized coméigon and quick access to all rules,
alerts and results. The user interface may disalayesults together on a map, or a
counting application may aggregate the counts fidfferent feeds. But processing of
the camera feeds, the rules and the alerts atdanstépendent. While this setup is
sufficient for some scenarios, its effectivenesdiristed by detecting only local
events. More complex events spanning multiple cameannot be detected, thus
potentially missing important events. The systenscdbed in this paper fuses
information from multiple cameras, thus providingich better awareness of what is
going on in the whole area. Different from the nniyoof the previous works, which
mainly address computer vision or data fusion ®psach as object appearance
matching [1,2,3], camera topological relationshgtireation [4,5]and statistical data
association [6,7],ite objective of the present work is to develop mmercial viable
system that has real-time performance, low bandwidtuirement and in particular,
easy installation so that an ordinary security pengl can configure and operate it
easily.

The paper is organized as follows: Section 2 dessrihe architecture of a
typical single camera surveillance system. Sec@i@xplains how this architecture is
expanded into a multi-camera system. Section 4igesvsome real-life applications
of the system. Section 5 lists potential extensfonduture work, before concluding
remarks in Section 6.
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Figure 1: Flow-chart of typical IVS system

2 Single Camera Surveillance System Architecture

A typical IVS system is illustrated imigure 1 A dynamic background model is
continuously being built and updated from the inoavideo frames. In each video
frame, pixels that are statistically different frothe background are marked as
foreground. These foreground pixels are spatiaiguged into blobs, which are
tracked over time to form spatio-temporal targetg, using a Kalman filter. Next,
these targets are classified based on variousrésat&inally the events of interest
(rules) specified by the user are detected ondhgets. For example, the user may
want to detect when people enter an area by defmivirtual tripwire.

The first part of the above processing pipeline tapand including the
classification is very generic, largely independefithe details of the application and
the user defined events of interest. These stepkan as content analysisHigure 1,
all deal with the actual video frames and geneaabégh level meta-data description
of what is happening in the video. This meta-datatains all target information
(location, velocity, classification, color, shagts.), and potentially the description of
the scene, including static (water, sky, etc.) asyghamic (lighting change)
descriptors. The end of the processing pipeline,abent detection uses this meta-
data description as its input instead of the vidmwd compares that with the user
defined rules. This mode of operation means thbt the meta-data has to be stored,
instead of high quality video suitable for autondafgocessing, and events can be
detected very quickly, simply by analyzing the ma#aa, instead of the much slower
video analysis. And this meta-data enables the itwathera surveillance system
described in more detail in the next section.

3 Multi-Camera Surveillance System Ar chitecture

The IVS system, as described in the above seatmm provide an adequate solution
for many applications. But by analyzing only a $#éngideo feed at a time, it offers a
somewhat myopic view into the world, with all itssaciated limitations. For example
the goal for the IVS system may be to detect simmscactivities around a facility

with several cameras daisy-chained around its fénee A vehicle parking near that

fence line can easily be detected by the camerarcmythe area where the vehicle
parks. But a vehicle circling around the facilityltiple times cannot be detected by
the single camera system. A multi-camera survaifiasystem tracking targets from



one camera to the next can overcome all thesealimits. This section describes the
key challenges of such a system and a solutionhhsitbeen demonstrated to work
well in several real life deployments.

3.1 DataSharing

One of the key questions when designing the crasgeca surveillance system is to
decide at which stage in the pipelinerafure 1should the single camera units share
their information. Performing fusion before the eground detection or blob
generation steps requires building a mosaic, wisickery expensive on cpu, memaory
and bandwidth usages. In addition, it usually rezgithe cameras having overlapped
field of views and similar illumination and imagesplution, which may not always
be satisfied in real applications.

Fusing at the video meta-data level requires mgrgihthe meta-data from the
cameras onto a full representation of the enviranimehis approach distributes the
most time consuming processing between the diffesensors, eliminates the need
for a mosaic, and minimizes communication, sinch dime meta-data needs to be
transmitted, no video or imagery. Given these athges, our system communicates
only the video meta-data for fusion. For examphe, ¥ideo meta-data from a single
camera unit for each video frame may include thieviong information: the camera
time stamp, list of targets with their ids and ireggoperties such as bounding box,
centroid, footprint and classification label.
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_ video
videc Conter_\t meta-dati\
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Figure 2: Cross-camera fusion system diagram

3.2  System Design

The cross-camera fusion system is illustrated igufd 2. The video from each
camera is initially processed the same way assimgle camera system: the content
analysis module translates video into video meta;dahich is then sent from all
sensors to the centralized data fusion module.oRusbmbines the video meta-data
from all sensors into a common coordinate systeu,skill maintaining the video
meta-data format, so that the fused meta-data eafieth to the event detection
module. This event detection module is identicalh® one used in the single sensor



system ofFigure 1 The rules and meta-data are all representedats/eecoordinates.
For a single camera sensor the coordinates artéveeta a single frame, while for the
fusion sensor they are relative to the global ns&psed. This means that the meta-
data is the same whether it is generated by a efeavmap sensor.

