Efficient Resource Allocation using a Multiobjective Utility Optimisation Method

Abstract : In this paper we present an extension for two recent active vision systems proposed in Navalpakkam and Itti [1], and in Frintrop [2]. The novelty of our proposed system is twofold: first it extends the existing approaches using both prior and dynamic contextual knowledge, enabling to adapt the proposed system to the present environment. Second, the decision making process intuitively used in [1, 2] is formalised in this paper and put into the context of multiobjective optimisation using a utility concept. We discuss three different saliency algorithms to be used in the system as well as three different methods to determine common utility. Our presented system is quantitatively evaluated using a motorway traffic sequence recorded by a test vehicle equipped with a multimodal sensor system.
Type de document :
Communication dans un congrès
Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications - M2SFA2 2008, Oct 2008, Marseille, France. 2008
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00326770
Contributeur : Peter Sturm <>
Soumis le : dimanche 5 octobre 2008 - 14:40:22
Dernière modification le : mercredi 4 octobre 2017 - 14:56:17
Document(s) archivé(s) le : vendredi 4 juin 2010 - 12:14:00

Fichier

1569139932.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00326770, version 1

Collections

Citation

Stephan Matzka, Yvan R. Petillot, Andrew M. Wallace. Efficient Resource Allocation using a Multiobjective Utility Optimisation Method. Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications - M2SFA2 2008, Oct 2008, Marseille, France. 2008. 〈inria-00326770〉

Partager

Métriques

Consultations de la notice

279

Téléchargements de fichiers

92