A. Ude, C. Gaskett, and G. Cheng, Foveated vision systems with two cameras per eye, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., pp.3457-3462, 2006.
DOI : 10.1109/ROBOT.2006.1642230

B. Scassellati, A binocular, foveated active vision system, 1999.

C. G. Atkeson, J. G. Hale, F. Pollick, M. Riley, S. Kotosaka et al., Using humanoid robots to study human behavior, IEEE Intelligent Systems, vol.15, issue.4, pp.46-56, 2000.
DOI : 10.1109/5254.867912

T. Shibata, S. Vijayakumar, J. J. Conradt, and S. Schaal, Biomimetic Oculomotor Control, Adaptive Behavior, vol.9, issue.3-4, pp.189-208, 2001.
DOI : 10.1177/10597123010093005

H. Kozima and H. Yano, A robot that learns to communicate with human caregivers, Proceedings of International Workshop on Epigenetic Robotics, 2001.

D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol.60, issue.2, pp.91-110, 2004.
DOI : 10.1023/B:VISI.0000029664.99615.94

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Matas, O. Chum, M. Urban, and T. Pajdla, Robust wide-baseline stereo from maximally stable extremal regions, Image and Vision Computing, vol.22, issue.10, pp.761-767, 2004.
DOI : 10.1016/j.imavis.2004.02.006

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. Mikolajczyk and C. Schmid, An Affine Invariant Interest Point Detector, Proceedings of the 7th European Conference on Computer Vision, pp.128-142, 2002.
DOI : 10.1007/3-540-47969-4_9

URL : https://hal.archives-ouvertes.fr/inria-00548252

K. Mikolajczyk and C. Schmid, Scale & Affine Invariant Interest Point Detectors, International Journal of Computer Vision, vol.60, issue.1, pp.63-86, 2004.
DOI : 10.1023/B:VISI.0000027790.02288.f2

URL : https://hal.archives-ouvertes.fr/inria-00548554

K. Mikolajczyk, T. Tuytelaars, and C. Schmid, A Comparison of Affine Region Detectors, International Journal of Computer Vision, vol.65, issue.1-2, pp.43-72, 2005.
DOI : 10.1007/s11263-005-3848-x

URL : https://hal.archives-ouvertes.fr/inria-00548528

T. Svoboda and T. Pajdla, Matching in Catadioptric Images with Appropriate Windows, and Outliers Removal, Proceedings of the 9th International Conference on Computer Analysis of Images and Patterns, pp.733-740, 2001.
DOI : 10.1007/3-540-44692-3_88

Z. Pohl, Omnidirectional vision?searching for correspondences, 2001.

M. Lhuillier and L. Quan, Match propagation for image-based modeling and rendering, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.8, pp.1140-1146, 2002.
DOI : 10.1109/TPAMI.2002.1023810

URL : https://hal.archives-ouvertes.fr/hal-00118524

M. Lhuillier and L. Quan, A quasi-dense approach to surface reconstruction from uncalibrated images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, issue.3, pp.418-433, 2005.
DOI : 10.1109/TPAMI.2005.44

URL : https://hal.archives-ouvertes.fr/hal-00272603

J. Kannala and S. S. Brandt, Quasi-Dense Wide Baseline Matching Using Match Propagation, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2007.
DOI : 10.1109/CVPR.2007.383247

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

O. Faugeras, Stratification of three-dimensional vision: projective, affine, and metric representations, Journal of the Optical Society of America A, vol.12, issue.3, pp.465-484, 1995.
DOI : 10.1364/JOSAA.12.000465

B. Sturmfels, Algorithms in Invariant Theory, 1993.
DOI : 10.1007/978-3-7091-4368-1

Y. H. Wu and Z. Y. Hu, Geometric invariants and applications under catadioptric camera model, Proceedings of the Tenth IEEE International Conference on Computer Vision, pp.1547-1554, 2005.

C. Geyer and K. Daniilidis, Catadioptric projective geometry, International Journal of Computer Vision, vol.45, issue.3, pp.223-243, 2001.
DOI : 10.1023/A:1013610201135

M. A. Fischler and R. C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM, vol.24, issue.6, pp.381-395, 1981.
DOI : 10.1145/358669.358692