This design has many benefits. The time consumiidgov processing is
distributed among the single camera sensors, congation bandwidth requirements
are low due to transmitting only the video metaadathe sensor architecture is
simple: the system running on the individual sesssralmost identical to the single
camera system. Content analysis turns the videm video meta-data. It is still
possible to have single camera event detectionimgnon the individual sensors, if
required. The only difference is that the video arddita is streamed out to the fusion
sensor to enable multi-camera event detection. flikien sensor is more different,
but still has a lot in common to single camera sensThe main difference is the
front end: it ingests multiple video meta-data atns instead of video, and uses the
data fusion module to convert it into fused meteddhis similarity between the
different modes means that our system has onlpglesimain executable, which can
be configured at installation to act as a stand@lsingle camera sensor, as a single
camera sensor used for fusion, or as a fusion sellewe and more IVS systems are
moving towards performing computations on the edgebedded in a camera. This
architecture works well for that approach as witle embedded system processes the
video and generates the meta-data, which is thatnt@a centralized fusion sensor.

This approach also seamlessly supports the foreaqgidications described
earlier. The video meta-data can be stored inrtflizidual sensors, performing fusion
and event detection at the time of forensic prdogs®r the fused meta-data can be
stored, in which case forensics is the same as thighsingle camera forensics.
Moreover it is also possible to later convert adgad installation into a cross-camera
system for forensic analysis. If the single camétieo meta-data has been stored,
even calibration can be performed later, and facsnexecuted on the previously
stored data.

3.3 Cross-cameracalibration

The major challenge of a cross-camera trackingeayss how to associate the targets
detected and tracked in different individual carserdhe data fusion process
illustrated in Figure 2 requires the single cameeasors to be calibrated in such
manner that the targets in different cameras ha@ranon coordinate system.
Traditional camera calibration approaches [8] rety using a 3D reference
object with a known Euclidean structure. Howevettisg up the 3D reference object
with great accuracy is difficult, requires spe@glipment, and doesn’t scale well. To
overcome some of these problems, [9] and [10] ihiced a simple and practical
camera calibration technique using a model plarie asknown 2D reference pattern.
In this technique, the user places the model plaméhe camera at two or more
locations and captures images of the referencetgoil@amera parameters are
recovered from the model plane to image plane hoapdges computed from
correspondences between the reference points aid pitojections. Although this
algorithm is simpler, it yields good results mairftyr indoor and/or close range
applications, where the object is big enough thatféatures can be easily and



accurately detected and measured. To make thisoapprviable for large area
outdoor applications, the reference object wouldehi@ be very large to provide the
necessary accuracy.

In the proposed system, we introduce a cross-camediaration approach
called map-view mapping, which maps each groundtpnithe image (“view”) to its
corresponding point on a global site map (“mapheTlobal site map here may be a
fine resolution satellite image for an outdoor &milon or a blueprint drawing for an
indoor application. In this approach, we assume ith@ach view the targets are on
the same plane, called image ground plane; andjlttteal map also represents a
single plane in the world, called map ground plafkus for each camera, the
mapping between point in the view and the corresponding pokitin the map is
fully defined by a homographyt [11,12]:

X = Hx (1)
whereH is a 3x3 homogeneous matrix. The map and viewtpaire represented by
homogeneous 3-vectors ds= (X, Y, 1)'andx = (X, y, 1)’,respectively. The scale of
the matrix does not affect the equation, so onlg #ight degrees of freedom
corresponding to the ratio of the matrix elememéssignificant. The camera model is
completely specified once the matrix is determiriédan be computed from a set of
map-view correspondence points. From equation €agh pair of correspondence
points provides two equations. Given the 8 unknown$i, n>4 point pairs are

needed ertlng'| |n vector form a31 = (hllv h121 h131 th! h221 h23! h.’zlr h&Z! h.’z3),1 (1)
for n points becomeAh = 0, whereA is a2n x 9matrix:

x 11 0 0 0 -xX -yX3 -X;

0 00 x v 1 -x% -yv -V

X2 Y2 1.0 0 0 =xX; -yX; —X;
A=10 0 O 1

Xz Y2 XYy TYoYoa Y, ()
X, Yo 1 0 0 0 =X X, -y, X, —X,
0 0 0 X Yo 1 =%Ya —¥a¥a —Yp
The goal is to find the unit vectdr that minimizes|Ah|, which is given by the
eigenvector of the smallest eigenvalue AA. This eigenvector can be obtained
directly from the SVD oA.

The key element of the process becomes findingespondence points
between the map and each camera view. These condespce points are also called
control points in image registration. They provideambiguous matching pairs
between the map and the camera view. However, #rerdéwo potential problems
with using only matching points for calibration. &ffirst problem is that it may be
difficult to find the precise corresponding poiotéations in some environments due
to limited resolution, visibility, or the angle efew. As an example, looking at an
overhead view of a road, the corner points of thmekén lane dividing lines
theoretically provide good calibration targets. Hwoer, it may be difficult to reliably
determine which lane dividing line segment of thapnview corresponds to which
line segment in the camera view.




The second problem is that the precision of thespaf matching points is
usually unknown. The precision of a point meastinessensitivity of the accuracy of
the map matching location with respect to the ammyrof the view location. For
example, at one location in the camera image plane,pixel movement away from
that location may cause 100 pixels of movement dway its original corresponding
location on the map. This means the precision isfphir of matching points is low.
When we calibrate the camera view onto the mapmimémize the distance between
these pairs of matching points. Assigning higherighte to points with higher
precision improves calibration performance.

To overcome the above two problems, we introduceimizg line features in
conjunction with the matching points. A line feaus typically specified by two
points, as a line segment, but for a matching figadure only the corresponding lines
have to match, not the segments. For example wiwming a road, it might be
difficult to find point correspondences, but theiding line and the edges of the road
define good line features. Hence the line feathp to overcome the first limitation
above. Figure 3 illustrates matching line segments.

S/ . at
Figure 3: Selecting matching features. In this esponding pair of map (left) and view

(right), it is much easier to find matching lindsah points. Matching features are
represented by the same cc

——

Matching line features also help overcome the sg&goblem by providing a
good precision metric, which helps to improve aailon accuracy by allowing the
system to put increased weight on more precisera@opbints. Line features can be
directly specified by the user, or computed fronirpaf user defined calibration
control points. Additional control points are theomputed from the intersection of
line features. The precision of such a computedtrobrpoint is determined as
follows: First, use the point of intersection o ttmap as the reference point. Next,
add small random Gaussian noise with zero mearsaradl standard deviation (e.g.
0.5) to the end points of all the related line segte on the map and recompute the
point of intersection. Calculate the distance betwthe new and the reference point
of intersection. Repeat the above process manystand compute the mean distance,
which reflects the precision of the correspondininpof intersection. The point of
intersection will be used as a control point orflits corresponding mean distance is
less than a threshold, determined by the desiredaracy of the calibration.
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Figure 4: Camera calibration block diagram

Figure 4 illustrates the view-to-map camera catibreprocess. First, control
points are computed as described above using thehimg features selected by the
operator on a GUI provided by the system. Next, ithage plane to map plane
homography is computed using the Direct Linear $famation algorithm [12]. This
least squares based method is very sensitive lot¢hton error of the control points;
especially if the number of the control pointsiisadl or the points are clustered in a
small portion of the image. In the proposed apgnpatatching line features are used
to iteratively improve the calibration. In eachri&on, control points are added or
adjusted, till the change in the error of featuieehing falls below a threshold. Since
a line segment is a more representative featume ahsingle point and its location is
more reliable than that of a single point, thisratve refinement process very
effectively reduces calibration errors and in ogstem it always rapidly converges to
the optimal result.

In each iteration, the corresponding view and negbufres are used to estimate
the homography. That homography is used to transfiie view features onto the
map. Then the calibration error is computed as aherage distance on the map
between the transformed view features and the sporeling map features. For a
point feature, the distance is simply point to palistance. For a line feature, the
distance is the enclosed area between the twoskgeents, as illustrated by the
shaded area in Figure 5. In order to reduce tHibration error, we add new control
points based on line features. In Figure bahd | represent a pair of matching line
segments on the map and view, respectively. Nae ttieir ending points are not
required to be matching points, thus they may mointthe control point list initially.
OnceH is estimated, the view line segmentid transformed into the map line
segment L' with points R’ and B’. The goal is to find an estimate ¢f that
minimizes the distance betweer And the original matching line segmentdn the
map. This is obtained by minimizing the shaded &etaeen L and Li'. To achieve
this, R’ and R’ are projected onto line4l.yielding R and B. Thus, point pairs ¢
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Figure 5: Adjusting control points

P:) and (p, P,) become matching pairs of points and are adddbetdist of control
points for the next iteration. In subsequent iiers, these additional control points
are further adjusted by projecting them on the lindbased on the newly estimated
homographyH, as long as these adjustments further improvedlibration accuracy.
The above calibration processes are all performadnaatically except the manual
matching feature selection operation using a GUI.

Although the map-view mapping or tiematrix obtained above is not a full
camera calibration, it provides the most valuabl®rimation for the cross camera
target tracking. First, since all of the cameravdeare calibrated to the same map, the
corresponding targets from multiple cameras camédterally associated based on
their map locations. Second, by using actual mafescthe physical size and velocity
of the target can be estimated, providing useful t&rget information. Third, the
map-view mapping can be used to estimate the aféefield of view (EFOV) of each
camera on the map. The EFOV defines the effectioritoring area of each camera,
helping with planning camera placement, and periiognoross camera target handoff.
The EFOV of a camera includes the points wherevithe size of a human is above a
threshold and the mapping error is low.

3.4 DataFusion

The data fusion module of the fusion sensor coptisly receives video meta-data of
all targets from all individual sensors. As theffistep, the fusion sensor projects each
data onto the map using the calibration informatbhe sensor. After this step the
fusion sensor introduces some delay (dependenthertypical network delay) to
make sure that all target information for a givanet instance is received from all
sensors before processing. To achieve this it isiak that all sensors are time
synchronized with each other, ensuring that thé@fusensor can properly combine
them. In the fusion sensor, we maintain a dataghbufh the input meta-data from the
view sensors and batch process them after evescdnsis. The T is determined by
the maximum network latency. Once the actual viemssr to fusion sensor delay is
less than T, the input data will be properly syoctized. In our installations, the T is
usually less than 1 second.

Figure 6 illustrates one iteration of the targetadasion process. Based on the
incoming synchronized video meta-data, the upd&t® target module builds its own
representation of each view target, adding in &mfthd data such as map location and
physical size, computed from the map-view mappiNgxt, the view target fusion
module checks if any stable new view target matcdresxisting map target. If it



does, the map target is updated with the view tar@éherwise, the system may
produce a new map target from the new stable vaaget. Here, a “stable” view
target means the target has a consistent appeammteis tracked with high
confidence. This requirement is used to temporaigigore non-salient targets,
partially occluded targets, and targets on the smiagundaries, where both location
and appearance may be inaccurate. The matchingunedastween two targets is the
combination of the location, size and appearandehitey probabilities. The location
matching probability is estimated using the tangetp location from the map-view
mapping. The size matching probability is computed the relative physical size of
each target. The appearance matching probabilitpbigined by comparing the
appearance models of the targets under investigafioe appearance model used in
our system is a distributed intensity histogramjclthincludes multiple histograms
for different spatial partitions of the target. Thppearance matching score is the
average correlation between the correspondingadlygpiartitioned histograms.

One map target can represent multiple view tarfyeta different views, e.g.
when a target is in the overlapping area of twoeras. For each time stamp, the map
target has a primary view target that providesrtiwest reliable representation of the
physical object at that time. The map target upgateess determines this primary
view target and updates the general target pr@sestich as map location, velocity,
classification type, etc. It may also reclassifsgts based on additional map target
properties, such as physical size and speed.

Since target occlusion can cause significant megtion estimation errors, the
map target fusion module tests whether a map tageésponds to another existing
map target when the stability status of the mapgetachanges. Each target has an
associated stability status based on how consigteshape and size is in a temporal
window. If a merge is needed, the map target whibrter history is merged into the
other target.

4 Examples

The system described in the paper was successiudialled in a number of
applications. This section describes two very défifee installations. Both installations
are using Windows XP on Intel processors. A 2.8GHmI-CPU machine can
comfortably run up to four sensors each at arouhfpg.

4.1 Critical Infrastructure Protection

The most typical application of the camera fusigatem is protecting a larger site
with several cameras daisy chained around the p&itnas illustrated in Figure 7.
The system was installed around a military airfieldth 48 fixed and 16 PTZ

cameras covering a 5 mile perimeter. The 48 fixaueras were daisy chained, with
overlapping fields-of-views, providing full fenceowerage. As the first step of the
installation all these cameras were calibratechtodite map by manually selecting
corresponding point and line features. The PTZ camevere installed to provide
better resolution imagery in case of intrusion. Tdetails of PTZ calibration and

operation are beyond the scope of this paper.
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The system allows the user to setup rules eitheéndimidual camera views or
on the map or both view and map. The most impomalet for the user was a multi-
segment tripwire following the fence-line arouna tivhole perimeter, configured to
detect when targets cross it from outside to ire Tker interface for defining rules
has several features to help the precise definitibrules. The rule can be drawn
initially at a more zoomed out setting showing fh# area. Then portions can be
viewed and fine tuned in higher zoom levels. Besisleeing the rule on the map, the
interface also allows projecting, visualizing anditiag it in a camera view. This
method typically provides the highest resolutiond dt also allows fixing some
inaccuracies resulting from potential calibrationoes. In the far view of a camera,
being just a pixel off may translate into meterstioea map, and that discrepancy in
turn can mean the difference between a rule aligméud the fence, or being on the
public road around the fence, generating seveltsé falarms. Such inaccuracies can
easily be visualized and corrected by viewing tles on the map. In addition to the
multi-segment tripwire rule, some areas are preteetith rules detecting enters and
loiters in an area of interest.

All alerts contain the location of the detectedreveBy default, the location
includes location in the camera with the best vidwhe target; and location on the
map. If the map is just an image, then locatiorefgesented as an image coordinate.
If the map has associated geographical informatsoich as a world file, than the
location is expressed as lat/long coordinates dls we

The system is very flexible, can easily accommodatefiguration changes.
Additional cameras can be added quickly by calibgagthem to the map and the PTZ
cameras. The rest of the sensors and rules arelemtypunaffected by this addition.

4.2 Hazardous L ab Safety Verification

The same system was used in a very different agjuit scenario by a major
research university. The goal was to detect viotetiof the so called two-person rule
in some infectious disease laboratories. The rigdama that a person should never be
alone in the lab, i.e. if there is anybody in tabk,Ithere should be at least two people.
The only exception is the few seconds around peeptering and exiting, so if a
person enters the empty lab, there should be mbaddong as another person enters
within a few seconds.



The most straightforward solution would be to cothe# number of people
entering and exiting the lab, and use the diffeeesfdhe two as the person count. The
big drawback of this approach is that it has nohmatsm for correcting errors. For
example if two people enter and are counted cdyrduiit they leave so close to each
other that they are miscounted as a single petsensystem will false alert, even
though there is nobody left inside. Similarly thstem could miss an event, which is
an even greater problem. For this reason a rolygstra needs to monitor the whole
lab, so that it can continuously keep track of leeple inside, maintaining an up-to-
date count. To obtain good coverage, minimizinglusions which are the main
reason for counting errors, the cameras were mdwrighe ceiling. Some labs were
small enough to be covered by a single wide angieeca, but others required more
than a single camera. For these larger labs fusias very important, otherwise
people in the area where two cameras overlap whalee been counted by both
cameras.

System configuration was conceptually similar te tritical infrastructure
example, but there were some differences. The napreplaced with a blueprint or
sketch of the lab. The requirement is that the fioliné has to be of the correct scale
and contain sufficient identifiable features on tfeor (ground plane) for the
calibration. The camera was calibrated to the binemsing the manually selected
feature correspondences. The cameras were runoimgrd analysis, reporting all
human targets to the fusion sensor. The fusionosgrejected these targets onto the
blueprint, fusing targets in the overlap area iatsingle human. The fusion sensor
counted the number of people, and alerted if it saly a single person for longer
than a user defined minimum time, typically aro@dec.

5 Futurework

We are looking at improving the overall system @veral ways. The current fusion,
as described in Section 3.4, uses location asttbagest cue for fusing targets, in

Figure 7: Wide area surveillance by daisy-chairéageras (red cones)
around the perimeter of the protected fac



conjunction with some other features. In more credvé&nvironments, however, a
more sophisticated method is required. We are tapkito using additional features,
such color, shape, etc. to properly resolve thadlehge.

We are also looking into how to make the systemensmalable. The current
implementation was tested with over 50 individuahsors communicating with the
fusion sensor, but an installation covering reldhge areas with hundreds of sensors
would be problematic, with too much data floodinge tfusion sensor and
overwhelming its processing. A more scalable sotuttan use multiple layers of
fusion: a fusion sensor handling a smaller clusfexensors, and multiple such fusion
sensors communicating to higher level fusion sensBusion itself requires target
information only from the overlapping areas of ttemeras, but some of the event
logic requires full target history. For example detect a target circling around a
facility, the whole target track is required, se thformation has to be combined from
all sensors to be able to generate the alert.

6 Conclusions

We presented a real-time cross-camera fusion syskemrovides powerful new
capabilities over single camera system, but witty Vigtle extra complexity both in
terms of user interface and implementation. Theéesysvas successfully deployed in
a variety of commercial applications.
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